碳酸镁模板化制备复杂微纳结构及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂微纳米结构材料因其独特的物理化学性质,在能量存储、药物运输、催化、传感以及污染物处理等方面具有重要的应用价值,因此制备具有可控微观尺寸与形貌的复杂微纳米结构一直是材料化学领域的研究热点。在复杂微纳米结构制备方法中,模板法被认为是最简单,最有效的合成策略,但仍存在一些难以克服的问题,如模板剂合成成本高,去除条件苛刻等。近些年来,作者所在课题组一直专注于镁资源开发与利用。在此研究期间发现和注意到:合成的碳酸镁具有可调变的微观尺寸与形貌、可控的碳酸镁—碳酸氢镁固液相转化过程、以及相对较大的溶度积常数——较高的复分解反应活性。本论文利用这些性质,在课题组已有研究工作基础上,提出一条由碳酸镁为模板制备复杂微纳米结构氧化物的新思路,使其克服传统模板法中模板成本昂贵,去除条件苛刻等不足。为了验证这一想法,本文首先以碳酸镁模板为切入点,探讨合成过程中反应条件对其微观结构的影响,调变作用及机制;然后对碳酸镁作为模板合成复杂微纳米结构氧化物,并对所得产品的吸附性能(如比表面积,孔结构,有机物染料吸附等)进行了探讨和研究。主要内容和结果如下:
     碳酸镁模板的制备研究。在乙醇辅助下热解重镁水制备微纳米级棒状三水碳酸镁,并以三水碳酸镁为前驱体通过相转化合成了微纳米级分级结构碱式碳酸镁和块状无水碳酸镁。系统地研究了反应因素对制备微尺度碳酸镁的影响规律和机理。结果表明在碳酸镁形成过程中,结晶速度对产物的尺寸起着关键的作用,通过调节碳酸氢镁热解过程中的搅拌时间,MgCO3·3H2O在微纳米范围内尺寸可控;同时控制三水碳酸镁的大小,可以调变相转化后碱式碳酸镁和无水碳酸镁的微观尺寸。
     碳酸镁循环模板法制备微纳米级中空氧化物的研究。采用棒状三水碳酸镁,花状分级碱式碳酸镁为模板,醇盐为原料,基于溶胶-凝胶和碳酸镁与碳酸氢镁之间相转化过程,成功地合成了SiO2, A12O3, TiO2微米管及SiO2, SiO2-TiO2中空分级结构。探讨模板循环性结果表明,收集的碳酸氢镁滤液经多次循环,仍然能够制备棒状三水碳酸镁模板和花状分级碱式碳酸镁模板。作为潜在的功能材料,合成的中空分级结构SiO2和SiO2-TiO2均展现出优秀的吸附容量和吸附速率
     碳酸镁牺牲模板法合成复杂微纳米结构氧化物的研究。以NiO为模型产物,采用碳酸镁为牺牲模板,硝酸镍为原料,合成了管状NiO和复杂分级结构NiO,推测其前驱物生成机制是基于柯肯达尔效应和复分解反应。将这种方法扩展到其他氧化物,成功合成了Fe2O3,Co3O、Gd2O3微米管,和Gd2O3分级结构。合成的分级结构NiO和Fe203的展现出较高的吸附容量和优异的吸附速率,有望应用于催化、能源与环境领域。
     碳酸镁为前驱体热解制备微纳米级氧化镁的研究。系统地探讨了反应条件对氧化镁结构及吸附性能的影响,结果表明煅烧微纳米级碳酸镁颗粒能够得到相应尺寸和形貌的氧化镁,碳酸镁前驱体起到了模板作用。煅烧温度、升温速率、前驱体尺寸和形貌对最终产物的结构无明显影响,但却均对氧化镁吸附性能产生影响。将氧化镁用于阴离子染料刚果红吸附,管状分级结构氧化镁表现出超强的刚果红吸附能力,其最大吸附量高达4400mg/g,是目前已报道刚果红吸附剂的数倍甚至是数十倍;对吸附刚果红的氧化镁进行循环再生处理,通过二氧化碳和水溶解氧化镁生成碳酸氢镁溶液,同时使用H202光催化处理碳酸氢镁溶液中的刚果红,脱色后的碳酸氢镁能够成功用于循环制备氧化镁纳米吸附剂。
Complex micro/nanostructures have received considerable attention due to their unique physical and chemical properties and promising applications, such as energy storage, drug delivery, catalysis, sensor and water treatment. Up to now, templating method has been proved to the most straight-forward, versatile and effective approach for fabricating complex micro-/nanostructures, but some difficulties, such as high cost and hard removal condition of template are still hardly overcome. Recently, our group has paid much attention on the development and utilization of magnesium resources. During this time, the magnesium carbonate (MC) have interested us because of its list features:tunable particle size and morphology, controllable phase transformation process (MC+CO2←→Mg(HCO3)2), higher solubility product—better chemical activity. Base on these, a new synthetic concept—MC templated method was proposed to prepare complex micro/nanostructures for avoiding high cost and hard removal condition in the traditional template method. To test this idea, we have systemically investigated the tunable influence and mechanism of reaction condition on the morphologies of MC template firstly in this doctoral dissertation. Then, employed MC as recyclable and sacrificial template for fabricating complex micro/nanostructures and relative adsorption performance (such as specific surface area, pore structure and organic dye adsorption, etc.) of the products were discussed. The main points and contents are summarized as follows:
     Synthesis of the magnesium carbonates templates. MgCO3·3H2O microrods were synthesized via a thermal-decomposition process in the presence of ethanol with Mg(HCCO3)2as the reactant. Meanwhile, microscale hierarchical4MgCO3·Mg(OH)2·4H2O and cubelike MgCO3were prepared by phase transformation method using MgCO3·3H2O as precursor. And the influence rule and mechanism of reaction condition on MC were systemically investigated. The results show that the crystallization rate plays key role in the size control of product. The size of MgCO3·3H2O was determined by stirring speed, while the4MgCO3·Mg(OH)2·4H2O and MgCO3can be controlled by size of MgCO3·3H2O precursor.
     Use of magnesium carbonates as recycle template for fabricating hollow structures. The SiO2, TiO2, Al2O3microtubes and SiO2, TiO2-SiO2hierarchical structures were successfully synthesized via sol-gel and phase transformation process with the MC as template and alkoxide as raw materials. The Mg(HCO3)2filtrate was used for recycling MC template, in which the reborn templates have similar morphology and size with the initial one. The as-prepared SiO2, TiO2-SiO2hierarchical structures exhibit high adsorption capacity and rate, which can be candidate for potential functional absorption materials.
     Use of magnesium carbonates as sacrificial template for fabricating complex structures. NiO microtube and hierarchical structure as a representative was synthesized by using MC as template and Ni(NO3)2as raw materials. The formation mechanism of hollow and hierarchical structure is based on kirkendall effect and replacement reaction. Besides, Fe2O3, CO3O4, Gd2O3microtubes and Fe2O3, Gd2O3hierarchical structures were also synthesized via this similar route. Hierarchical Fe2O3and NiO show high adsorption capacity and rate when applied as adsorption materials.
     Use of magnesium carbonates precursors as templates for preparing MgO. The influence of reaction conditions on the morphologies of MgO and adsorption performance were systemically investigated. The result shows that the MgO micro/nanostructures can be obtained through calcining MC and keep the template morphology, what's more, the calcination temperature, heating rate, size and morphology of MC have no evident effect on the morphology of MgO but its adsorption properties. Tubular hierarchical MgO shows superior adsorption capacity of Congo red (up to4400mg/g), which is much higher than the reported adsorbents. After adsorption, the material was dissolved by CO2-H2O acid into Mg(HCO3)2for achieving recycling MgO nanoadsorbent while the Congo red was treated through H2O2photocatalytic oxidation.
引文
[1]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社,2001:1
    [2]宁桂玲,仲剑初.高等无机合成.上海:华东理工大学出版社,2007
    [3]白春礼.纳米科技现在与未来.成都:四川教育出版社,2002
    [4]ZHAO Y., JIANG L. Hollow Micro/Nanomaterials with Multilevel Interior Structures[J]. Adv. Mater.,2009,21:3621-3638
    [5]BURDA C, CHEN X. B., NARAYANAN R., et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev.2005,105:1025-1102.
    [6]LEE J. H. Gas sensors using hierarchical and hollow oxide nanostructures:Overview. Sensors and Actuators B:Chemical,2009,140:319-336
    [7]AN K., HYEON T. Synthesis and biomedical applications of hollow nanostructures [J]. Nano Today,2009,4:359-373.
    [8]张东凤,牛丽亚,郭林.分级结构纳米材料的液相合成策略[J].物理化学学报,2010,26(11):2865-2876
    [9]CUSH1NG B. L., KOLESNICHENKO V. L, O'CONNOR C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chem. Rev.2004,104:3893-3946.
    [10]JONES M. R., OSBERG K. D., MACFARLANE R. J. Templated techniques for the synthesis and assembly of plasmonic nanostructures [J]. Chem. Rev.2011,-H1:3736-3827.
    [11]LIANG H. W., LIU S., YU S. H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates [J]. Adv. Mater., 2010,22:3925-3937.
    [12]BOMMEL K. J. C. V., FRIGGERI A., SHINKAI S. Organic Templates for the generation of inorganic materials[J]. Angew. Chem. Int. Ed.,2003,42:980-999.
    [13]LOU X. W., ARCHER L. A., YANG Z. C. Hollow micro-/nanostructures:synthesis and applications[J]. Adv. Mater.,2008,20:3987-4019.
    [14]CARUSO F., CARUSO R. A., MOHWALD. H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science,1998,282:1111-1114.
    [15]CARUSO R. A., SUSHA A., CARUSO F. Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres[J]. Chem.Materi.,2001,13:400-409.
    [16]CARUSO F., SPASOVA M., SUSHA A.,. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chem.Materi.,2001,13:109-116.
    [17]DU N., ZHANG H., CHEN B. D.,et al. Porous indium oxide nanotubes:Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater.,2007,19:1641-1645.
    [18]DU N., ZHANG H., CHEN J. E.,et al. Metal oxide and sulfide hollow spheres:Layer-By-Layer synthesis and their application in lithium-ion battery[J]. J. Phy. Chem. B.,2008,112: 14836-14842.
    [19]SUAREZ F. J., SEVILLA M., ALVAREZ S., et al. Synthesis of highly uniform mesoporous sub-micrometric capsules of silicon oxycarbide and silica [J]. Chem. Mater.,2007,19: 3096-3098.
    [20]XIA Y. D., MOKAYA R. Hollow spheres of crystalline porous metal oxides:A generalized synthesis route via nanocasting with mesoporous carbon hollow shells[J]. J. Mater. Chem.,2005, 15:3126-3131
    [21]SUN X. M., LI Y. D. Ga2O3 and GaN semiconductor hollow spheres[J] Angew. Chem. Int. Ed., 2004,43:3827-3831.
    [22]SUN X. M., LIU J. F., LI Y. D. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres[J]. Chem. Eur. J.,2006,12:2039-2047
    [23]庞利萍,赵瑞红,郭奋,陈建峰,崔文广.新型氧化铝空心球的制备及表征[J].物理化学学报.2008,24(6):1115-1119.
    [24]WANG X., HU P., YUAN F. L.,et al. Preparation and characterization of ZnO hollow spheres and ZnO-Carbon composite materials using colloidal carbon spheres as templates[J]. J. Phys. Chem. C 2007,111:6706-6712.
    [25]YANG R. Z., LI H.,QIU X. P.,et al. A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates [J]. Chem. Eur. J.2006,12: 4083-4090
    [26]TITIRICI M. M., ANTONIETTI M., THOMAS A. A. generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem.,Mater.2006,18:3808-3812
    [27]YU J. G., YU X. X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres [J]. Environ. Sci. Technol.,2008,42:4902-4907.
    [28]LEE C. Y.,KIM S. J., HWANG I. S.,et al. Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres [J]. Sens. Actuator B-Chem.,2009,142: 236-242.
    [29]MENG Y. D., CHEN D. R., JIAO X. L. Synthesis and characterization of CoFe2O4 hollow spheres[J]. Eur. J. Inorg. Chem.,2008,25:4019-4023.
    [30]WANG J. H., YE J. W., LIN. Y.,et al. Synthesis and luminescence of hollow spherical Eu3+- or Tb3+-doped MgAl2O4 phosphors [J]. J. Nanosci. Nanotechno.,2010,10:574-578.
    [31]QIAN H. S., LIN G. F., ZHANG Y. X., et al. A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation [J].Nanotechnology,2007,18:1-6.
    [32]HUANG J., MATSUNAGA K, SHIMANOE K., et al. Nanotubular SnO2 templated by cellulose fibers:synthesis and gas sensing [J]. Chem. Mater.,2005,17:3513-3518.
    [33]KIM J., KIM H. S., LEE N., et al. Multifunctional uniform nanopartieles composed of magnetite nanoerystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery [J].Angew. Chem. Int. Ed.,2008,47:8438-8441.
    [34]MOON G. D., KO S., MIN Y., et al. Chemical transformations of nanostructured materials[J]. Nano Today,2011,6:186-203.
    [35]JEONG U., XIA Y. N. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids[J]. Angew. Chem. Int. Ed.2005,44:3099-3103.
    [36]CAMARGO P. H. C., LEE Y. H., JEONG U., et al. Cation exchange:A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties [J]. Langmuir,2007,23:2985-2992.
    [37]JEONG U., KIM J U., XIA Y. N. Monodispersed spherical colloids of Se@CdSe:Synthesis and use as building blocks in fabricating photonic crystals [J]. Nano Lett.,2005,5:937-942.
    [38]ZHU W., WANG W. Z., SHI J. L. A reverse cation-exchange route to hollow PbSe nanospheres evolving from Se/Ag2Se core/shell colloids [J]. J. Phys. Chem. B,2006,110:9785-9790.
    [39]MIAO J. J., JIANG L. P., LIU C., et al. General sacrificial template method for the synthesis of cadmium chalcogenide hollow structures [J]. Inorg. Chem.,2007,46:5673-5677.
    [40]WANG L. Z., TANG F. Q., OZA WA K.., et al. A general single-source route for the preparation of hollow nanoporous metal oxide structures [J]. Angew. Chem. Int. Ed.,2009,48:7048-7051.
    [41]FAN H. J., GOSELE U., ZACHARIAS M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes:A review [J]. Small 2007,3(10):1660-1671.
    [42]YIN Y. D., RIOUX R. M., ERDONMEZ C. K.,et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect [J]. Science,2004,304:711-714.
    [43]PENG S., SUN S. H. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles[J]. Angew. Chem. Int. Ed.,2007,46:4155-4158.
    [44]WANG Z. Y., LUAN D. Y. LI C. M., et al, Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching. J. Am. Chem. Soc.,2010,132, 16271-16277.
    [45]WANG Z. Y., LUAN D. Y., BOEY F. Y. C., et al. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability [J]. J. Am. Chem. Soc.,2011,133:4738-4741.
    [46]WANG Z. Y., LUAN D. Y., MADHAVI S., et al. alpha-Fe2O3 nanotubes with superior lithium storage capability. Chem. Commun.,2011,47:8061-8063
    [47]LIU J., XUE D. F. Thermal oxidation strategy towards porous metal oxide hollow architectures [J]. Adv. Mater.,2008,20:1622-1627
    [48]SUN Y. G., XIA Y. N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002,298:2176-2179
    [49]SUN Y. G., MAYERS B. T., XIA Y. N. Template-engaged replacement reaction:A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors [J]. Nano Lett., 2002,2(5):481-485.
    [50]AU L., LU X. M., XIA Y. N. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2-or AuCl4-[J]-Adv. Mater.,2008,20:2517-2522
    [51]YANG H. G., ZENG H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening [J]. J. Phys. Chem. B,2004,108:3492-3495
    [52]CAO X. B., GU L. ZHUGE L., et al. Template-free preparation of hollow Sb2S3 microspheres as supports for Ag nanoparticles and photocatalytic properties of the constructed metal-semiconductor nanostructures [J]. Adv. Funct. Mater.,2006,16:896-902.
    [53]LOU X. W., WANG Y., YUAN C. L., et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity [J]. Adv. Mater.,2006,18:2325-2329.
    [54]LI B. X., RONG G. X., XIE Y., et al. Low-temperature synthesis of alpha-MnO? hollow urchins and their application in rechargeable Li+ batteries [J]. Inorg. Chem.,2006,45:6404-6410.
    [55]YU X. X., YU J. G., CHENG B., et al. One-Pot Template-Free Synthesis of Monodisperse Zinc Sulfide Hollow Spheres and Their Photocatalytic Properties [J]. Chem. Eur. J.,2009,15: 6731-6739
    [56]YANG X. F., FU J. X., JIN C. J., at al. Formation mechanism of CaTiO3 hollow crystals with different microstructures. J. Am. Chem. Soc.,2010,132:14279-14287
    [57]CUI J. X., WANG W. S., ZHEN L., et al. Formation of FeMoO4 hollow microspheres via a chemical conversion-induced Ostwald ripening process [J]. Crystengcomm,2012,14: 7025-7030.
    [58]LI J., ZENG H. C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening [J]. J. Am. Chem. Soc,2007,129:15839-15847.
    [59]ZHOU J. K., LV L.,YU J. Q., et al. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light [J]. J. Phys. Chem. C, 2008,112,:5316-5321.
    [60]ZHANG Q., ZHANG T. R.. GE J. P., et al. Permeable silica shell through surface-protected etching [J]. Nano Lett,2008.8.:2867-2871.
    [61]ZHANG Q., WANG W. S., GOEBL J., et al. Self-templated synthesis of hollow nanostructures [J].Nano Today,2009,4:494-507.
    [62]ZHANG T. R., GE J. P., HU Y. X., et al. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process [J]. Angew. Chem. Int. Ed.,2008,47:5806-5811.
    [63]ZHANG T. R., ZHANG Q., GE J. P., et al. A self-templated route to hollow silica microspheres [J]. J. Phys. Chem. C,2009,113:3168-3175.
    [64]CHEN Y., CHEN H. R., GUO L. M., et al. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy [J]. ACS Nano.2010,4:529-539.
    [65]YU Q. Y., WANG P. P., HU S., et al. Hydrothermal Synthesis of hollow silica spheres under acidic conditions. Langmuir,2011,27:7185-7191.
    [66]KIM S. S., ZHANG W. Z., PINNAVA1A T. J. Ultrastable mesostructured silica vesicles[J].Science,1998,282:1302-1305.
    [67]HUBERT D. H. W., JUNG M., FREDERIK P. M., et al. Vesicle-directed growth of silica [J]. Adv. Mater.2000,12:1286-1290
    [68]NAKASHIMA T., KIMIZUKA. N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids [J]. J. Am. Chem. Soc.,2003,125:6386-6387
    [69]BUCHOLD D. H. M., FELDMANN C. Nanoscale y-AIO(OH) hollow spheres:synthesis and container-type functionality[J]. Nano Lett..2007,7(11):3489-3492.
    [70]PENG Q., DONG Y. J., LI Y. D.,et al. ZnSe semiconductor hollow microspheres [J]. Angew. Chem. Int. Ed.,2003,42:3027-3030.
    [71]HAN Y. S., HADIKO G., FUJI M., et al. A novel approach to synthesize hollow calcium carbonate particles [J]. Chem. Lett.,2005,34:152-153.
    [72]ZHANG H., ZHANG S. Y., PAN S., et al. A simple solution route to ZnS nanotubes and hollow nanospheres and their optical properties [J]. Nanotechnology,2004,15:945-848.
    [73]CHEN X. Y., WANG Z. H., WANG X., et al. Synthesis of novel copper sulfide hollow spheres generated from copper (11)-thiourea complex [J]. J. Cryst. Growth,2004,263:570-574.
    [74]WANG H. Z., LIANG J. B., FAN H., et al. Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres [J]. Solid State Chem.,2008,181:122-129.
    [75]KIM Y. J., CHAI S. Y., LEE W. I. Control of TiO2 structures from robust hollow microspheres to highly dispersible nanoparticles in a tetrabutylammonium hydroxide solution. Langmuir,2007, 23:9567-9571.
    [76]KAMATA K., LU Y., XIA Y. N. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores [J]. J. Am. Chem. Soc.,2003,125,2384-2385.
    [77]FANG Q. L., XUAN S. H., JIANG W. Q.,et al. Yolk-like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells [J]. Adv. Funct. Mater., 2011,21:1902-1909.
    [78]WU X, J., XU D. S. Soft template synthesis of yolk/silica shell particles [J]. Adv. Mater.,2010, 22:1516-1520.
    [79]LOU X. W., YUAN C. L., RHOADES E., et al. Encapsulation and Ostwald ripening of Au and Au-Cl complex nanostructures in silica shells[J] Adv. Funct. Mater.,2006,16:1679-1684.
    [80]WANG S. N., ZHANG M. C., ZHANG W. Q. Yolk-Shell Catalyst of Single Au nanoparticle encapsulated within hollow mesoporous silica microspheres [J]. ACS Catal.,2011,1:207-211
    [81]FUERTES A. B., SEVILLA M., VALDES-SOLIS T., et al. Synthetic route to nanocomposites made up of inorganic nanoparticles confined within a hollow mesoporous carbon shell [J]. Chem. Mater.2007,19:5418-5423.
    [82]LEE J., PARK J. C., SONG H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol [J]. Adv. Mater.,2008,20:1523-1528.
    [83]PARK J. C, BANG J. U., LEE J. KO., et al. Ni@SiO(2) yolk-shell nanoreactor catalysts:High temperature stability and recyclability [J]. J. Mater. Chem.,2010,20:1239-1246.
    [84]CAVALIERE-JAR1COT S., DARBANDI M., NANN T. Au-silica nanoparticles by "reverse" synthesis of cores in hollow silica shells [J]. Chem. Commun.,2007,2031-2033.
    [85]ZHANG N., FU X. Z., XU Y. J. A facile and green approach to synthesize Pt@CeO(2) nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst [J]. J. Mater. Chem.,2011,21:8152-8158.
    [86]KUA1 L.,WANG S. Z., GENG B. Y. Gold-platinum yolk-shell structure:a facile galvanic displacement synthesis and highly active electrocatalytic properties for methanol oxidation with super CO-tolerance [J]. Chem. Commun.,2011,47:6093-6095.
    [87]YEC C. C., ZENG H. C. Synthetic architecture of multiple core-shell and yolk-shell structures of (Cu2O@)(n)Cu2O (n=1-4) with centricity and eccentricity [J]. Chem. Mater.,2012,24: 1917-1929
    [88]ZHU J. X., SUN T., HNG, H. H., et al. Fabrication of core-shell structure of M@C (M= Se, Au, Ag(2)Se) and transformation to yolk-shell structure by electron beam irradiation or vacuum annealing [J] Chem. Mater.,2009,21:3848-3852.
    [89]HAH H. J., UM J. I., HAN S. H., et al. New synthetic route for preparing rattle-type silica particles with metal cores [J]. Chem. Commun.,2004,40:1012-1013.
    [90]DAI Z. F., DAHNE L., MOHWALD H., et al. Novel capsules with high stability and controlled permeability by hierarchic templating [J]. Angew. Chem. Int. Ed.,2002,41:4019-4022.
    [91]SALGUEIRINO-MACEIRA V., SPASOVA M., FARLE, M. Water-stable, magnetic silica-cobalt/cobalt oxide-silica multishell submicrometer spheres [J]. Adv. Funct. Mater.,2005, 15:1036-1040.
    [92]KOHLER K. SUKHORUKOV G. B. Heat treatment of polyelectrolyte multilayer capsules:A versatile method for encapsulation [J]. Adv. Funct. Mater.,2007,17:2053-2061.
    [93]PETUKHOVA A., PATON A. S., WEI Z. X.,et al. Polymer multilayer microspheres loaded with semiconductor quantum dots [J]. Adv. Funct. Mater.,2008,18:1961-1968.
    [94]XU H. L., WANG W. Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall [J]. Angew. Chem. Int. Ed.,2007,46,1489-1492.
    [95]ZHANG L., WANG H. Interior structural tailoring of Cu2O shell-in-shell nanostructures through multistep Ostwald ripening [J]. J. Phys. Chem. C,2011,115:18479-18485
    [96]WU C. Z., ZHANG X. D.. NING B., et al. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy [J]. Inorg. Chem.,2009,48:6044-6054.
    [97]LAI X. Y., LI J., KORGEL B. A., et al. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres [J]. Angew. Chem. Int. Ed.,2011,50: 2738-2741.
    [98]CHO W., LEE Y. H., LEE H. J., et al. Multi ball-in-ball hybrid metal oxides [J]. Adv. Mater., 2011,23:1720-1723.
    [99]LIU J., XIA H., XUE D. F. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li Ion batteries[J]. J. Am. Chem. Soc.2009, 131,12086-12087
    [100]LIU, B. ZENG, H. C. Mesoscale organization of CuO nanoribbons:Formation of "dandelions" [J]. J. Am. Chem. Soc.2004,126:8124-8125.
    [101]LI B. X., WANG Y. F. Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures [J]. J. Phys. Chem. C,2010,114:890-896.
    [102]SHI H., YU K., SUN F., et al. Controllable synthesis of novel Cu2O micro/nano-crystals and their photoluminescence, photocatalytic and field emission properties [J]. Crystengcomm,2012, 14:278-285.
    [103]YAN C. L., XUE D. F. Novel self-assembled MgO nanosheet and its precursors [J]. J. Phys. Chem. B,2005,109:12358-12361
    [104]MUDULI S., GAME O., DHAS V., et al. Shape preserving chemical transformation of ZnO mesostructures into anatase TiO2 mesostructures for optoelectronic applications [J]. Energy Environ. Sci.,2011,4:2835-2839.
    [105]LI L. S., CAO R. G., WANG Z. J., et al. Template synthesis of hierarchical Bi2E3 (E=S, Se, Te) core-shell microspheres and their electrochemical and photoresponsive properties [J]. J. Phys. Chem. C2009,113:18075-18081.
    [106]TIAN P., YE J. W., NING G. L., et al. NiO hierarchical structure:template-engaged synthesis and adsorption property [J]. RSC Adv.,2012,2:10217-10221.
    [107]CHEN J. S., LUAN D. Y., LI C. M., et al. TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties [J]. Chem. Commun., 2010,46:8252-8254.
    [108]DING S. J., ZHU T., CHEN J. S., et al. Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance [J]. J. Mater. Chem.,2011,21: 6602-6606.
    [109]CHEN J. S., LIU H., QIAO S. Z., et al. Carbon-supported ultra-thin anatase TiO(2) nanosheets for fast reversible lithium storage [J]. J. Mater. Chem.,2011,21:5687-5692.
    [110]ZHU T., WANG Z. Y., DING S. J., et al. Hierarchical nickel sulfide hollow spheres for high performance supercapacitors [J]. RSC Adv.,2011,1,397-400.
    [111]WU C. Z. XIE Y., LEI L. Y., et al. Synthesis of new-phased VOOH hollow "dandelions" and their application in lithium-ion batteries[J]. Adv. Mater.,2006,18:1727-1732.
    [112]WANG B., CHEN J. S., WU H. B., et al. Quasiernulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties [J]. J. Am. Chem. Soc.,2011,133: 17146-17148.
    [113]LIU B., ZENG H. C. Fabrication of ZnO "dandelions" via a modified kirkendall process [J]. J. Am. Chem. Soc.,2004,126:16744-16746.
    [114]YE L. N.. WU C. Z., GUO W., et al. MoS2 hierarchical hollow cubic cages assembled by bilayers:one-step synthesis and their electrochemical hydrogen storage properties [J]. Chem. Commun.,2006,41:4738-4740.
    [115]YANG Y., KIM D. S., SCHOLZ R., et al. Hierarchical three-dimensional ZnO and their shape-preserving transformation into hollow ZnAl2O4 nanostructures [J]. Chem. Mater.,2008,20: 3487-3494.
    [116]LIU M. Y., ZHANG L. Z., WANG K. W., et al. Low temperature synthesis of delta-Bi2O3 solid spheres and their conversion to hierarchical BiOl nests via the Kirkendall effect [J]. CrystEngComm,2011,13:5460-5466.
    [117]HU J. S., ZHONG L. S., SONG W., et al. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal [J]. Adv. Mater.,2008,20:2977-2982
    [118]Al L. H., YUE H. T., JIANG J. Sacrificial template-directed synthesis of mesoporous manganese oxide architectures with superior performance for organic dye adsorption [J]. Nanoscale,2012,4:5401-5408.
    [119]WANG B, WU H. B., YU L, et al. Template-free Formation of Uniform Urchin-like a-FeOOH Hollow Spheres with Superior Capability for Water Treatment [J]. Adv. Mater.,2012,24: 1111-1116.
    [120]FEI J. B., CUI Y., ZHAO J., et al. Large-scale preparation of 3D self-assembled iron hydroxide and oxide hierarchical nanostructures and their applications for water treatment[J] J. Mater. Chem.,2011,21:11742-11746.
    [121]MOU F. Z., GUAN J. G., XIAO Z. D., et al. Solvent-mediated synthesis of magnetic Fe2O3, chestnut-like amorphous-core/gamma-phase-shell hierarchical nanostructures with strong As(V) removal capability [J]. J. Mater. Chem.,2011,21:5414-5421.
    [122]LI X. Y.,SI Z. J., LEI Y. Q., et al. Hierarchically structured Fe3O4 microspheres:morphology control and their application in wastewater treatment [J]. CrystEngComm,2011,13:642-648.
    [123]FEI J. B., CUI Y. YAN., QI,X. H. et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment [J]. Adv. Mater.,2008,20,452-456.
    [124]CAO J., ZHU Y. C, BAO K. Y., et al. Microscale Mn2O3 hollow structures:sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties [J]. J. Phys. Chem. C,2009,113: 17755-17760.
    [125]CAO J., MAO Q. H., SHI L., et al. Fabrication of gamma-MnO2/alpha-MnO2 hollow core/shell structures and their application to water treatment [J]. J. Mater. Chem.,2011.21:16210-16215.
    [126]CAI W. Q., YU J. G., Jaroniec M. Template-free synthesis of hierarchical spindle-like gamma-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water [J]. J. Mater. Chem.,2010,20:4587-4594.
    [127]XIAO H. Y., Al Z. H., ZHANG L. Z. Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. J. Phys. Chem. C,2009. 113:16625-16630
    [128]ZHU T., CHEN J. S., LOU X. W. Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area [J]. J. Phys. Chem. C,2012,116: 6873-6878.
    [129]ZHANG D. Q., WEN M. C., JIANG B., et al. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment [J]. J. Hazard. Mater.,2012,211:104-111
    [130]WANG X., ZHONG Y. T., ZHA1 T. Y., et al Multishelled CojO4-Fe3O4 hollow spheres with even magnetic phase distribution:Synthesis, magnetic properties and their application in water treatment [J]. J. Mater. Chem.,2011,21:17680-17687.
    [131]庞宏昌.水镁石的诱导转晶制备含镁微纳米材料及应用性能研究[D].大连:大连理工大学,2011.
    [132]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社,2004.
    [133]MITSUHASHI K., TAGAMI N., TANABE K.,et al. Synthesis of microtubes with a surface of "House of Cards" structure via needlelike particles and control of their pore size [J]. Langmuir, 2005,21:3659-3663.
    [134]XING Z., HAO Q., JU Z.C., et al. Synthesis of MgCO3 microcrystals at 160℃ starting from various magnesium sources [J]. Mater. Lett.,2010,64:14010-1403
    [135]ZHANG Z. P., ZHENG Y. J., NI Y. W., et al. Temperature-and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates [J]. J. Phys. Chem. B,2006,110,12969-12973
    [136]宋兴福,杨晨,汪瑾等.玫瑰花状多孔碱式碳酸镁微球的合成[J].无机化学学报,2011,27(5):1008-1014.
    [137]孙晓明.低维功能纳米材料的液相合成、表征与性能研究[D].北京:清华大学,2005.
    [138]SANDENGEN K., J(?)SANG L O., KAASA B. Simple method for synthesis of magnesite (MgCO3) [J]. Ind. Eng. Chem. Res.,2008,47:1002-1004.
    [139]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,2005.
    [140]WANG X. L., XUE D. F. Direct observation of the shape evolution of MgO whiskers in a solution system[J]. Mater.Lett.2006,60:3160-3164.
    [141]WANG. Y, LI. Z. B., DEMOPOULOS G. P. Controlled precipitation of nesquehonite (MgCO3-3H2O) by the reaction of MgCl2 with (NH4)2CO3 [J]. J. Cryst. Growth,2008,310: 1220-1227
    [142]郑亚君,党利琴,张智平等.搅拌时间对水合碳酸镁形貌和组成的影响[J].精细化工,2007,24(9):835-838,869.
    [143]李俊强.利用含镁副产品制备高纯碳酸镁及氧化镁研究[D].大连:大连理工大学,2008.
    [144]POLSHETT1WAR V., CHA. D., ZHANG X. X.,et al. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology [J]. Angew. Chem. Int. Ed.,2010,49,9652-9656.
    [145]WU X. J., JIANG Y. Y., XU D. S. A unique transformation route for synthesis of rodtike hollow mesoporous silica particles [J]. J. Phys. Chem.C,2011,115:11342-11347
    [146]WU,X. M., CAO H Q, YIN G., et al. MgCO3_3H2O and MgO complex nanostructures: controllable biomimetic fabrication and physical chemical properties[J]. Phys. Chem. Chem. Phys.,2011,13:5047-5052.
    [147]YU X. X., YU J.G., CHENG, B., et al. Synthesis of hierarchical flower-like AIOOH and TiO2/VAlOOH superstructures and their fnhanced photocatalytic properties[J]. J. Phys. Chem. C, 2009,113:17527-17535.
    [148]张青红.二氧化钛基纳米材料及其在清洁能源技术中的研究进展[J].无机材料学报,2012,27(1):1-10
    [149]CHEN X., MAO S. S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications [J]. Chem. Rev.,2007,107:2891-2959.
    [150]ZHAO W., FENG L. L., YANG R., et al. Synthesis, characterization, and photocatalytic properties of Ag modified hollow SiO2/TiO2 hybrid microspheres [J]. Applied Catalysis B: Environmental,2011,103:181-189.
    [151]ZHANG F. L., ZHAO J. C, SHEN T., et al. TiO2-assisted photodegradation of dye pollutants-Ⅱ. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation [J]. Applied Catalysis B:Environmental,1998,15:147-156.
    [152]LIU R. J., LI Y., ZHAO H., et al. Synthesis and characterization of Al2O3 hollow spheres [J]. Mater. Lett.,2008,62:2593-2595.
    [153]MARTINEZ A., PRIETO G., ROLLAN J. Nanofibrous gamma-Al2O3 as support for Co-based Fischer-Tropsch catalysts:Pondering the relevance of diffusional and dispersion effects on catalytic performance [J] J. Catal.,2009,263:292-305.
    [154]易宪武.无机化学丛书[M].北京,科学出版社,1992:第七卷,22.174-175.
    [155]LIDE D. R. CRC handbook of chemistry and physics[M]. Boca Raton:CRC Press,90th edn., 2009:4.44-101,8.127-129;
    [156]晏成林.溶液法化学合成微纳米结构金属氧化物[D].大连:大连理工大学,2008.
    [157]ZHAO B., K.E X. K., BAO J. H., et al. Synthesis of flower-like NiO and effects of morphology on its catalytic properties [J]. J. Phys. Chem. C.,2009,113:14440-14447.
    [158]DING Y., WANG Y., SU, L. A., et al. Preparation and characterization of NiO-Ag nanofibers, NiO nanofibers, and porous Ag:towards the development of a highly sensitive and selective non-enzymatic glucose sensor [J]. J. Mater. Chem.,2010,20:9918-9926.
    [159]SHANG S. Q., XUE K. Y., CHEN, D. R., et al. Preparation and characterization of rose-like NiO nanostructures [J]. CrystEngComm,2011,13:5094-5099.
    [160]许诺.氧化铈微纳米结构的调控合成及其性能研究[D].大连:大连理工大学,2012
    [161]HU J. C., SONG Z., CHEN L. F., et al. Adsorption Properties of MgO(111) Nanoplates for the Dye Pollutants from Wastewater [J]. J. Chem. Eng. Data,2010,55:3742-3748.
    [162]BIAN S. W., BALTRUSAITIS J., GALHOTRA P., et al.Template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption [J]. J. Mater. Chem.,2010,20:8705-8710.
    [163]YOON B., HAKKINEN H., LANDMAN U., et al. Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO[J].Science,2005,307:403-407.
    [164]SHIN. S., JANG. J. Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions [J]. Chem. Commun.,2007:4230-4232.
    [165]WANG S. B., LI H. T., X1E S. J., et al. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment [J]. Chemosphere,2006,65,82-87.
    [166]BANERJEE S. S., CHEN D. H. Fast removal of copper ions by gumarabic modified magnetic nano-adsorbent [J]. J. Hazard. Mater.,2007,147:792-799.
    [167]OSIFO P. O., NEOMAGUS H., EVERSON R. C., et al. The adsorption of copper in a packed-bed of chitosan beads:Modeling, multiple adsorption and regeneration [J]. J. Hazard. Mater.,2009,167:1242-1245.
    [168]LIU. W. Z., HUANG F., WANG Y. J., et al. Recycling Mg(OH), nanoadsorbent during treating the low concentration of Cr(VI) [J]. Environ. Sci. Technol.,2011,45:1955-1961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700