泥蚶分子系统分化及缢蛏遗传多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥蚶(Tegillarca granosa Linnaeus)是我国重要的养殖贝类,经济意义十分
    重大。当前对其研究工作主要集中于生物学特性、增养殖、苗种生产、核型、
    多倍体育种和组织学等几个方面,对其 DNA 水平上的种质资源分化现状的调
    查至今为止还未有深入的报道;而其他海洋生物的 DNA 分子水平的研究结果
    证实了开展物种种质资源调查对物种复壮工作提供有益指导和帮助作用。考虑
    到我国在泥蚶育苗和养殖的生产实践过程中存在的一系列潜在的问题和其在我
    国四大海域的广泛分布的特点,以及不同海域环境条件的较大差异等原因都有
    可能会在一定程度上加速其种质资源的分化和亚群的形成的事实,促使我们开
    展本次研究工作。而且,在本次研究工作对不同地理群体的泥蚶遗传分化状况
    了解和掌握的基础上,分析上述分化可能的产生机制,会极大的促进泥蚶管理
    举措的完善及优良品系的筛选和原种库建立等工作,最终进一步推进泥蚶养殖
    业的持续、高效和健康发展。
     本研究采用采用随机引物扩增多态性 DNA 技术(RAPD)对分布在我国沿
     海的山东荣成(R)、浙江奉化(F)、浙江温岭(W)、福建福鼎(D)、广东
    湛江(Z)、广东汕头(S)和韩国釜山(K)共 7 个地理群体的泥蚶遗传分化进
    行了分析(其中 K、R、F、W 和 D 群体合称北方类群,Z 和 S 群体合称南方类
    群);同时为进一步证实 RAPD 分析结果,作者选取浙江温岭(W)、韩国釜山
    (K)、广东湛江(Z)和广东汕头(S)四个群体,并以与该种同属的结蚶(Tegillarca
    nodifera Martens)作为外群分析了进化速率快、适于群体间进化分析的核糖体
    转录间隔区序列 2 序列(简称 ITS2),进一步确立了当前我国泥蚶的分化程度。
     RAPD 分析中,选取的 20 个随机引物,除 S-80 在任何群体中均无扩增
    外,其他引物在上述所有群体均获得清晰、可辨、适宜于群体分析的 RAPD 标
    记。20 个随机引物中共检测到 154 个扩增片段,长度在 300bp-2300bp 之间,每
    个个体扩增条带在 1-11 条不等。利用 Popgen3.2 计算各群体各位点的基因频率
    和每个群体内 20 个个体间的遗传距离,PHILIP3.5 统计软件分析群体间的各遗
    传参数,从而确定群体内和群体间的遗传分化状况。结果表明:(1)7 群体泥
    蚶无论是在多态位点比例还是在平均遗传杂合度上都处于较高水平,说明泥蚶
    当前种质资源状况良好,遗传多样性水平较高,泥蚶养殖有很好的发展前景;
     I
    
    
    (2)代表北方类群的 5 泥蚶群体间分化较小,群体间的遗传距离在
    0.0250-0.0901 之间不等,甚至小于群体内个体间的遗传距离;近交系数(Fst)
    在 0.05 以下。而南北两大类群泥蚶间却发生了重要的遗传分化。广东两群体与
    北方类群间的遗传距离在 0.3261-0.4511 之间不等,而两者内的两群体间的遗传
    距离却仅为 0.0612 和 0.0692;Fst 和有效繁殖亲本数(Nem)两遗传参数的统
    计结果同样表现出两大类群间的分化远大于类群内。(3)与韩国野生群体相比,
    其他群体泥蚶在多态位点比例和遗传平均杂合度上都有不同程度的降低,表明
    人为等因素已开始影响到泥蚶的种质资源状况。在对同为二龄的我国温岭养殖
    和韩国野生泥蚶群体数量性状测定上,前者壳长和壳宽分别为 24.45±1.84mm
    和 19.50±1.74mm,而后者则依次为 30.80±2.80mm 与 23.30±2.06mm,且两
    两差异明显(p〈0.01)。说明养殖环境已开始威胁到泥蚶的资源状况,加强其
    资源保护势在必行。(4)聚类分析是群体亲缘关系远近的反映,首先聚在一起
    的群体遗传分化最小,亲缘关系最近。对南北两大类群泥蚶不论用 NJ 还是
    UPGMA 聚类,总是南方类群的两群体先聚在一起,然后再与北方类群聚在一
     起,表明两者间较显著的遗传分化。
     ITS2 测序结果证实了我们群体分析时结论——南北两大类群间分化明
    显,而两大类群内分化较小。在韩国群体和浙江温岭群体比较仅发现韩国 351bp
    处发生了缺失,354bp 处发生了一个碱基的颠换(G → T ),两群体序列相似性
    高达 99.60%;汕头群体与湛江群体也仅为 347 处一个碱基的缺失和 412 位置一
    个碱基的颠换(G →T);而两大类群间的比较则发生了多处的缺失、替换和颠
    换,两两群体间的序列相似性在 92.47%-93.08%之间,小于结蚶与两者间的相
    应值 93.27%-96.82%。聚类分析结果也证实了两大类群间的分化程度大于它们
    与结蚶间的分化,结蚶或是先与南方类群聚类,然后与北方类群聚类(UPGMA),
    或者首先与北方类群聚在一起(NJ),提示我们泥蚶两大类群可能已分化到种以
    上程度。
     产生上述分化的可能机制,笔者认为主要有三个方面:一是泥蚶养殖管
    理规范的缺乏,造成养殖者为追求经济利益而盲目引进苗种和亲本。同时由于
    操作的偏好性和一些特定的原因,使得引种范围极少发生在两大类群间,一般
    多存在于两大类群内部。这样做的长期结果会使得这些地区间有广泛的基因交
     II
    
    
    流,这些基因流可以在这些地区得到扩散,而不能在南北两大类群间发生,最
    终产生上述结果。另一方面为生殖隔离的原因,北方泥
Li chenghua (marine biology)
     Directed by professor Song linsheng, Li taiwu and Su xiurong
     Tegillarca granosa (Linnaeus) belongs to Bivalvia class, Pteriomorphia
    sub-class, Arcoida order, Arcidae family, Tegillarca genius according to up-to-data
    taxonomy system. As an important cash shellfish of seawater, it distributes along the
    west of Pacific Ocean, the Indian Ocean and the Atlantic Ocean. Concerning our
    country, it plays an important role in the marine aquaculture industry in the
    provinces of Shandong, Zhejiang, Fujian and Guangdong.
     Nowadays, although much has been done on the research of the species biology,
    farming technology, breeding methods, karyotype and histology, there are much
    more left and expected to be studied, especially at DNA level which can throw light
    to the species recovery. Regarding of T. granosa, the reasons for studying its genetic
    differentiation lie in two aspects. One is the potential problems occur in its breeding
    and aquaculture; the other is the diversity of its surroundings, spanning from Bohai
    to the south of China sea (abbreviation for SCS). In the first part of this paper, we
    firstly adopted RAPD method to analysis the differential degree of the different
    populations in China and Korea, then the internal transcribed spacer 2 (abbreviation
    for ITS2) was amplified, sequenced to show more proof among the most differential
    populations.
     Seven populations were analyzed in our RAPD experiment, there are as follows:
    Rongcheng in Shandong province(R), Fenghua(F) and Wenling(W) in Zhejiang
    province, Fuding in Fujian province(D), Shantou(S) and Zhanjiang(Z) in Guangdong
    province and Fushan in Korea(K), all samples were collected from China except to
    K. We preferred to nominated K, R, F, W and D as the north stocks (abbreviation for
    NP), the others as the south ones (abbreviation for SP). The samples employed to
    ITS2 analysis randomly selected two populations from the NP and SP with
    Tegillarca nodifera (Martens) as an outgroup.
     Under predetermined optical reaction conditions, all primers showed us
    informative message except S-80 without any results in seven populations. 154
     IV
    
    
    RAPD sites were detected ranging from 300bp to 2300bp in size. The number of
    amplified bands ranged from 1 to 11 in every individual. The experimental data were
    analyzed with the Popgen3.2 and PHILIP3.5 softwares. The results showed that: (1)
    the high level of mean heterozygosities and polymorphic loci suggested that the
    resource of T. granosa was in good condition with high genetic variation, which
    gave us more confidence to develop its aquaculture; (2) the degree of the genetic
    differentiation was much lower in the NP or SP comparing to that existing between
    the NP and SP. The genetic distances were ranging from 0.0250 to 0.0901 in the NP
    and SP, while the corresponding valves were ranging from 0.3261 to 0.4511.between
    the NP and SP. Other genetic parameters like the inbreeding coefficient (abbreviation
    for Fst) also verified the above judgment; (3) the heterozygosities and proportion of
    polymorphic loci of the hatchery populations were lower than that of the wild
    population (K). What’s more, the quantitative character variability between W and K
    was significant (p<0.01), the shell length and height of the former were
    24.45±1.84mm and 19.50±1.74mm in turn, the latter were 30.80±2.80mm and
    23.30±2.06mm respectively. All these deviations could be attributed to artificial or
    other factors. (4) the nearest phylogenetic relationship occurs between the
    populations with the nearest blood relationship. The NP or SP was firstly cluster no
    matter what methods we adopted (NJ and UPGMA), indicating their close sibship.
     The ITS2 sequences showed the similar trends inferred from RAPD analysis.
    There are more or less variation existing between each other in our experiment at the
    default parameters with ClustalW software aid, ranging from one base deletion and a
    single transversion (G →
引文
1 蔡清海。关于泥螺、泥蚶的养殖技术。中国水产,2000,12:34-35
    2 柴学良,吕振明,方 军等。泥蚶三倍体的诱导研究。浙江海洋学院学报(自然科学
     版),2002,21(1):16-19
    3 曹 华。泥蚶围网高产养殖技术。科学养鱼,1998,5:31-31
    4 陈新平,闫玲,丁毅。中国近缘野生大麦的 RAPD 分析与进化途径探讨。植物学报,
     2000,42(2):179-183
    5 陈永青,姜子德,戚佩坤。RAPD 分析及 ITS 序列分析在拟茎电霉分类鉴定上的应用。
     菌物系统,2002,21(1):39-46
    6 陈朝晖,周志明。泥蚶工厂化育苗技术的研究。海洋科学,1995,6:10-12
    7 陈自明,陈毅峰。用 RAPD 技术对特化等级裂腹鱼类亲缘关系的探讨。动物学研究,
     2000,21(4):262-268
    8 杜晓东,李广丽,刘志刚等。合浦珠母贝 2 个野生种群的遗传多样性。中国水产科学,
     2002,9(2):100-105
    9 方建光,匡世焕,孙慧玲等。化学物质诱导泥蚶幼虫附着变态的研究。中国水产科学,
     1999,6(3):41-44
    10 方建光,孙慧玲,匡世焕等。泥蚶幼虫滤水率和摄食率的研究。海洋与湖沼,1999,
     30(2):167-171
    11 高 娟,邱明华,张亚平。除虫菊和茼蒿核糖体 DNA ITS 区的序列。云南植物研究,
     2001,23(1):52-54
    12 高志千,周开亚。中华绒螯蟹遗传变异的 RAPD 分析。生物多样性,1998,6(3):186-190
    13 高 原。分子系统学——原理、方法及应用。第一版。北京:中国农业出版社,1998:
     1-30
    14 顾 京,惠东威,庄炳昌等。野生大豆与栽培大豆 rDNA ITS1 区的研究。植物学报,
     1994,36(10):759—764
    15 何舜平,王 伟,陈宜瑜。低等鲤科鱼类 RAPD 分析及系统发育研究。水生生物学报,
     2000,24(2):101-106
    16 金冬雁,黎孟枫等(译)。分子克隆实验指南。第二版。北京:科学出版社,1992:
     304-324
    17 金 珊,赵青松,王达根等。虾塘养殖泥蚶大规模死亡原因及防治对策。水产科学,
     2002,21(6):31-32
    18 李广丽,杜晓东,叶富良。合浦珠母贝两个野生种群的生化遗传变异。热带海洋学报,
     2002,21(4):63-68
    19 李红蕾,宋林生,刘保忠等。栉孔扇贝不同种群的遗传结构及其杂种优势。海洋与湖
     沼,2002,33(2):188-195
    20 李隆云,钟国跃,卫莹芳等。DNA 分子标记及其在中药中的应用。中国中医药科技,
     2002,9(5):315-320
    21 李思发,邹曙明。中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关
     系:RAPD 指纹标记。水产学报,1999,23(4):325-330
    22 李太武,孙修勤,刘 艳等。中日栉孔扇贝杂交子一代群体的遗传变异。高技术通讯,
     2002,6:101-106
    23 刘必谦,戴继勋。巨蛎属牡蛎遗传多样性研究。水产学报,1998,22(3):193-198
    24 刘 萍,孔 杰,石 拓等。中国对虾黄渤海沿岸群亲本及子一代 RAPD 分析。海洋水
     产研究,2000,21(1):13-21
     64
    
    
    参考文献
    25 刘端炜,王学勃,刘正佑。虾池底播缢蛏泥蚶养殖技术。中国水产,2002,4:54-54
    26 刘昭署,赵 岩,张毅祥。南海地质、地球物理调查研究及研究方向。海洋科学,1995,
     4:60-61
    27 鲁 亮,吴厚永。新蚤属 9 种新蚤核糖体 DNA ITS2 序列变化。寄生虫与医学昆虫学
     报,2002,9(2):106-113
    28 马雅军,瞿逢伊,雷心田等。我国八代按蚊及其近缘种 rDNA-ITS2 序列差异和分类
     地位的探讨。寄生虫与医学昆虫学报,2000,7(1):35-39
    29 孟宪红,孔 杰,庄志猛等。真鲷自然群体和人工繁殖群体的遗传多样性。生物多样
     性,2000,8(3):248-252
    30 潘洁,包振民,赵 洋等。栉孔扇贝不同地理群体的遗传多样性分析。高技术通讯,
     2002,12:78-82
    31 邱 涛,陆仁后,项超美等。用 RAPD 技术识别中华绒螯蟹性别差异。水产学报,1998,
     22(2):175-178
    32 权洁霞,戴继勋,沈颂东等。梭鱼人工养殖群体与自然群体的随机扩增多态 DNA
     (RAPD)分析。海洋学报,2000,22(5):82-87
    33 宋林生,李俊强,李红蕾等。用 RAPD 技术对我国栉孔扇贝野生种群与养殖群体的
     遗传结构及其遗传分化的研究。高技术通讯。2002,7:83-86
    34 宋林生,相建海,李晨曦等。日本对虾野生种群和养殖种群遗传结构的 RAPD 标记研
     究。海洋与湖沼,1999,30(3):261-266
    35 宋林生,相建海,李晨曦等。用 RAPD 标记研究对虾属六个种间的亲缘关系。动物
     学报。1998,44(3):353-359
    36 宋铁英,包晓东,郑伟文等。DGGE 法检测稻田蓝细菌及硅藻的遗传多态性。厦门
     大学学报,2002,41(5):669-673
    37 苏天凤,蔡云川,张殿昌等。合浦珠母贝 3 个养殖群体的 RAPD 分析。中国水产科
     学,2002,9(2):106-109
    38 孙慧玲,方建光,王清印等。泥蚶精子的超微结构。水产学报,2000,24(4):297-301
    39 孙慧玲,方建光,王清印等。泥蚶受精过程的细胞学荧光显微观察。水产学报,2000,
     24(2):104-108
    40 田传远,梁 英,王如才等。泥蚶人工育苗高产技术的研究。青岛海洋大学学报,1996,
     26(1):25-30
    41 万俊芬,汪小龙,潘 洁等。日本盘鲍×皱纹盘鲍子代杂种优势的 RAPD 分析。青岛
     海洋大学学报,2001,31(4):506-512
    42 王宝勤,王伟华。缢蛏养殖技术要点。中国水产,2001,8:64-65
    43 王海涛,侯明泉,王华东。泥蚶生产性育苗的技术研究。水产科学,1998,17(2):
     22-25
    44 王海涛,侯明泉,邢克敏等。缢蛏室内人工育苗技术的研究。齐鲁渔业,2000,17
     (3):25-27
    45 王进科,周 刚,曹文明等。用小卫星探针 33.6 对中华绒螯蟹遗传多态性的 DNA 指
     纹图谱研究。大连水产学院学报,2001,16(2):92-98
    46 王可玲,张培军,刘兰英等。中国近海带鱼种群生化遗传结构及其鉴别的研究。海
     洋学报,1994,16(1):93-104
    47 王世平,陈 燃,黄正一等。浙江有尾两栖动物分类与演化的 RAPD 分析。复旦学报,
     1998,37(4):485-490
    48 王伟继,孔 杰,庄志猛等。真鲷野生群体和人工繁殖群体的同工酶遗传差异。生物
     65
    
    
    泥蚶分子系统分化及缢蛏遗传多样性的研究
     多样性,2000,8(4):391-396
    49 汪小全,邹喻苹,张大明等。RAPD 应用于遗传多样性和系统学研究中的问题 。植
     物学报,1998,38(12):954-962
    50 王学忠,Harold Townson, 王丕玉等。微小按蚊 rDNA 内转录间隔 2 区序列差异。(论
     著)
    51 王志勇,王艺磊,林利民等。利用 AFLP 指纹技术研究中国沿海真鲷群体的遗传变
     异和趋异。水产学报,2001,25(4):289-294
    52 吴冰,蔡俊鹏,M.D.Collins。基于 ITS1 DNA 序列分析的几种酵母菌的分子分类。
     微生物学报,2002,29(4):41-45
    53 吴洪喜,柴雪良,吴建波等。乐清湾泥蚶 Tegillarca granosa (Linnaeus)核型的初步
     研究。浙江海洋学院学报(自然科学版),2001,20(3):189-194
    54 谢 浩,陆仁后,项超美等。利用 RAPD 技术对三种绒螯蟹亲缘关系的研究。水生生
     物学报,1999,23(2):120-126
    55 解新明。RAPD 技术在系统与进化植物学中的应用。生物学通报,2000,35(4):11-13
    56 徐 鹏,周令华,田丽萍等。从中国对虾 ESTs 中筛选微卫星标记的研究。水产学报,
     2003,27(3):213-218
    57 颜子颖,王海林(译)。精编分子生物学实验指南。第一版。北京:科学出版社。1999:
     30-43
    58 杨 锐,庄志猛,喻子牛等。梭鱼养殖群体与自然群体等位基因酶的遗传变异。海洋
     水产研究,2002,23(3):15-19
    59 姚振刚,庄建奎,李学明等。利用对虾育苗池进行泥蚶育苗实验报告。齐鲁渔业,
     1998,15(1):15-17
    60 尤 锋,王可玲,相建海等。山东近海褐牙鲆自然与养殖群体生化遗传结构及其遗传
     变异的比较分析。海洋与湖沼,2001,32(5):512-518
    61 尤仲杰,王一农,陈 坚。乐清湾塘养泥蚶的生长。水产学报,2002,22(5):440-447
    62 尤仲杰,王一农,于瑞海等。贝类养殖高产技术。第一版。北京:中国农业出版社。
     1999:54-77
    63 尤仲杰,徐善良,边平江等。海水温度和盐度对泥蚶幼虫和稚贝生长及存活的影响。
     海洋学报,2001,23(6):108-113
    64 于瑞海,房德芝,王长竹等。泥蚶亲贝室内蓄养促熟技术研究。齐鲁渔业,1998,
     15(3):15-17
    65 喻子牛,孔晓瑜,杨 锐等。泥蚶等位基因酶遗传变异研究。中国水产科学,1997,
     4(5):15-21
    66 张广军,邱持平,邱东川等。基于核糖体基因分析的中华血吸虫分子种系发生研究。
     中国寄生虫与寄生虫病杂志,2001,19(4):201-204
    67 张国范,王继红,赵洪恩等。皱纹盘鲍中国群体和日本群体的自交与杂交 F1 的 RAPD
     标记。海洋与湖沼,2002,33(5):484-491
    68 张喜昌,梁玉波,刘仁沿等。海湾扇贝养殖群体遗传多样性的研究。海洋学报,2001,
     24(2):107-113
    69 张永普,贾守菊,应雪萍。不同种群泥蚶肉营养成分的比较研究。海洋湖沼通报,
     2002,2:33-38
    70 赵怀玲,尤民生。RAPD-PCR 技术及其在昆虫学研究中的应用综述。武夷科学,2001,
     17:73-81
    71 赵金良,李思发。中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关
     66
    
    
    参考文献
     系:生化遗传差异分析。水产学报,1999,23(4):331-336
    72 郑美芬。泥蚶人工育苗中单细胞藻类培养关键技术探讨。浙江海洋学院学报(自然
     科学版),1999,18(3):254-255
    73 郑 莲,刘楚吾。蜂巢石斑鱼随机扩增多态性 DNA 的初步研究。湛江海洋大学学报,
     2002,22(4):14-18
    74 郑家声,王梅林,郭丹红等。3 种蚶染色体组型的比较研究。青岛海洋大学学报,1996,
     18(3):78-85
    75 郑家声,王梅林,王志勇等。泥蚶的性腺发育和生殖周期。青岛海洋大学学报,1995,
     25(4):503-510
    76 郑向忠,徐宏发,陆厚基。动物种群遗传异质性研究进展。生物多样性,1997,5(3):
     210-216
    77 郑忠明。泥蚶生产性育苗中若干培养因子的研究。浙江海洋学院学报(自 然科学
     版),2000,19(1):93-96
    78 傅 刚,周发琇,于慎余等。南海表层水温甚低频振荡的动力学机制。青岛海洋大学
     学报,1994,24(4):456-462
    79 周水森,汤林华,顾政诚等。不同地区微小按蚊 rDNA-ITS2 序列差异。中国寄生虫
     学与寄生虫病杂志,2002,20(1):29-31
    80 周友富,胡达美。泥蚶工厂化全人工育苗技术。中国水产,1998,2:30-31
    81 朱振乐。虾塘混养泥蚶技术。齐鲁渔业,2002,19(12):11-11
    82 朱振乐,万延树。泥蚶与对虾混养技术。水产养殖,1999,3:27-28
    83 朱玲。栉孔扇贝不同地理种群的遗传多样性和系统发生关系的研究。大连水
     产学院硕士论文。2001。
    84 Akagi H. Microsatellite DNA marker for rice chromosome. Theoretical and Applied
     Genetics, 1996, 93: 1071-1077
    85 Anchalee T K, P M Siriporn.and J H Padermsak. Genetic structure in wild populations
     of black tiger shrimp(Penaeus monodon)using randomly amplified polymorphic DNA
     analysis. Marine Biotechnology, 1998, 6: 249-254
    86 Annette W C and D V Victor. Exploring the phylogenetic utility of ITS sequences for
     animals: a test case fore abalone (Haliotis). Journal of Molecular Evolution, 2002, 54:
     246-257
    87 Apostol B L, W C Black and P Reiter. Population genetics with RAPD-PCR markers: The
     breeding structure of Aedes argypti in Puerto Rico.Heredity, 1996, 76(4): 325-334.
    88 Beth M.H., K Arun, K R Dhar and et al. Genetic diversity in the eastern oyster
     (Crassostrea virginica) from Massachusetts using the RAPD technique. Journal of
     Shellfish Research, 1999, 18(1): 121-125
    89 Ignacio B L, T M Absher, C Lazoski and et al. Genetic evidence of the presence of two
     species of Crassostrea (Bivalvia:Ostreidae) on the coast of Brazil. Marine Biology, 2000,
     136: 987-991
    90 Bohlmeyer D A and Gold J R. A protein electrophoretic analysis of population structure in
     the red drum Sciaenops ocellatus. Marine.Biology, 1991, 108: 197- 206
    91 Bostein D R, R L White, M Scholnick and et al. Construction of geneticlinage map in man
     using restriction fragment length polymorphism. An J Hum.Genet, 1980, 32: 314-331
    92 Buroker N E, W. Y Hershberger and K.K Chew. Population geneties of the family
     Ostreidae: interespecific studies of the genera Crassosirea and Saccostrea. Marine.
     67
    
    
    泥蚶分子系统分化及缢蛏遗传多样性的研究
     Biology, 1979, 54(2): 171-184
    93 Huang B.X, R.Peakall and.P.J.Hanna. Analysis of genetic structure of blacklip abalone
     (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers.
     Marine Biology, 2000, 136: 207-216
    94 Careth C, E L Harding and C J Kenchington. Genetic relationship among subpopulations
     of the American lobster (Homarus americanus) as revealed by random amplified
     polymorphic DNA. Aquatic Science, 1997, 54: 1762-1771
    95 Carr W, J Sweeney and J Swingle. The oceanic institute’s SPF shrimp breeding program
     status. In: USMSFP 10th anniversary review. GCRL special publication, 1994, 1: 47-54
    96 Chevassus B and M Dorson. Genetics of resistance to disease in fishes. Aquaculture, 1990,
     85: 83-107
    97 Chaolun A C, C Chang-Po, F Tung-Yungand et al. Nucleotide sequences of ribosomal
     internal transcribed spacers and their utility in distinguishing closely related Perinereis
     Polychaets (Annelida; Polychaeta; Nereididae). Marine Biotechnology, 2002, 4: 17-29
    98 Claudio D G, D O Pasqua, B Angela and et al. Identification of PCR-based markers
     (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant
     Science, 2003, xxx: xxx-xxx
    99 David B, V H Lynne, H Hirohisa, and et al. Relationships between Schistosoma
     malayensis and other Asian schistosomes deduced from DNA sequences. Molecular and
     Biochemical Parasitology, 1997, 85: 259-263
    100 Demeke T and R. P. Adams. Potential taxonomic use of random amplified polymorphic
     DNA (RAPD): A case study in Brassica. Theoretical and Applied Genetics, 1992, 84(7-8):
     990-994.
    101 Diarmaid O F, M G Patrick and J. H Thomas. Differences in mithochondrial 16S
     ribosomal gene sequence allow discrimination among American [Crassostrea virginica
     (Gmelin)] and Asian [C.gigas(Thunberg) C.ariakensis Wakiya] oyster species. Journal of
     Experimental Marine Biology and Ecology, 1995, 192: 211-220
    102 Dmitrv M, M W Brian and S Coby. Evolution and phylogenetic information content of the
     ribosomal DNA repeat unit in the Blattodea (Insecta). Insect Biochemistry and Molecular
     Biology, 2002, 32: 951-960
    103 Ferguson M M and L R Drahushchak. Disease resistance and enzyme heterozygosity in
     rainbow trout. Heredity, 1990, 64: 413-417
    104 Gires U, C P Leaw, A Asmat and et al. Phylogenetic relationship of Alexandrium
     tamiyavanichii (Dinophyceae) to other Alexandium species based on ribosomal RNA gene
     sequences. Harmful Algea. 2002, 1: 59-68
    105 Hedgecock D and N B Ozaki. Genetic diversity within and between populations of
     American oysters (Crassostrea). Malacologia. 1984, 25: 535–549.
    106 Hirak K B, B Ashoktaru, M Y Bharat and et al. Genetic variation between four species of
     Indianmajor carps as revealed by random amplifiedpolymorphic DNA assay. Aquaculture,
     2003, 217: 115–123
    107 Kral O, V Hanzelova, T Scholz and et al. A comparison of the internal transcribed soacer
     of the ribosomal DNA for Eubothrium crassum and Eubothrium salvelini (Cestoda:
     Pseudophylidea), parasites of salmonid fish. International Journal for Parasitology, 2001,
     31: 93-96
     68
    
    
    参考文献
    108 Irene Y and W C Annette. The advantages of the ITS2 region of the nuclear rDNA cistron
     for analysis of phylogenetic relationships of insects: a Drosophila example. Molecular
     Phylogenetics and Evolution, 2003, xxx: xxx-xxx
    109 Iveta M, G Milan, J A Alastair and et al. Molecular markers for gyrodactylids
     (Gyrodactylidae: Monogenea) from five families (Teleostei). International Journal for
     Parasitology, 2001, 31: 738-745
    110 Marshall J A, S. Knapp, M R. Davey and et al. Molecular systematics of Solanum section
     Lycopersicum (Lycopersicon) using the ITS rDNA region. Theoretical and Applied
     Genetics, 2001, 103: 1216-1222
    111 Dubouzet J G and K Shinoda. Phylogenetic analysis of the interna transcribed spacer
     region of Japanese Lilium species. Theoretical and Applied Genetics, 1999, 98: 954-960
    112 John R B. Molecular approaches for inferring evolutionary relationships among protistan
     parasites. Veterinary Parasitology, 2001, 101: 175-186
    113 Junbin Zh, Huang L M and Huo H Q. Larval identification of Lutjanus Bloch in Nansha
     coral reefs by AFLP molecular method. Journal of Experimental Marine Biology and
     Ecology, 2003, xx: xxx-xxx
    114 Mickett K, C. Morton, J. Feng and et al. Assessing genetic diversity of domestic
     populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers.
     Aquaculture, 2003, 228: 91-105
    115 Yu Z N, X Y Kong, Z M Zhuang and et al. Sequence study and potential uses of
     ribosomal DNA intrenal transcribed spacers in scallop Chlamys farreri. Journal of fishery
     sciences of China, 2001, 8(1): 6-9
    116 Marianne B, B Marise, D M Catalina and et al. Identification at strain level of Rhizoctonia
     solani AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions.
     Curr Genet, 1996, 29: 174-181
    117 Mari L S, F L Katherine and O. R Scott. Comparison of ribosomal DNA ITS regions
     among geographic isolates of Cenococcum geophilum. Curr Genet, 1999, 35: 527-535
    118 Maria O, I Aurora, O Maria and et al. PCR and RAPD identification of L plantarum
     strains isolated from ovine milk and cheese. Geographical distribution of strains. FEMS
     Microbiology letters, 2003, 227: 271-277
    119 Michael A I, H G David, J S Johnninsky and et al. PCR protocols: a guide to methods and
     applications. Academic Press, INC.1990: 3-21
    120 Iruela M, J Rubio, J I Cubero and et al. Phylogenetic analysis in the genus Cicer and
     cultivated chickpea using RAPD and ISSR markers. Theoretical and Applied Genetics,
     2002, 104: 643-651
    121 Nei M. The theory of genetic distance and evolution of human races. Journal of Human
     Genetics, 1978, 23(4): 341-369
    122 Nei M and A K Roychoudhury. Sampling variances of heterozygosity and genetic distance.
     Genetics, 1974, 76(2): 379-390
    123 Nei M and W H. Li. Mathematical model for studying genetic variation in term of
     restriction endonucleases. Process Natural Academic Science, 1979, 76(10): 5269-5273
    124 Cubas P, C Pardo and H Tahiri. Molecular approach to the phylogeny and systemmatics of
     Cytisus (Leguminosae) and related genera based on nucleotide sequences of nrDNA (ITS
     region) and cpDNA (trnL-trnF intergenic spacer). Plant Syst. Evol, 2002, 233: 223-242
     69
    
    
    泥蚶分子系统分化及缢蛏遗传多样性的研究
    125 Jaiswal P, A P Sane, S A Ranade and et al. Mitochondrial and total DNA RAPD patterns
     can distinguish restorers of CMS lines in sorghum. Theoretical and Applied Genetics,
     1998, 96: 791-796.
    126 Lashermes P, M C Combes, P Trouslot and et al. Phylogenetic relationships of coffee-tree
     species (Coffea L.) as inferred from ITS sequences of nuclear ribosomal DNA.
     Theoretical and Applied Genetics, 1997, 94: 947-955
    127 Laura S A, M G Harasewych, B Judith and et al. A molecular phylogeny of the bivalve
     Mollusks. Molecular biology and evolution, 1997, 14(6): 619-629
    128 SONG L S, B Z LIU, Z Z WANG and et al. Phylogenetic relationships among Pufferfish
     of genus Takifugu by RAPD analysis. Chinese Journal of Oceanology and Limnology,
     2001, 19(2): 128-134
    129 Thorp J P. The molecular dock hypothesis: Biochemical evlution, genetic differentiation,
     and systematics. Annunal Review of Ecology Systematics, 1982, 13(1): 139-168
    130 Wilkins N P. Genetic variability in marine bivalvia: implications and applications in
     molluscan. Mariculture, 1976: 549-563
    131 Williams J G K, A R Kubelik and K J Livark. DNA polymorphisms amplified by arbitrary
     primers are useful as genetic markers. Nuclei Acids Research, 1990, 18(22): 6531-6535
    132 Wrights. Evolution and the genetics of populations. Volume 4. Variability within and
     among natural population. University of Chicago Press, 1978
    133 Youngbae S J, L S Lee and L S Chunghee and et al. Molecular evidence for the taxonomic
     identity of Korean Adonis (Ranunculaceae). Journal of Plant Research, 2002, 115:
     217-223
    134 Chen Y Q, N Wang, L H Qu and et al. Determination of the anamorph of Cordyceps
     sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and
     5.8S rDNA. Biochemical Systematics and Ecology, 2001, 29: 597-607
    135 Egyed Z, T. Sreter, Z. Szell and et al. Molecular phylogenetic analysis of Onchocerca lupi
     and its Wolbachia endosymbiont. Veterinary Parasitology, 2002, 108: 153-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700