多孔钛制备方法及结构性能影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用占位填料法和凝胶铸造法制备多孔钛,通过调整孔隙率使多孔钛力学性能与骨组织力学性能匹配,以减轻钛植入体材料与骨组织的应力屏蔽。
     使用占位填料法制备多孔钛,选取两种钛粉(10~40μm、5~20μm),造孔剂为碳酸氢铵(100~400μm),在10-3Pa真空中进行烧结。考查烧结温度、保温时间、升温时间、钛粉含量对多孔钛微结构(孔隙率、开孔率)与力学性能(最大抗压强度、杨氏模量)的影响。烧结温度选为1000℃、1100℃、1200℃、1300℃;保温时间选为1h、1.5h、2h、3h;升温时间选为4.5h、5h、5.5h、6h;钛粉含量选为45%、50%、55%、60%、65%。结果表明:在烧结温度1200℃、保温时间2h、升温时间4.5h、钛粉含量50%、钛粉粒径范围10-40μm的条件下,多孔钛的微结构和力学性能最佳,孔隙率为63.5%,开孔率为64.9%,最大抗压强度为150.7MPa,弹性模量为2.91GPa,宏孔与微孔的孔径范围分别为100-400μm与10~40μm。烧结温度、保温时间对多孔钛的微结构和力学性能影响较大,烧结温度为主要因素,保温时间为次要因素,升温时间影响较小。钛粉含量对多孔钛的微结构和力学性能影响明显。
     在此基础上,加入氢化钛(100-400μm),以研究氢化钛对多孔钛微结构和力学性能的影响,氢化钛加入量选为5%,7.5%,10%,12.5%,15%,20%。结果表明:氢化钛加入量为10%(钛粉与氢化钛质量比为4:1)时,多孔钛的微结构和力学性能最佳,孔隙率为69.5%,开孔率为70.2%,最大抗压强度为180.6MPa,弹性模量为3.12GPa,宏孔与微孔的孔径范围分别为100~500μm与10~50μm。氢化钛加入量小于10%,有助于提高多孔钛的微结构、力学性能与孔径范围。
     使用凝胶铸造法制备多孔钛,无水氯化锂为4g、甲壳素为0.56g、N-N,二甲基乙酰胺为100m1时,制备的浆料最佳,此时制备的多孔钛,孔隙率为56.4%,开孔率为69.7%,最大抗压强度为204.5MPa,弹性模量为3.16GPa,宏孔与微孔的孔径范围分别为100~200μm与10-20gm。
     凝胶铸造法和占位填料法相比,前者制备的多孔钛,强度和模量较大,但孔隙率和宏孔尺寸较小;后者制备的多孔钛,孔隙率和宏孔尺寸较大,但强度和模量较小。因此,可根据实验需求选取具体的实验方法。
In this paper, the place holder packing method and gel casting method are prepared to porous titanium, by adjusting porosities of the porous titanium, mechanical properties of bone tissue match the performance of titanium implant materials and bone tissue to relieve stress shielding.
     The place holder packing method is prepared to porous titanium with titanium (Ti,10~40μm,5~20μm) by vacuum sintering of Ti powders (10~40μm) using ammonium bicarbonate (100~400μm) as the porogen. And to examine sintering temperature, holding time, heating time, the titanium powder content of the porous titanium micro-structure (porosity, opening porosity) and mechanical properties (maximum compressive strength, Young's modulus) of impact. Sintering temperature selected as1000℃,1100℃,1200℃,1300℃. Holding time selected as1h,1.5h,2h,3h; Heating time selected as4.5h,5h,5.5h,6h; the content of titanium powder selected as45%,50%,55%,60%,65%. The optimum processing conditions were:heating time4.5h and sintering at1200℃for2h. The porous Ti prepared under these optimum conditions had a total porosities of63.5%, open porosities of64.9%, compressive strengths of150.7MPa, and Young's modulus of2.91GPa. Macro-porous and micro-porous pore size range of100~400μm with10~40μm. Sintering temperature, holding time on the microstructure and mechanical properties of porous titanium greater impact, and sintering temperature is the main factors and holding time is the secondary factors, the heating time is less affected. How much of the content of titanium powder also has a significant effect on the microstructure and mechanical properties of porous titanium.
     Above all, Titanium hydride (100~400μm) to the study of titanium hydride and the impact on the microstructure and mechanical properties of porous titanium, titanium hydride addition amount of preferably5%,7.5%,10%,12.5%,15%,20%. Results showed that: when the titanium hydride10%(titanium powder and titanium hydride mass ratio of4:1), the the porous titanium microstructure and mechanical properties, porosity of69.5%, opening porosity of70.2%, maximum compressive strength of180.6MPa, elastic modulus3.12GPa, macro-porous and micro-porous pore size range of100~500μm with10~50μm. Adding a small amount of titanium hydride content of less than10%, help to improve the micro-structure of the porous titanium, mechanical properties and pore size range.
     Gel casting preparation of porous titanium, when anhydrous lithium chloride for4g, chitin0.56g, N-N dimethyl acetamide100ml slurry was prepared, the porous titanium is prepared, porosities of56.4%, opening porosities of69.7%, maximum compressive strength of204.5MPa, elastic modulus3.16GPa, macro-porous and micro-porous pore size range were100~200μm and10~20μm.
     Gel casting method, and the place holder packing method, the former is able to provide greater strength and modulus, but are too small compared to the number of pores and macro-pore size of the latter; the latter is able to get higher porosities and macro-pore size of but strength and modulus compared to the former are small. Thus, according to the specific experimental need to select the specific test method.
引文
[1]Kurtz S M, Gawd H A, Pard J D. History and systewatic review of wear and osteolysis outcomes for first-generation Nghly crosslinked polyethylene. Clin Orthop Relat Res[J], 2011,469(8):2262-2277
    [2]贺韬,曹聪,董宇启.硬组织工程材料骨整合评价方法与应用[J].国际骨科学杂志.2012,33(2):92-96.
    [3]陈芳萍,刘昌胜.硬组织植入材料的研究进展[J].陶瓷学报.2004,25(4):245-250.
    [4]张袆,郝志彪,张晓,等.人体硬组织植入材料的研究概况[J].炭素技术.2006,5(3):18-21.
    [5]Spencer R F. Evolution in hip resurfacing design and contemporary experience with all uncemented device. J Bone Joint Surg Am[J],2011,93(Suppl 2):84-88.
    [6]Haddad S, Coetzee J, Gstok R, et al. Intermediate and long-term outcomes of total ankle arthroplasty and ankle arthrodesis. A systematic review of the literature. J Bone Joint Surg Am[J],2007,89(9):1899-1905.
    [7]Nauth A, McKee M D, Ristevski B, et al. Distal humeral fractures in adults. J Bone Joint Surg Am[J],2011,93(7):686-700.
    [8]Young A A, Hughes J S. Locked intramedullary nailing for treatment of displaced proximal humerus fractures[J]. Orthop Cin North Am,2008,39(4):417-428.
    [9]Cho S K, Stoker G E, Bridwell K H. Spinal reconstruction with pedicle screw-based instrumentation and rhBMP-2 in patients with neurofibmmatosis and severe dural ectasia and spinal deformity:report of two cases and a review of the literature. J Bone Joint Surg Am[J],2011,93(15):83-86.
    [10]Aschoff H H, Kennon R E, Keggi J M, et al. Trarkscutaneous, distal femoral, intrarnedullary attachment for ahove-the-knee prostheses:an endc-exo device. J Bone Joint Surg Am[J],2010,92(Suppl 2):180-186.
    [11]Arcuri C, Muzzi F, Santinl F, et al. Five years of experience suing palatal mini-implants for orthodontic anchorage. J Oral Maxillofac Surg[J],2007,65(12):2492-2497.
    [12]郑学斌,刘宣勇,丁传贤.人体硬组织替代材料的研究进展[J].物理学报.2003,32(3):159-164.
    [13]刘宣勇.硬组织植入材料表/界面研究进展[J].无机材料学报.2011,26(1):1-11.
    [14]Donald T.R. and Albert H.B.. The mechanical properties of cortical bone. Journal of Bone & Joint Surgery[J].1974,56:1001-1022.
    [15]徐秀林,薜文东,戴克戎.正常人皮质骨压缩力学性能实验研究[J].医用生物力学.1996,11(1):26-29.
    [16]Philippe K Z, Edward X G, Edward C H, et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. Journal of Biomechanics[J].1999,32(10):1005-1012.
    [17]John C. Incompatible mechanical properties in compact bone. Journal of Theoretical Biology[J].2004,231(4):569-580.
    [18]Ibrahim K, Jerome C, Samir A, et al. Mechanical properties of glenoid cancellous bone. Clinical Biomechanics[J],2010,25(4):292-298.
    [19]Giesen E B W, Ding M, Dalstra M, et al. Reduced mechanical load decreases the density, stiffness and strength of cancellous bone of the mandibular condyle. Clinical Bio-mechanics[J],2003,18(4):358-363.
    [20]Nicholson P H F, Cheng X G, Lowet G, et al. Structural and material mechanical pro-perties of human vertebral cancellous bone. Medical Engineering & Physics[J],1997, 19(8):729-737.
    [21]Schoenfeld C M, Lautenschlager E P and Meyer Jun P R. Mechanical properties of human cancellous bone in the femoral head. Medical & Biological Engineering & Computing[J],1974,12(3):313-317.
    [22]Carolyn A, Patricia T, Urs P W, et al. Glenoid cancellous bone strength and modulus. Journal of Biomechanics[J],1999,32(10):1091-1097.
    [23]刘盈,曹正东,陆申龙.人造骨杨氏弹性模量的测量与材料物理稳定性的研究[J].实验室研究与探索.2008,27(5):39-41.
    [24]楚金普,周学东.牙齿硬组织脱矿与再矿化的研究方法[J].国外医学口腔医学分册.2006,33(1):3-5.
    [25]田力丽,程振江,肖诚.生物矿化在牙体硬组织修复中的应用[J].生物骨科材料与临床研究.2009,6(2):29-34.
    [26]顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993.
    [27]李艳芹,朱博超,黄安平,等.超高分子量聚乙烯研究进展及应用领域[J].广州化工.2011,39(2):19-21.
    [28]焦永峰,赵磊.生物陶瓷材料的研究进展[J].江苏陶瓷.2008,41(2):7-9,12.
    [29]张艳丽.生物陶瓷材料及其发展动态[J].中国陶瓷.2007,43(3):14-17.
    [30]叶建东,张婧.生物惰性陶瓷的改性与临床应用研究进展[J].中国陶瓷.2011,47(7):1-6.
    [31]林雪,郝建军,刘丽愉.生物活性陶瓷涂层材料的制备及研究进展[J].Plating and Finishing.2012,34(2):14-20.
    [32]李晓溪,闫玉华.可降解磷酸钙生物陶瓷研究的进展[J].陶瓷.2003,162(2):27-30.
    [33]孙艳荣,范涛,黄勇,等.羟基磷灰石生物陶瓷材料的研究趋势及展望[J].硅酸盐学报.2010,38(6):1145-1150.
    [34]杨雪娟,刘颖,李梦,等.多孔金属材料的制备及应用[J].材料导报.2007,21(9):380-383.
    [35]Michel A, Peter J, Michel A. L, et al. Porous Titanium-Nickel for Intervertebral Fusion in a Sheep. Wiley Periodicals, Inc. J Biomed Mater Res Part B[J]:Appl Biomater 64B: 107-120,2003
    [36]Monsourighasri A, Muhamad N, Sulong A B. Processing titanium foams using tapioca starch as a space holder. J Mater Process Tech[J].2012,212:83-9.
    [37]孙文晓,张海港,韦卓等.骨修复材料的研究应用现状与展望[J].生物骨科材料与临床研究.2009,6(3):35-40.
    [38]Hing K A. Bone repair in the twenty-first century:biology, chemistry or engineering. Phil Trans R Soc Land A[J].2004,362:2821-50.
    [39]张喜燕,赵永庆,白晨光.钛合金及应用[M].化学工业出版社,2005.
    [40]Wen C E. Processing of biocompatible porous Ti and Mg. Scripta Mater[J],2001, 45:1147-53.
    [41]Oh I-H, N Nomura, N Masahashi, et al. Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia[J],2003,49:1197-1202.
    [42]王桂生,田荣璋.钛的应用技术[M].湖南:中南大学出版社.2007.30-35,64-70.
    [43]Anselme K. Osteoblast adhesion on biomaterials. Biomaterials,2000,21(7):667-681.
    [44]Fujibayashi S, Neo M, Kim H M, et al. Osteoinduction of porous bioactive titanium metal. Biomaterials [J],2004,25(3):443-450.
    [45]Marc L, Rack H J. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials[J],1998,19(18):1621-1639.
    [46]刘培生.多孔材料引论[M].北京:清华大学出版社,2004,
    [47]李伯琼,王德庆,陆兴.粉末冶金多孔钛的研究[J].大连铁道学院.2004,25(1): 74-78.
    [48]邹鹑鸣,张二林,曾松岩.纤维烧结多孔钛及其表面生长仿生Ca-P涂层.稀有金属材料与工程[J].2007,36(8):1394-1397.
    [49]Chen Y J, Feng B, Zhu Y P, et al. Fabrication of porous titanium implants with biomechanical compatibility. Materials Letters[J],2009,63(30):2659-2661.
    [50]刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002,33(1):37-45.
    [51]赵婧,鲁雄,汪建新等.具有生物活性的多孔钛金属复合支架的制备[J].生物医学工程学杂志,2009,26(4):795-798.
    [52]Takemoto M, Fujibayashi S, Neo M, et al. Mechanical properties of ostoconductivity of porous bioactive titanium. Biomaterials[J],2005,26(30):6014-6023.
    [53]Peng Q, Jiang F X, Huang P, et al. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. Preparation and characterization of scaffold[J]. Journal of Biomedical Materials Research A,2010,93(3):920-929.
    [54]汤慧萍,张正德,金属多孔材料发展现状[J].稀有金属材料与工程,1997,26,1:1-6.
    [55]Wen C E, Mabuchi M, Yamada Y, et al. Processing of biocompatible porous Ti and Mg. Scripta Materialia[J],2001,45(10):1147-1153.
    [56]Niu W J, Bai C G, Qiu G B, et al. Processing and properties of porous titanium using space holder technique. Materials Science and Engineering A[J],2009,506(1-2): 148-151.
    [57]Fan X P, Feng B, Weng J, et al.Processing and properties of porous titanium with high porosity coated by bioactive titania nanotubes. Materials Letters[J].2011,65, 2899-2901.
    [58]Samuneva B, Kozhukharov V, Trapalis C, et al. Sol-gel processing of titanium-containing thin coatings Part I Preparation and structure [J]. Journal of Materials Science,1993,28(9):2353-2360.
    [59]胡紫英,李美,徐威.多孔钛的粉末冶金法制备及其力学性能[J].Ti钛工业进展,2010,27(4):12-15.
    [60]梁克炳.解理断裂机制[J].无锡职业技术学院学报,2003,2(4):25-26.
    [61]中华人民共和国国家标准.GB/T 7314-2005,1-15.
    [62]李士同,朱瑞富,甄良等.烧结温度对多孔钛组织结构与性能的影响[J].材料热 处理学报,2009,30(2):93-100.
    [63]LI Yan, GUO Zhi-meng, HAO Jun-jie, et al. Porosity and mechanical properties of porous titanium fabricated by gelcasting. J Rare Metals[J],2008,27(3):282-286.
    [64]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006.13-18,59-76.
    [65]刘培生.多孔材料孔率的测定方法[J].Ti钛工业进展,2005,22(6):34-37.
    [66]黄培云.粉末冶金原理[M].第二版.北京:冶金工业出版社,1997.267-268,287-289.
    [67]罗会涛,赵婧,范兴平等.不同类型多孔结构生物材料支架制备及其性能优化.中国材料进展[J],2012,5:30-39.
    [68]Raka Z S, Walter J. Porous titanium foil by tape casting technique. Journal of Materials Processing Technology [J],2006,175:358-363.
    [69]Yook S W, Yoon B H, Kim H E et al. Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Materials Letters[J],2008,62:4506-4508.
    [70]Lin C M, Yen S K. Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fliud. Mater Sci Eng C[J].2006,26:54-65.
    [71]翁杰,梁列峰,冯波,屈树新,彭谦.一种制备多孔结构无机材料及其制品的方法.专利号:ZL200410021801.2
    [72]邹慧,鲁琦,田卫东,等.非传统粉末冶金制备生物医用多孔钛及其性能[J].功能材料与器件学报[J].2010,16(2):490-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700