建筑屋面雨水排水系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来我国经济和社会的快速发展,建筑屋面的造型千姿百态丰富多彩,各种大面积的场馆、现代工业厂房在全国各地大量兴建,这些建筑往往气势宏伟、美观实用,但随之也带来了大或超大屋面雨水排水系统设计的问题。此前,我国的屋面排水系统按重力流设计,但是,重力流雨水排水系统受其水力特性的限制,已经不能适应这些工程的需要。近些年在欧洲发展起来了新兴的压力流(虹吸式)屋面雨水排水系统。本文通过对重力流雨水排水系统和压力流(虹吸式)屋面雨水排水系统在技术和经济方面的比较,论证了压力流(虹吸式)屋面雨水排水系统对于超大型、大型和中小型建筑屋面的优越性。
     压力流(虹吸式)屋面雨水排水系统作为一种新型的雨水排放系统,在该系统的水力工况、降雨的设计重现期及适用的计算公式等问题上仍然争议较大,本文就其中一些热点问题进行了探讨。压力流(虹吸式)雨水排水系统的关键之一是精确地进行水力计算,水力计算的目的是充分利用系统提供的可利用水头,减小管径,降低造价,并保证系统安全、可靠、正常地工作。本文论述了压力流(虹吸式)屋面雨水排水系统的工作原理和水力计算方法,并用C++语言编制了计算机程序,使压力流(虹吸式)屋面雨水排水系统的设计计算实现了自动化,大大减少了计算工作量,提高了计算精度,并使该系统能够更可靠地运行。
     对于压力流(虹吸式)雨水系统,经济合理地设计雨水管道,使之具有合理的和最佳的排水能力,最大限度地及时排除雨水,又不使建设规模超过实际需求,合理而经济地进行设计具有重要的意义和价值。在对雨水管道进行优化计算时,最终的优化计算结果是通过寻求费用最低而得出来的,即最终决策与费用函数密切相关。本文通过最小二乘法原理将单位长度管段的造价Cg,i拟合为函数形式,从而求出了对雨水管道进行优化的目标函数。但是,在优化设计中,必须根据实际设计要求,对设计变量的取值加以种种的限制,一般表达为设计变量的不等式约束函数或等式约束函数。为了适应目标函数和约束条件的非线性特征,本文建立了非线性规划模型。然后,用罚函数法构造出带参数的辅助函数,将约束问题转化为求解无约束的最优化问题,从而得到最优的管径组合。
With the development of the national economy and society in recent years, building′s roofs differ in thousands of ways and become rich and colorful, there are various big area roof exhibition hall and modern industrial workshop being constructed in each place, these constructions are grandiose and artistic practical generally, but has also brought the problems in design of big area roof rainwater drainage system along with it. Design of roof rainwater drainage system in our country according to gravitational fluid formerly, but gravitational rainwater drainage system is limited by its hydraulic characteristic, already could not meet the demands of these projects. Newly emerging siphonic roof rainwater drainage system has been developed in Europe. This paper demonstrates advantages of siphonic roof rainwater drainage system for dium- and large-scale roofs by comparison on gravitational rainwater drainage system and siphonic rainwater drainage system in technical and economical aspects.
     As a new-style rainwater drainage system, siphonic roof rainwater drainage system has some disputable issues such as hydraulic operating mode, recurrence period of design and suitable calculation formulae, so this paper will discuss these issues. One of the keys of siphonic rainwater drainage system is hydraulics calculation′s accuracy, the goal of hydraulics calculation is taking full advantage of hydraulic head that system offers, minishing pipe′s diameter, reducing costs and ensuring system working safely, reliably and normally. This paper exposits the work principle and hydraulics calculation method of siphonic roof rainwater drainage system, and uses the C++ language to establish the calculator procedure, which makes hydraulics calculation of siphonic rainwater drainage system realize automation, allays the workload greatly, improves hydraulics calculation′s accuracy and makes the system work more stablely.
     Siphonic rainwater drainage system is a new-style rainwater drainage system, it is very significant to design rainwater pipes economically and rationally, which makes the system have optimal capability of drainage, drain furthest in time but not cause the construction scale to surpass the actual demand. When carries on optimal calculation of the rainwater pipeline, the final optimization computed result is resolved through seeking the costs to be lowest, namely final decision-making and expense function are closely related. This paper studies the curve-fitting of the unit length of pipe cost Cg, i, and extracts objective function accordingly that optimizes the rainwater pipeline. But, in optimal design, we must according to the actual demand and give some restrictions on design parameter, which is expressed as inequality constraint function or equality constraint function of design variable. In order to adapt non-linear characteristic of objective function and the constraint condition, this paper has established the nonlinear programming model. Then, this paper establish accessorial function by penalty function method to turn constraint problem into nonrestraint problem, obtain optimal pipe′s diameter combination accordingly.
引文
[1] 中国建筑标准设计研究所. 全国民用建筑工程设计技术措施·给水排水.中国计划出版社,2003:103-113
    [2] 王增长.建筑给水排水工程(第四版).中国建筑工业出版社,1998:128-130
    [3] 陆荣海,王宏田. 大面积工业厂房的雨水系统选择.给水排水,2004,30(3):69-70
    [4] Karl Imhoff,俞亚明等译.城市排水和污水处理手册.中国建筑工业出版社,1992
    [5] Homer W. Parker. Wastewater systems engineering. Prentice. Inc,1975
    [6] William F. Adler. Rain impact retrospective and vision for the future. Wear,1999,(233–235):25–38
    [7] C J Pratt. Use of permeable,reservoir pavement constructions for stormwater treatment and storage for re-use. Wat Sci Tech,1999,39(5):145-151
    [8] 姜文源. 屋面雨水排水技术综述. 福建给水排水专题资料,2004(1):15-17
    [9] 上海市建设和管理委员会.建筑给水排水设计规范(GB50015—2003).中国计划出版社,2003:76-77
    [10] 归谈纯. 虹吸式屋面雨水排水系统热点问题探讨.中国给水排水,2006,22(4):41-42
    [11] 范懋功.屋面雨水系统设计探讨. 给水排水,2005,31(3):75-76
    [12] 桑鲁青. 多斗屋面雨水排水技术探讨.给水排水,1994(3):40-42
    [13] 王继明. 屋面雨水系统研究的回顾.给水排水,2003,29(1):58-61
    [14] 吴逸文.虹吸式屋面雨水排水系统的应用.工程建设与设计,2004(8):72-73
    [15] 刘国强,李卫列,郝晓东.屋面虹吸式雨水排放系统的构造及技术优势.建筑技术,2005,36(5):360-361
    [16] Scott Arthur,Grant Wright,John Swaffield. Operational performance of siphonic roof drainage systems. Building and Environment,2005(40):788–796
    [17] S. Arthur, J.A. Swaffield. Siphonic roof drainage system analysis utilizing unsteady flow theory. Building and Environment,2001(36):939–948
    [18] 严新华.水力学.科学技术文献出版社,2001:67-70、118-146
    [19] 尤明庆,陈小敏.实现虹吸过程的条件.焦作工学院学报(自然科学版),2003,22(6):487-489
    [20] S. Arthur, J.A. Swaffield. Siphonic roof drainage:current understanding.Urban Water,2001(3):43–52
    [21] G.B. Wright, L.B. Jack, J.A. Swaffield. Investigation and numerical modelling of roofdrainage systems under extreme events. Building and Environment, 2006(41): 126–135
    [22] 李永奎,吴哲元,罗志文.虹吸式排水系统设计施工要点及优越性.建筑施工,2003,25(6):492-494
    [23] 高亚南.虹吸式屋面雨水排放系统的应用范围.给水排水技术与产品信息,2004(6):29-32
    [24] 封敏. 大面积工业或公共建筑屋面雨水系统的选择.建筑施工,2005,27(7):66-68
    [25] V. Etyemezian,C.I. Davidson,M. Zufall, W. Dai,S. Finger,M. Striegel. Impingement of rain drops on a tall building. Atmospheric Environment,2000 (34) :2399–2412
    [26] 重庆市建设工程造价管理总站.重庆工程造价信息,内部资料
    [27] 高亚南.北京中关村科贸中心雨水系统工程经济成本分析.水务世界,2005:33-36
    [28] 范炳均.虹吸式雨水排水系统设计中若干问题探讨.中国给水排水,2004,20(11):63-65
    [29] 孙慧修.排水工程(上)(第四版).中国建筑工业出版社,1999:63-64
    [30] 同济大学建筑设计研究院. 虹吸式屋面雨水排水系统技术规程(CECS183:2005). 中国计划出版社,2005
    [31] VDI 3806,Roof Drainage with Symphonic System [S]
    [32] 刘鹏,郭汝艳.国家体育场屋面雨水系统设计重现期的分析.给水排水,2004,30(10):80-81
    [33] 田茂强. 屋面雨水汇水面积的确定.给水排水技术动态,2001(2):16-17
    [34] 范懋功.美俄建筑雨水设计规范的特点.给水排水,2005,31(11):113-114
    [35] Galowin L S. Siphonic roof drainage system [J] .Plumbing Systems & Design,2002,(11/12):8-9
    [36] 孙瑛. 压力流(虹吸式)屋面雨水排水系统水力计算.给水排水,2002,28(1):77-81
    [37] 杨虎,刘琼荪,钟波.数理统计.高等教育出版社,2004:105-107、191-192
    [38] F.Hall. Water Installation and Drainage Systems. The Construction Press Ltd,1986
    [39] M.B.莫洛可夫.雨水道及合流水道.建筑工程出版社,1959:23-30
    [40] 钱能.C++程序设计教程.清华大学出版社,1999
    [41] 彭永臻,崔相义.给水排水工程计算机程序设计.中国建筑工业出版社,1998
    [42] 曹相生,姜安玺,依学农. 枚举管径法优化设计雨水管道.中国给水排水,2000,16(10):40-41
    [43] Lansey K,Mays L. Optimization model for water distribution system design. Journal of hydraulic engineering ASCE,1989,115(10):1401-1418
    [44] 唐中良. 排水管道造价指标的费用函数分析.中国市政工程,2006(1):42-47
    [45] 姚青云,李佳奇,冯淑萍. 压力管道经济管径计算.中国农村水利水电,2005(4):56-57
    [46] 周荣敏,雷延锋.基于遗传算法的雨水管道系统优化设计.郑州大学学报(工学版),2003,24(4):59-62
    [47] 陈义华,王开荣,何仁斌. 最优化方法.重庆大学出版社,2004:88-98
    [48] 陈宝林.最优化理论与算法.清华大学出版社,1989
    [49] 孙焕纯,王跃方,柴山.多变量、多约束连续或离散的非线性规划的一个通用算法.应用数学和力学,2005,26(10):1169-1174
    [50] 江维琼.一种新的精确罚函数.云南师范大学学报,2006,26(2):8-9
    [51] 吴至友,张连生,李善良.一些类型的数学规划问题的全局最优解.运筹学学报,2003(5):15-17
    [52] 张绍园.排水管网计算程序中最优方案的探讨—与彭永臻同志商榷[J].中国给水排水,199410(2):21-24.
    [53] 刘鹏,赵昕. 国家体育场屋面雨水排水系统的选择.给水排水,2004,30(11):77-78
    [54] 夏军,梁葆春,陈皓,俞志根.东方艺术中心屋面雨水虹吸排水系统应用.全国建筑给水排水委员会排水分会第二届第一次学术交流会论文集,2006:88-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700