新型铝基活塞材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对发动机活塞材料的现状和发展要求,通过理论分析与实验研究,制取了一种新型的铝基活塞材料,并对其进行了系统的分析与研究,它的相关性能明显优于常规的活塞材料。
     用搅拌铸造法制备了三种试样,以ZL101作为基体,在ZL101基体的基础上加入增强成分SiC颗粒、或者在加入SiC的同时也复合添加润滑成分MoS2。在制备前首先对SiC进行了表面高温氧化处理,可在SiC表面产生Si0:薄层,明显改善熔融铝合金基体对SiC颗粒的润湿性,所制备试样的显微组织和SEM表明加入的SiC颗粒和MoS2颗粒均匀弥散在基体内,无团聚现象,试样组织致密,无明显缺陷。说明SiC、MoS2和基体界面结合较好。
     对试样进行的拉伸试验的结果表明,单纯SiC颗粒增强试样和SiC颗粒增强复合添加MoS2试样较普通ZL101试样均具有更高的强度,复合添加MoS2的试样增幅较低些。
     对试样进行摩擦磨损试验的结果表明,单纯SiC颗粒增强试样和SiC颗粒增强复合添加MoS2试样较普通ZL101试样均具有更佳的耐磨性能。这是由于单纯SiC颗粒增强试样由于硬相承载机理的作用在短时间干摩擦情形下,磨损速率低。SiC颗粒增强复合添加MoS2试样在摩擦前期,其磨损特征与单纯SiC颗粒增强试样一样,其后由于MoS2在摩擦副表面形成润滑干膜,故磨损速率仍保持较低。
According to the present situation and developmental requirement of engine pistons material, the author of this paper made a new type of new piston material based on aluminum matrix composites on the basis of theoretical analysis and experimental research.The results of the systematical study indicated that the related performance of the new materical was superior to that of the qeneral piston material obviously.
     Three samples prepared by stir-casting method have been investigated.The first sample regards ZL101 as matrix,the second one is blended with SiC particles in the ZL101,the last one is combined with enhancement ingredient SiC particles and the lubrication ingredient MoS2 particles in the ZL101 at the same time.The results showed that the wet ability of molten aluminum alloy solution to SiC particles is obviously improved after high heat treatment because of the thin layer SiO2 on the surface of SiC particles.the microstructure and SEM of the sample indicated that the SiC particles and MpS2 particles were evenly distributed and preferably combined without SiC particles agglomerates in the composites.There are not major defects in the samples with compact structure.The results indicated that the viscidity between SiC、MpS2 and substrate is well.
     The stretching test showed that the strength of SiC particle reinforced sample and SiC and MoS2 particle reinforced composite sample are higher than that of ZL101 matrix and the strength of SiC and MoS2 particle reinforced composite sample has a slow graining rate.
     The friction and wear characteristics of composite of the sample have been studied.The results indicated that the wear-resisting performance of SiC particle reinforced sample.SiC and MoS2 particle reinforced composite sample were superior to that of ZL101,for there existed a slow friction and wear speed in a short period resulting from hard phase load-bearing mechanism.The friction and wear characteristics of the three sample is the same in the previous experiments,but the wear rate of SiC particle reinforced sample is keeping slow in the latter experiment owing to the formation of a MoS2 dry film lubrication in friction surface.
引文
[1]杜子文.柴油机组合活塞失效分析及改进措施[J].重庆三峡学院学报,2010,26(125):114-116
    [2]葛郢汉.活塞的材料分析[J].现代机械,2006,5:52-54
    [3]马勒技术投资(中国)有限公司.新型钢制活塞:适用于重型发动机的MONOTHERM[J]:现代零部件,2007,(7):40
    [4]钱人一.高载荷商用车发动机钢活塞[J].汽车与配件,2006,(52):48-51
    [5]王杰芳,谢敬佩,刘忠伙等.国内外铝硅活塞合金的研究及应用述评[J].铸造,2005,54(1):24-27
    [6]Park J O,et al. An experimental study on the optimization of powder forging process parameters for an aluminum-alloy piston[J]. J Mater Process Techn,2001,113:486
    [7]Taymaz I, Cakir K, Mimaroglu A. Experimental study of effective efficiency in a ceramic coated diesel engine [J].Surf Coat Techn,2005,200:1182
    [8]于化顺.金属基复合材料的制备[M].北京:化学工业出版社,2006.121-170
    [9]朵军.颗粒增强铝基复合材料的研究现状[J].青海科技,2006,(4):58-59
    [10]王双喜,刘雪敬,孙家森.铝基复合材料的制备工艺[J].热加工工艺,2006,35(1):65-69
    [11]赵大为,米国发.铸造法制备颗粒增强铝基复合材料的研究进展[J].航天制造技术,2008,5:26-30
    [12]彭晓东,钱翰城.金属基复合材料[M].上海:上海交大出版社,1996,43-44
    [13]卢德宏,顾明元,施忠良.SiC含量对混杂复合材料摩擦磨损性能的影响[J].材料工程,2000,3:26-28
    [14]罗兵辉,柏镇海.SiC增强颗粒含量对6066铝合金组织及力学性能的影响[J].轻合金加工技术,2001,29(8):43-46
    [15]方妍妍,邵光杰,许珞萍等.SiC颗粒增强铝基复合材料半固态成形件组织及性能[J].2004,26(5):21-23
    [16]刘杰,孙卫和.碳化硅颗粒增强铝基复合材料的制备工艺进展[J].稀有金属与硬质合金,2008,36(2):59-62
    [17]朱瑞杰,张勇,胡志力.铝基复合材料的制备及其耐磨性能研究[J].山东理工大学学报(自然科学版),2008,22(2):62-65
    [18]王向荣,田彦文,李建伟.颗粒增强铝基复合材料制备方法及其表面处理技术[J].轻加工技术,2006,34(2):27-35
    [19]王双喜,刘雪敬,孙家森.铝基复合材料的制备工艺[J].热加工工艺,2006,35(1):65-69
    [20]杨大伟,金属基复合材料制备中有害界面反应控制和润湿性增强探讨[J].现代商贸工业,2010,15:371-372
    [21]J Hashim, L Looney, M. S. J Hashmi. Thewettability of SiC particles by molten aluminium alloy[J]. Journal ofMaterials Processing Technology,2001, (119):324
    [22]罗建,廖强,谢钱涛.铝基自润滑复合材料的润湿性研究[J].热加工工艺,2009,38(20): 76-78
    [23]彭涛.内燃机活塞材料的发展与前景[J].山西科技,2007,(3):91-95
    [24]郭领军,李贺军,石振海.内燃机活塞材料的研究及应用述评[J].铸造,2003,52(9):657-659
    [25]陈长江,王渠东,尹冬弟等.材料导报.内燃机活塞材料的研究进展[J].材料导报,2009,23(8):62-65
    [26]陈云霞.纳米PbS2Ti02复合薄膜的制备和摩擦学性能[J].过程工程学报,2002,2(4):365-369
    [27]曹同坤,邓建新.自润滑材料及其摩擦特性的影响因素素[J].材料导报,2004,18(12):80-82
    [28]薛群基.高温固体润滑研究的现状及发展趋势[J].摩擦学学报,1999,19(1):91-96
    [29]Deng J X, D ing Z L, Zhao J, et al. Development and perspective of self21ubricating too lmaterials [J]. Too 1 Engineering,2002,36 (12):8-11.
    [30]杨威锋.固体自润滑材料及其研究趋势[J].润滑与密封,2007,32(12):118-121
    [31]康嘉杰,李国禄,王海斗.层状固体润滑薄膜的研究进展[J].金属热处理,2007,32(4):32-36
    [32]李俊宪,孙保良,邵光杰.SiC颗粒增强铝基复合材料的摩擦磨损性能[J].机械工料,2005,30(5):62-65
    [33]康立忠,张荻,欧阳求保.颗粒增强铝基复合材料干摩擦磨损研究进展[J].材料热处理技术,2008,37(12):104-108
    [34]田文洲,袁泽喜,李俊.自润滑耐磨Al/MoS2复合材料的初步研究[J].材料导论,2005,19(6):12-18
    [35]谈淑咏,方峰,施春陵等.铝基复合材料摩擦磨损性能研究[J].材料保护,2007,40(3):26-30
    [36]徐正国,王承志,张玉妥.搅拌法制备SiC颗粒增强铝基复合材料的研究现状与展望[J].铸造设备研究,2007,5:35-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700