纳米流体输运性质作用机理的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米流体是指将纳米颗粒悬浮于基液中形成的一类换热流体;纳米流体在强化传热方面表现出许多优良特性,而输运性质是研究其强化传热的基础,成为了国内外研究热点。目前研究者大多采用实验的方法,实验结果间差异性较大。本文主要利用分子动力学模拟方法,研究了以氩、水和制冷剂为基液的纳米流体的导热系数、粘度等输运参数的作用机理,以加深对纳米流体特性的认识。
     本文首先推导了适用于纳米流体输运参数的自相关函数公式,建立了纳米流体导热系数、粘度等输运参数的模拟体系,编制了计算程序;并对模拟稳定性问题进行了分析,提出了分子平均自由力程的新概念,进而推导出用于模拟过程中最佳步长选择的计算公式和方法,为实现纳米流体分子模拟的稳定性奠定了基础。
     对纳米流体的制备进行了研究。实验观察了纳米颗粒在去离子水、制冷剂中的分散情况,总结了比较合适的制备方法,讨论了最佳振荡时间。模拟观察了纳米颗粒在基液中的布朗运动、颗粒吸附液体层、颗粒团聚的现象,并讨论了颗粒尺度、体系温度对分散稳定性的影响。实验测量了多种纳米流体的导热系数和粘度。实验结果为分子动力学模拟选取模拟条件提供了依据。
     利用本文建立的纳米流体分子动力学模拟体系,对以氩、水和制冷剂为基液的纳米流体的导热系数、粘度进行了模拟研究。对颗粒体积百分比、温度、颗粒尺寸、颗粒形状、比表面积及球形度等可能影响纳米流体有效导热系数、有效粘度的因素进行了分析,得到了纳米流体有效导热系数、有效粘度与不同因素之间的变化关系。
     在机理分析过程中,提出了单位体积输运参数增强比值TPeV (TransportProperties Enhancement Ratio by Nanoparticles Volume Fraction),便于分析纳米颗粒对纳米流体的作用。从TPeV角度分析,纳米流体存在一个最佳体积百分比和最大体积百分比。
     对纳米流体导热系数、粘度内部作用进行了分解分析。发现基液在颗粒作用下的导热系数的增强,是纳米流体导热系数增大的主因,而纳米流体分子间作用势能是改变基液导热系数的本质。发现基液在颗粒的作用下属性的改变是影响纳米流体粘度的主要原因,当颗粒体积百分比超过某一值后基液流动性急剧改变。
Nanofluids, a sort of researching working fluid with nanoparticles inside, havebeen proposed as a route for surpassing the performance of currently available heattransfer liquids in the near future. This dissertation presents reference data, experimentaldata, molecular dynamics simulation results and theroretical analysis of the mechanismof nanofluids transport properties, such as thermal conductivity, viscosity and diffusioncoefficient.
     The auto correlation function formulas of nanofluids’ transport parameters werededuced in this dissertation and a simulation system was established to investigatenanofluids’ transport parameters, including thermal conductivity, viscosity anddiffusion coefficient, according to the deduced formulas. According to analysis thestability of the transport parameters integral functions, a new conception was proposed—mean-free-force-path. Combined the mean-free-force-path with related formulas andtheories, a new formula was deduced which used to calculate the time step in moleculardynamics simulations.
     The nanofluids’ dispersivity and stablility were also investigated throughexperiments and simulations. The dispersion stability of nanoparticles indeionized water and refrigerants were investigated by experiments. The suitablepreparation method was summarized and the optimum oscillation time wasdiscussed. Molecular dynamics simulations were used to investigate Brownianmotion of the nanoparticles in base fluid. The absorbed liquid molecular layeraround the nanoparticle and aggregation of nanoparticles were also investigated,and other factors, such as the particle size and temperature, were also discussed.
     The nanofluids’ transport properties, with the base fluid of water or refrigerantR123or R141b, were investigated by combined with reference data, experimental data,molecular dynamics simulations results and theoretical analysis of the mechanism. Mostof the important factors, such as temperature, volume fraction, nanoparticle size,nanoparticle shape, surface area and sphericity, were discussed in the dissertation whicheffect the nanofluids’ thermal conductivity and viscosity.
     A new parameter, TPeV, was introduced to analysis the mechanism ofnanoparticles in the nanofluid and TPeV is the abbreviation of Transport Properties Enhancement Ratio by Nanoparticles Volume Fraction. CombinedTPeV with the reference data, we believe that there exist the best volumefraction and maxium volume fraction of nanoparticles in nanofluid.
     The collective heat flux vector of nanofluids’ thermal conductivity was separatedinto the liquid contribution, the nanoparticles contribution, and the interaction betweenliquid and nanoparticles; the results show that the contribution of the nanoparticles tothe nanofluids’ thermal conductivity meet the Maxwell’s effective medium theory, butthe liquid parts’ thermal conductivity was higher than the fluid with no nanoparticlesitself. The heat flux vector was also decomposed into the kinetic energy, theintermolecular potential, the pair virial function and the interaction between allfunctions; the results show that the most remarkable aspect is the increase ofpotential contribution which plays an insignificant single base fluid. The stresstensor of viscosity can also separated into the liquid contribution, the nanoparticlescontribution, and the interaction between liquid and nanoparticles by work fluids; theresults show that there is little difference of viscosity between Einstein’ theory andnanofluids with few nanoparticles volume fraction; when the volume fraction is higherthan a certain value, the effective viscosity become to increase sharply which mainlydue to the changing of fluid’s rheology by enough nanoparticles.
引文
[1]国家自然科学基金委员会.工程热物理与能源利用学科发展战略调研报告.北京:科学出版社,1995
    [2]顾维藻,神家锐,马重芳.强化传热.北京:科学出版社,1990
    [3]李强.纳米流体强化传热机理研究[博士学位论文].南京:南京理工大学动力工程学院,2004
    [4]梁金,于江,顾纯,赵旭博.建筑环境与空调能耗浅析.科技信息,2010,8:769
    [5]潘秋生.新世纪中国制冷科学技术发展趋势.制冷学报,2003,3:31-37.
    [6]朱明善.21世纪制冷空调行业绿色环保制冷剂的趋势与展望.暖通空调,2000,30(2):22-26
    [7] Little Arthur D. Global comparative analysis of HFC and alternative technologies forrefrigeration, air conditioning, foam, solvent, aerosol propellant and fire protectionapplication.1999.
    [8]李建军.纳米粒子及其材料的应用.中专物理教学,2000,8(3):42-43
    [9]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001:72-85
    [10] Wang R X, Hao B, Xie G Z. A Refrigerating Systerm Using HFC134a and Mineral LubricantAppended with n-TiO2(R) as Working Fluids, Proceedings of the4th InternationalSymposium on HAVC, Tsinghua University,2003:888-892
    [11] Wang R X, Zou D B, Zhang Q L. An Investigation on Refrigerating System Using HFC134aand Mineral Lubricant Mixed with Nano-particles TiO2(a) as Working Fluids, Proceedings ofthe4th International Conference on Compressor and Refrigeration, Xi’an Jiaotong UniversityPress,2003:313-319
    [12]邹德宝,王瑞祥,李淑琴,等.纳米粒子对矿物油/HFC体系制冷系统特性影响的研究.工程热物理学报,2006,27(s1):37-40
    [13]姜未汀.纳米制冷剂的热导率、稳定性及纳米流体电导率的实验与建模[博士学位论文].上海:上海交通大学机械及动力工程学院,2009
    [14] Jiang W T, Ding G L, Peng H. Mearsurement and model on thermal conductivities of carbonnanotube nanorefrigerants. International Journal of Thermal Sciences.2009,48(6):1108-1115
    [15] Jiang W T, Ding G L, Peng H, Gao Y F, Wang K J. Experimental and model research onthermal conductivity of nanorefrigerant. HVAC&R Research.2009,15(3):651-669
    [16] Jiang W T, Ding G L, Gao Y F, Wang K J. A particles aggregation model for perdicting thethermal conductivity of nanorefrigerants.2007. Ther22nd IIR international congress ofrefrigeration, Beijing, China.
    [17]毕胜山.纳米颗粒在制冷系统中的应用基础研究[博士学位论文].北京:清华大学热能工程系,2008
    [18] Bi S S, Shi L. Performance investigation of a domestic refrigerator using R134a/mineraloil/Nano-TiO2as working fluid. Proceedings of the22nd international congress ofRefrigeration, Beijing,2007
    [19]毕胜山,史琳.纳米颗粒在制冷剂中的分散特性研究.工程热物理学报,2007,28(2):185-188
    [20]毕胜山,史琳.纳米制冷剂冰箱性能实验研究.清华大学学报,2007,47(11):2002-2005
    [21]王凯建,丁国良,姜未汀.纳米尺度传热和工程应用前景.第四届全国制冷空调新技术研讨会论文集.南京:东南大学,2006:66-75
    [22]李鹏.纳米制冷剂池沸腾换热实验研究[硕士学位论文].北京:清华大学热能工程系,2007
    [23] Park K J, Jung D S. Boiling heat transfer enhancement with carbon nanotubes for refrigerantsused in building air-conditioning. Energy and Buildings,2007,39(9):1061-1064
    [24] Park Y, Sommers A, Liu L, et al. Nanoparticles to enhance evaporative heat transfer.Proceedings of the22nd international congress of Refrigeration, Beijing,2007
    [25]任俊,沈健,卢寿慈.颗粒分散科学与技术.北京:化学工业出版社,2005:345
    [26]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社,2003:10
    [27] Keblinski P, Eastman A, Cahill David C.Nanofluids for thermal transport. Materialstoday,2006,6:35-44
    [28]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析.应用基础与工程科学学报,2003,11(2):167-173
    [29]宋晓岚,杨振华,邱冠周,曲选辉.纳米Al2O3颗粒的制备及其悬浮液的分散稳定.中南工业大学学报(自然科学版),2003,34(5):484-488
    [30]李泽梁,李俊明,胡海滔,王补宣. CuO纳米颗粒悬浮液中各组分对悬浮液稳定性及黏度的影响.热科学与技术,2005,4(2):157-162
    [31] Hwang Y, Lee J K, Lee C H, et al. Stability and thermal conductivity characteristics ofnanofluids. Thermochimica Acta,2007,455(1-2):70-74
    [32] Chang H, Lo C H, Tsung T T, et al. Temperature Effect on the Stability of CuO NanofluidsBased on Measured Particle Distribution. Key Engineering Materials,2005,295-296:51-56
    [33] Chang H, Tsung T T, Lin C R, et al. A Study of Magnetic Field Effect on Nanofluid Stabilityof CuO. Materials Transactions,2004,45(4):1375-1378
    [34] Li X F, Zhu D S, Wang X J. Evaluation dispersion behavior of the aqueous coppernano-suspensions. Journal of Colloid and Interface Science,2007,310(2):456-463
    [35]李新中,王瑞祥,樊在花.纳米CuO粉体在冷冻机油中的分散稳定性.中国制冷学会2009年学术年会论文集,926-931
    [36]黄毅,彭兵,柴立元.聚合物分散剂对纳米TiO2水悬浮液分散稳定性的影响.中国粉体技术,2006,2:24-28
    [37]李金平,吴疆,梁德青.纳米粒子悬浮液中分散剂选择的实验研究.兰州理工大学学报,2006,32(3):63-66
    [38]王娟丽,李奠础,马建杰.纳米ZnO水悬浮液稳定性的研究.化工时刊,2006,20(6):20-22
    [39]饶坚,陈沙鸥,戚凭.分散剂(PMAA-NH4)质量分数和pH值对纳米氧化锆悬浮液分散效果的影响.青岛大学学报,2003,16(3):37-39
    [40]牛永效,王毅,王恩德.纳米SiO2在水性介质中的分散稳定性研究.中国粉体技术,2006,3:1-3
    [41] Eastman J A, Choi S U S, Li S, Yu W, Thompson L J, Anamalously increased effectivethermal conductivities of ethylene glycolbased nanofluids containing copper nanoparticles,Applied Physics Letters,78,718-720,2001
    [42] Liu M S, Lin C C, Tsai C Y, Wang C C. Enhancement of thermal conductivity with Cu fornanofluids using chemical reduction method. International Journal of Heat and Mass Transfer,2006,49:3028-3033
    [43] Liu Z H, Yang X F, Guo G L. Effect of nanoparticles in nanofluid on thermal performance in aminiature thermosyphon. Journal of Applied Physics,2007,102:013526(8)
    [44]廖亮.减阻型纳米流体的管内流动与换热特性实验研究[博士学位论文].上海:上海交通大学,2009
    [45] Lee S, Choi S U S, Li S. Measuring thermal conductivity of fluids containing oxidenanoparticles, Transactions of the ASME. Journal of Heat Transfer,121,280-289,1999
    [46] Hanunerschmidt U, Sabuga W. Transient hot wire (THW) method: uncertainty assessment.International Journal of Thermophysics,2000,21:1255-1278
    [47] Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalously ThermalConductivity Enhancement in Nanotube Suspensions. Applied Physics Letters,2001,79:2252-2254
    [48] Xie H Q, Wang J, Xi T, Liu Y, Ai F, Wu Q, Thermal conductivity enhancement of suspensionscontaining nanosized alumina particles, Journal of Applied Physics,2002,91:4568(5)
    [49]李宏.纳米颗粒悬浮液强化换热的实验研究与理论模拟[硕士学位论文].北京:清华大学热能工程系,2003
    [50] Xie H Q, Lee H, Youn W. Nanofluids containing multiwalled carbon nanotubes and theirenhanced thermal conductivities. Journal of Applied Physics,2003,94:4967-4971
    [51]李强,宣益民.纳米流体热导率的测量.化工学报,2003,54(1):42-46
    [52] Murshed S M S, Leong K C, Yang C, Enhanced thermal conductivity of TiO2-water basednanofluids, International Journal of Thermal Science,2005,44:367-373
    [53] Hong K S, Hong T K, Yang H S. Thermal conductivity of Fe nanofluids depending on thecluster size of nanoparticles. Applied Physics Letters,2006,88:031901(3)
    [54]王照亮,唐大伟,布文峰.纳米流体导热系数测量及理论预测.中国工程热物理学会第十二届年会论文集(传热传质学).南京,2006:1367-1372
    [55]苏风民.双组分纳米流体的物性测量和NH3/H2O泡状吸收强化的研究[博士学位论文].大陆:大连理工大学,2008
    [56] Ding Y L, Alias H, Wen D S. Heat Transfer of aqueous suspensions of carbon nanotubes(CNT nanofluids). International Journal of Heat and Mass Transfer,2006,49:240-250
    [57]王涛,骆仲泱,郭顺松.可控纳米流体的制备及热导率的研究.浙江大学学报(工学版),2007,41:514-518
    [58] Xie H Q, Fuji M, Zhang X. Effect of interfacial nanolayer on the effective thermalconductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer,2005,48:2926-2932
    [59] Li C H, Pererson G P, Experimental investigation of temperature and volume fractionvariations on the effective thermal conductivity of nanoparticle suspensions(nanofluids),Journal of Applied Physics,2006,99:084314
    [60] Reozel W, Putra N, Das S K. Experiment and analysis for non-Fourier conductivity inmaterials with non-homogeneous inner structure. International Journal of Thermal Science,2003,42:541-552
    [61] Vadasz J, Govender S, Vadasz P. Heat transfer enhancement in nanofluid suspensions:possible mechanisms and explanations. Internal Journal of Heat and Mass transfer,2005,48:2673-2683
    [62] Kabelac S, Kuhuke J F. Heat transfer Mechanism in nanofluids—experimental and theory.Proceedings of13th International Heat Conference, Australia,2006, KN-11
    [63]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液热物性及颗粒比热容尺寸效应.工程热物理学报,2004,25:296-298
    [64] Das S K, Putra N, Thiesen P, Roetzel W, Temperature dependence of thermal conductivityenhancement for nanofluids, Transactions of the ASME. Journal of Heat Transfer,2003,125:567-574
    [65] Masuda H, Ebata A, Teramae K,Hishinuma N, Alternation of Thermal Conductivity andViscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of γ-A12O3, SiO2andTiO2Ultra-fine Particles). Netsu Bussei (Japan),1993,7:227-233
    [66] Choi S U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME FED.1995,231(66):99-103
    [67] Eastman J A, Choi S U S, Li S, Thompson L J, Lee S, Enhanced Thermal ConductivityThrough the Development of Nanofluids, Proceedings of the symposium on nanophase andnanocomposite MaterialsⅡ, Materials Research Society, Boston,1997,457:3-11
    [68] Wang X W,Xu X F,Choi S U S. Thermal Conductivity of Nanoparticle-Fluld Mixture.Journal of Thermophysics and Heat Transfer,1999,13:474-480
    [69] Xuan Y M, Li Q. Heat transfer enhancement of nanofluids.International Journal of Heat FluidFlow,2000,21:58-64
    [70] Liu M S, Lin M C, Huang I T, et al. Enhancement of thermalconductivity with CuO fornanofluids. Chemical Engineering Technology,2006,29:1
    [71] Hong H P, Wright B, Wensel J, et al. Enhanced thermal conductivity by the magnetic field inheat transfer nanofluids containing carbon nanotube. Synthetic Metals,2007,157:437-440
    [72] Chopkar M,Kumar S,Bhandari D R,et al. Development and characterization of Al2Cu andAg2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Materials Scienceand Engineering B,2007,139:141-148
    [73] Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalously ThermalConductivity Enhancement in Nanotube Suspensions. Applied Physics Letters,2001,79:2252-2254
    [74] Xie H Q, Wang J, Xi T, Liu Y. Thermal Conductivity of Suspensions Containing NanosizedSiC Particles. International Journal of Thermophysics,2002,23:571-580
    [75] Xie H Q, Wang J, Xi T, Liu Y, Ai F, Wu Q, Thermal conductivity enhancement of suspensionscontaining nanosized alumina particles, Journal of Applied Physics,2002,91:4568
    [76] Xie H Q, Wang J, Xi T, Liu Y, Ai F. Dependence of the Thermal Conductivity ofNanoparticle-Fluid Mixture on the Base Fluid. Journal of Materials Sceince Letters,2002,21:1469-1471
    [77] Das S K, Putra N, Thiesen P, Roetzel W, Temperature dependence of thermal conductivityenhancement for nanofluids. Transactions of the ASME. Journal of Heat Transfer,2003,125:567-574
    [78] Patel H E, Das S K, Sundararajan T, Nair A S, George B, Pradeep T, Thermal conductivitiesof naked and monolayer protected metal nanoparticle based nanofluids: Manifestation ofanomalous enhancement and chemical effects. Applied Physics Letters,2003,83:2931-2933
    [79] Xie H, Lee H, Youn W, Chou M. Nanofluids Containing Multiwalled Carbon Nanotubes andTheir Enhanced Thermal Conductivities. Journal of Applied Physics,2003,94:4967-4971
    [80] Assael M J, Chen C F, Metaxa I N, Wakeham W A. Thermal Conductivity of Suspensions ofCarbon Nanotubes in Water. International Journal of Thermophysics,2004,25:971-985
    [81] Wen D S, Ding Y L, Experimental investigation into convective heat transfer of nanofluids atthe entrance region under laminar flow conditions, International Journal of Heat and MassTransfer,2004,47:5181-5188
    [82] Wen D S, Ding Y L. Effective Thermal Conductivity of Aqueous Suspensions of Carbonnanotubes (Carbon Nanotube Nanofluids). Journal of Thermophysics and Heat Transfer,2004,18:481-485
    [83] Assael M J, Metaxa I N, Arvanitidis J, Christofilos D, Lioutas C. Thermal ConductivityEnhancement in Aqueous Suspensions of Carbon Mulit-Walled and Double-WalledNanotubes in the Present of Two Different Dispersants. International Journal ofThermoPhysics,2005,26:647-664
    [84] Chon C H, Kihm K D, Lee S P, Choi S U S, Empirical correlation finding the role oftemperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement,Applied Physics Letters,2005,87:153107
    [85] Hong T K, Yang H S, Choi C J. Study of the Enhanced Thermal Conductivity of FeNanofluids. Journal of Applied Physics,2005,97:064311
    [86] Liu M S, Lin M C C, Huang I T, Wang C C. Enhancement of Thermal Conductivity withCarbon Nanotube for Nanofluids. International Communication in Heat and Mass Transfer,2005,32:1202-1210
    [87] Marquis F D S, Chibante L P F. Improving the Heat Transfer of Nanofluids andNanolubricants with Carbon Nanotubes. Journal of the Minerals, Metals&Materials Society,2005,57:32-43
    [88] Wen D S, Ding Y L. Formulation of Nanofluids for natural Heat and Fluid Flow,2005,26:855-864
    [89] Chopkar M, Das P K, Manna I, Synthesis and characterization of nanofluid for advanced heattransfer applications. Scripta Materialia,2006,55:549-552
    [90] Ding Y L, Alias H, Wen D S, Williams R A. Heat Transfer of Aqueous Suspensions of CarbonNanotubes(CNT Nanlfluids). International Journal of Heat and Mass Transfer,2006,55:549-552
    [91] Hong K S, Hong T K, Yang H S. Thermal Conductivity of Fe Nanofluids Depending on theCluster Size of Nanoparticles. Applied Physics Letters,2006,88:031901(3)
    [92] Hwang Y, Park H S, Lee J K, Jung W H. Thermal Conductivity and LubricationCharacteristics of Nanofluids. Current Applied Physics,2006,6(S1):67-71
    [93] Kang H U, Kim S H, Oh J M. Estimation of Thermal Conductivity of Nanofluid UsingExperimental Effective Particle Volume. Experimental Heat Transfer,2006,19:181-191
    [94] Lee D, Kim J W, Kim B G. A New Parameter to Control Heat Transport in Nanofluids:Surface Charge State of the Particle in Suspension. Journal of Physical Chemistry B,2006,110:4323-4328
    [95] Li C H, Pererson G P, Experimental investigation of temperature and volume fractionvariations on the effective thermal conductivity of nanoparticle suspensions(nanofluids),Journal of Applied Physics,2006,99:084314
    [96] Putnam S A, Cahill D G, Braun P V, Ge Z, Shimmin R G. Thermal Conductivity ofNanoparticle Suspensions. Journal of Applied Physics,2006,99:084308(6)
    [97] Wen D S, Ding Y L. Natural Convective Heat Transfer of Suspensions of Titanium DioxideNanoparticles(Nanofluids). IEEE Transaction on Nanotechnology,2006,99:084308(6)
    [98] Yang Y, Grulke E A, Zhang Z G, Wu G. Thermal and Rheological Properties of CarbonNanotube-in-Oil Dispersions. Journal of Applied Physics,2006,5:220-227
    [99] Yang B, Han Z H. Temperature-Dependent Thermal Conductivity of Nanorod-BasedNanofluids. Applied Physics Letters,2006,99:114307(8)
    [100] Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluidscontaining spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science,2007,31:593-599
    [101] Buongiorno J, Venerus D C, Prabhat N, McKrell T, et al. A benchmark study on the thermalconductivity of nanofluids, Journal of Applied Physics,2009,106:094312
    [102] Teja A S, Beck M P, Yuan Y H, Warrier P. The limiting behavior of the thermal conductivity ofnanoparticles and nanofluids, Journal of applied Physics,2010,107:114319
    [103] Maxwell J C, A Treatise on Electricity and Magnetism,(Oxford: Clarendon Press),1873
    [104] Rayleigh L, On the instability of a cylinder of viscous liquid under capillary force.Philosophical Magazine,1892,34:145-154
    [105] Jeffrey D J, Conduction through a random suspension of spheres, Proceedings of the RoyalSociety of London, Series A,1973,335(1602):355-367
    [106] Davis R H, The effective thermal conductivity of a composite material with sphericalinclusions, International Journal of Thermophysics,1986,7(3):609-620
    [107] Lu S, Lin H, Effective conductivity of composites containing aligned spherical inclusions offinite conductivity, Journal of Applied Physics,1996,79(9):6761-6769
    [108] Turner J C R, The electrical conductance of liquid-fluidized beds of spheres, ChemicalEngineering Science,1976,31:487-492
    [109] Hamilton R L, Crosser O K, Thermal conductivity of heterogeneous two-component systems,Industrial and Engineering Chemistry Research Fundamentals,1962,1(3):182-191
    [110] Leal L G, On the effective conductivity of a dilute suspension of spherical drops in the limit oflow particle peclet number, Chemical Engineering Communications,1973,1(1):21-31
    [111] Gupte S K, Advani S G, Huq P, Role of micro-convection due to non-affine motion ofparticles in a mono-disperse suspension, International Journal of Heat and Mass Transfer,1995,38(16):2945-2958
    [112] Hu Z S, Dong J X, Study on antiwear and reducing friction additive of nanometer titaniumoxide, Wear,1998,216:92-96
    [113] Yu W H, France D M, Routbort J L, Choi S U S. Review and Comparision of NanofluidThermal Conductivity and Heat Transfer Enhancements. Heat Transfer Engineering,2008,29(5):432-460
    [114]宣益民,李强.纳米流体强化传热研究.工程热物理学报,2000,1:466-470
    [115] Wang B X, Zhou L P, Peng X F, A fractal model for predicting the effective thermalconductivity of liquid with suspension of nanoparticles, International Journal of Heat andMass Transfer,2003,46:2665-2672
    [116]谢华清,王锦昌,奚同庾. SiC纳米粉体悬浮液强化导热研究.硅酸盐学报,2001,29(4):36-364
    [117] Keblinski P, Phillpot S R, Choi S U S, Eastman J A, Mechanism of heat flow in suspensionsof nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer,2002,45:855-863
    [118]谢华清,奚同庚,王锦昌等.纳米流体介质导热机理初探.物理学报.2003,52(6):1444-1449
    [119]李强,宣益民.纳米流体强化导热系数机理初步分析.热能动力工程,2003,17(102):568-571
    [120] Wang B X, Li H, Peng X F. Research on the Heat Conduction Enhancement for Liquid withNanoparticles Suspensions. Int. Sympo.Therm.Sci.Eng.(TSE2002), Beijing, GeneralPaper(G-1).2002:23-26
    [121]周乐平.纳米颗粒悬浮液热物理性质的基础研究[博士学位论文].北京:清华大学热能工程系,2003
    [122] Xuan Y M, Li Q, Hu W F. Aggregation structure and thermal conductivity of nanofluids.AIChE Journal,2003,49:1038-1043
    [123] Yu W, Choi S U S, The role of interfacial layers in the enhanced thermal conductivity ofnanofluids: A renovated Hamilton-Crosser model, Journal of Nanoparticle Research,2003,6:355-361
    [124] Xue Q Z. Model for effective thermal conductivity of nanofluids. Physics Letters A,2003,307(5-6):313-317
    [125] Jang S P, Choi S U S. Role of Brownian motion in the enhanced thermal conductivity innanofluids. Applied Physics Letters,2004,84:4316-4318
    [126] Kummar D H, Patel H E, Kumar V. Model for heat conduction in nanofluids. Physical ReviewLetters,2004,93:1443011-1443014
    [127] Bhattacharya P, Saha S K, Yadav V. Brownian dynamics simulation to determine the effectivethermal conductivity of nanofluids. Journal of Applied Physics.2004,95(11):6492-6494
    [128] Koo J, Kleinsteuer C. A new thermal conductivity model for nanofludis. Journal ofNanoparticle Research.2004,6(6):577-588
    [129] Koo J, Kleinsteuer C. Laminar nanofluid flow in micro-heat sinks. International Journal ofHeat and Mass Transfer,2005,48(13):2652-2661
    [130] Yu W, Choi S U S. An effective thermal conductivity model of nanofluids with a cubicarrangement of spherical particles. Journal of Nanoscience and Nanotechnology,2005,5:580-586
    [131] Xue Q, Xu W M. A model of thermal conductivity of nanofluids with interfacial shells.Materials Chemistry and Physics,2005,90(2-3):298-301
    [132] Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivityof nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer,2005,48(14):2926-2932
    [133] Prasher R. Phelana P E, Bhattacharya P. Effect of aggregation kinetics on the thermalconductivity of nanoscale colloidal solutions (nanofluid). Nano Letters,2006,6:1529-1534
    [134]徐洁.纳米流体有效热导率模型的研究[硕士学位论文].武汉:华中科技大学,2006
    [135] Eastman J A, Phillpot S R, Choi S U S, Keblinski P. Thermal Transport in Nanofluids.Annual Review of Materials Research,2004,34:219-246
    [136] Murshed S M S, Leong K C, Yang C. Investigations of thermal conductivity and viscosity ofnanofluids. International Journal o Thermal Sciences,2008,47:560-568
    [137]张巨先,高垅桥.包覆型纳米SiC2水悬浮液流变特性研究.材料科学与工程,2001,19(1):46-49
    [138]朱新文,江东亮,潭寿洪,等.氧化铝粉体在硅溶胶中分散行为的研究.硅酸盐学报,2001,29(3):263-266
    [139] Einstein A, Investigation on the Theory of the Brownian Movement,(New York: Dover),1956
    [140] Brinkman H C, The viscosity of concentrated suspensions and solutions, Journal of ChemicalPhysics,1952,20:571-581
    [141] Thomas D G, Transport characteristics of suspension: VIII. A note on the viscosity ofNewtonian suspensions of uniform spherical particles, Journal of Colloid Science,1965,20:267-277
    [142] Frankel NA, Acrivos A, On the Viscosity of a Concentrated Suspension of Solid Spheres,Chemical Engineeing Science,1967,22:847
    [143] Bicerano J, Douglas J F, Brune D A, Model for the viscosity of particle dispersions, Journal ofmacromolecular science. Reviews in macromolecular chemistry and physics1999, C39:561-642
    [144] Krieger I M, Dougherty T J. A mechanism for non-newtonian flow in suspensions of rigidspheres. Trans. Soc. Rheology,1959,3:137-152
    [145] Heris S Z, Etemad S G, Esfahany M N. Experimental investigation of oxide nanofluidslaminar flow convective heat transfer. International Communications in Heat and MassTransfer,2006,33:529-535
    [146] Putra N, Roetzel W, Das S K. Natural convection of nano-fluids. Heat and Mass Transfer,2003,39:775-784
    [147]宣益民,李强.纳米流体能量传递理论与应用.北京:科学出版社,2010
    [148] Barthelmesa G, Pratsinis S E, Buggisch H. Particle size distributions and viscosity ofsuspensions undergoing shear-induced coagulation and fragmentation. Chemical EngineeringScience,2003,58:2893-2902
    [149] Prasher R, Song D, Wang J L, Measurements of nanofluid viscosity and its implications forthermal applications, Applied Physics Letters,2006,89:133108
    [150] Garg J, Poudel B, Chiesa M, Gordon J B, Ma J J, Wang J B, Ren Z F, Kang Y T, Ohtani H,Nanda J, Mckinley G H, Chen G. Enhanced thermal conductivity and viscosity of coppernanoparticles in ethylene glycol nanofluid. Journal of Applied Physics,2008,103:074301(6)
    [151] Lee J H, Hwang K S, Jang S P, Lee B H, Kim J H, Chou S U S, Choi C J. Effective viscositiesand thermal conductivities of aqueous nanofluids containing low volume concentrations ofAl2O3nanoparticles. International Journal of Heat and Mass Transfer,2007,51:2651-2656
    [152] Jang S P, Lee J H, Hwang K S, Particle concentration and tube size dependence of viscositiesof Al2O3-water nanofluids flowing through micro-and minitubes, Applied Physics Letters,2007,91:243112(3)
    [153] He Y R, Jin Y, Chen H S, Ding Y L, Cang D Q, Lu H L. Heat transfer and flow behaviour ofaqueous suspensions of TiO2nanoparticles (nanofluids) flowing upward through a verticalpipe. International Journal of Heat and Mass Transfer,2007,50:2272-2281
    [154] Nguyena C T, Desgrangesb F, Roya G, Galanisc N, Maréd T, Bouchera S, Mintsa H A,Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon, International Journal of Heat and Fluid Flow,2007,28:1492-1506
    [155] Chen H S, Ding Y L, Tan C Q. Rheological behaviour of nanofluids. New Journal of Physics,2007,9:367(24)
    [156] Chen H S, Yang W, He Y R, Ding Y L, Zhang L L, Tan C Q, Lapkin A A, Bavykin D V. Heattransfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids).Powder Technology,2008,183:63-72
    [157] Pastoriza-Gallego M J, Casanova C, Páramo R, Barbés B, Legido J L, Piňeiro M M. A studyon stability and thermophysical properties (density and viscosity) of Al2O3in water nanofluid.Journal of Applied Physics,2009,106:064301
    [158] Wong K-F V, Kurma T. Transport properties of alumina nanofluids. Nanotechnology,2008,19:345702(8)
    [159] Schmidt A J, Chiesa M, Torchinsky D H, Johnson J A, Boustani A, McKinley G H, Nelson KA, Chen G. Experimental investigation of nanofluids shear and longitudinal viscosities.Applied Physics Letters2008,92:244107(3)
    [160] Namburu P K, Kulkarni D P, Dandekar A, Das D K. Experimental investigation of viscosityand specific heat of silicon dioxide nanofluids. Micro&Nano Letters,2007,2(3):67-71
    [161] Boon J P, Yip S. Molecular Hydrodynamics. New York: Dover Publications,1991
    [162] Haile J M. A primer on the computer simulation of atomic fluids by molecular dynamics,1980.
    [163] Frenkel D, Smit B. Understanding molecular simulations. New York: Academic Press(Computational Science Series, Vol.1),2002
    [164] Vogelsang R, Hoheisel C, Ciccotti G, Thermal conductivity of the Lennard-Jones liquid bymolecular dynamics calculations, Journal of Chemical Physics,1987,86:6371-6375
    [165] Müller-Plathe F, A simple nonequilibrium molecular dynamics method for calculating thethermal conductivity, Journal of Chemical Physics,1997,106:6082-6085
    [166] Tretiakov K V, Scandolo S, Thermal conductivity of solid argon from molecular dynamicssimulations, Journal of Chemical Physics,2004,120:3765-3769
    [167] Lukes J R, Li D Y, Liang X G, and Tien C L, Molecular dynamics study of solid thin-filmthermal conductivity, Transactions of the ASME. Journal of Heat Transfer,2000,122:536-543
    [168] Green M S, Markoff random processes and the statistical mechanics of time-dependentphenomena II. Irreversible processes in fluids. Journal of Chemical Physics,1954,22:398-413
    [169] Kubo R, Statistical-mechanical theory of irreversible processes1. General theory and simpleapplications to magnetic and conduction problems, Journal of the Physical Society of Japan,1957,12:570-586
    [170] Allen M P, Tildesley D J. Computer simulation of liquids. Oxford: Clarendon Press,1987
    [171] Castai G, Ford J, Vivaldi F, Vissher W M, One-demensional classical many-body systemhaving a normal thermal conductivity. Physical Review Letter,1984,52:1861
    [172] Schelling P K, Phillpot S R, Keblinski P, Comparison of atomic-level simulation methods forcomputing thermal conductivity. Physical Review B,2002,65:144306
    [173] Che J W, Cagin T, Deng W Q, Goddard W A, Thermal Conductivity of diamond and relatedmaterials from molecular dynamics simulations. Journal of Chemical Physics,2000,113:6888
    [174] Daivis P J, Evans D J, Nonequilibrium molecular dynamics calculation of thermalconductivity of flexible molecules: Butane. Molecualr Physics,1994,81:1289
    [175] Bedrov D, Smith G D, Thermal Conductivity of Molecular Fluids from Molecular DynamicsSimulations: Application of a New Imposed-Flux Method. Journal of Chemical Physics,2000,113:8080
    [176] Nieto-Draghi C, Avalos J B, Non-equilibrium momentum exchange algorithm for moleculardynamics simulation of heat flow in multicomponent systems. Molecular Physics,2003,101:2303
    [177] Terao T, Müller-Plathe F, A nonequilibrium molecular dynamics method for thermalconductivies based on thermal noise. Journal of Chemical Physics,2005,122:081103
    [178] Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V, Molecular simulation of thethermophysical properties of fluids: From understanding toward quantitative predictions.Journal of Molecular Liquids,2007,134:71-89
    [179] Vega C, Saagar G, and Fischer J, Molecular Dynamics Studies for the New Refrigerant R134awith Simple Model Potentials, Molecular Physics,1989,68:1079-1093
    [180] Lisal M, Budinsky R, Vacek V, et al, Vapor-Liquid Equilibra of Alternative Refrigerants byMolecular Dynamics Simulations. International Journal of Thermophysics,1999,20:163-174
    [181]王文,史琳.制冷剂替代物相平衡性质的分子动力学模拟.工程热物理学报,2002,23:401-404
    [182]余大启,李卓毅,曹炳阳,陈民. R134a PVT性质的分子动力学模拟.工程热物理学报,2003,24:929-931
    [183] Fernández G A, Vrabec J, and Hasse H, Shear viscosity and thermal conductivity of dipolarreal fluids from equilibrium molecular dynamics simulation. Cryogenics,2006,46:711-717
    [184] Eapen J, Li J, Yip S. Mechanism of Thermal Transport in Dilute Nanocolloids. PhysicalReview Letters.2007,98:028302
    [185] Eapen J, Li J, Yip S. Beyond the Maxwell limit: Thermal conduction in nanofluids withpercolating fluid structures. Physical Review E,2007,76:062501
    [186] Sarkara S, Selvam R P. Molecular dynamics simulation of effective thermal conductivity andstudy of enhanced thermal transport mechanism in nanofluids,2007,102:074302
    [187] Li L, Zhang Y W, Ma H B, Yang M. An investigation of molecular layering at the liquid-solidinterface in nanofluids by molecular dynamics simulation. Physics Letters A.2008,372:4541-4544
    [188] Li L, Zhang Y W, Ma H B, Yang M. Molecular dynamics simulation of effect of liquidlayering around the nanoparticle on the enhanced thermal conductivity of nanofluids. Journalof Nanoparticle Research,2010,12:811-821
    [189]范庆梅,卢文强.纳米流体热导率和粘度的分子动力学模拟计算.工程热物理学报.2004,25(2):268-270
    [190] Lu W Q, Fan Q M. Study for the particle's scale effect on some thermophysical properties ofnanofluids by a simplified molecular dynamics method. Engineering Analysis with BoundaryElements,2008,32:282-289
    [191]王金照.汽泡成核的分子动力学研究及纳米颗粒对成核的影响[博士学位论文].北京:清华大学航空航天学院,2005
    [192]刘娟芳.流体输运特性和物态转变的分子动力学研究[博士学位论文].重庆:重庆大学动力工程学院,2005
    [193]文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术.力学进展.2003,33(1):65-73
    [194] Alder B J, Wainwright T E. Phase transition for a hard-sphere system. The Journal ofChemical Physics,1957,27:1208-1209
    [195] Lees A W, Edwards S F, The computer study of transport processes under extreme conditions.Journal of Physics C: Solid State Physics,1972,5:1921-1929
    [196] Anderson H C, Molecular dynamics simulations at constant press and/or temperature. Journalof Chemical Physics,1980,72:2384-2393
    [197] Gillan M J, Dixon M, The calculation of thermal conductivities by perturbed moleculardynamics simulation. Journal of Physics C: Solid State Physics,1983,16:869-878
    [198] Nose S. A unified formulation of the constant temperature molecular dynamics methods.Journal of Chemical Physics,1984,81:5-11
    [199] Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory.Physical Review Letters,1985,55:2471-2474
    [200]陈俊,刘朝,刘方,曾丹苓.固壁加热的分子动力学模拟研究.工程热物理学报,2007,28(1):9-11
    [201]陈俊.湿空气热力学性质的分子动力学模拟研究[硕士学位论文].重庆:重庆大学热能与动力工程学院,2007
    [202] Meier Karsten, Laesecke Arno, Kabelac S. Transport coefficeints of the Lennard-Jones modelfluid. I. Viscosity. Journal of Chemical Physics,121(8):3671-3687
    [203] Verlet L. Computer “experiments” on classical fluids. I Thermodynamical properties ofLennard-Jones molecules. Physical Review,1967,159:98-103
    [204] Honeycutt R W. The potential calculation and some applications. Methods in ComputationalPhysics,1970,9:136-211
    [205] Swope W C, Anderson H C, Berens P H, Wilson K R, A computer simulation method for thecalculation of equilibrium constants for the formation of physical clusters of molecules:Applications to small water clusters. Journal of Chemical Physics,1982,76(1):637-649
    [206] Haile J M. Molecular Dynamics Simulation of Liquids. Oxford: Clarendon Press,1987
    [207] Rapaport D C. The Art of Molecular Dynamics Simulation. Cambridge: CambridgeUniversity Press,1995
    [208] Yu A, Amar J G. Physical Review Letters,2002,89:286103
    [209] Matsuoka O, Clementi E, Yoshimine M. Study of the water Dimer potential surface. Journalof Chemical Physics,1976,64:1351-1361
    [210] Stillinger F H, Rahman A. Improved simulation of liquid water by molecular dynamics.Journal of Chemical Physics,1974,60:1545
    [211] Jorgensen W L. Transferable intermolecular potential functions for water. Alcohols and EstersApplication to Liquid Water, JACS,1981,103:335
    [212] Berendsen H J C, Postma J P M, Gunstern W F. Intermolecular forcess. Reidel dordrecht,1981:331-356
    [213] McGaughey A J H, Kaviany M, Thermal conductivity decomposition and analysis usingmolecular dynamics simulations. Part II. Complex silica crystals. International Journal ofHeat and Mass Transfer2004,47:1799-1816
    [214] Mahajan SS, Subbarayan G, Sammakia BG, Estimating thermal conductivity of amorphoussilica nanoparticles and nanowires using molecular dynamics simulations. Physical Review E,2007,76:056701
    [215] Kurosaki K, Yano K, Yamada K, Uno M, Yamanaka S, A molecular dynamics study of thethermal conductivity of uranium mononitride. Journal of Alloys and Compounds,2000,311:305
    [216] Andrade J D, Stassen H J, Molecular dynamics studies of thermal conductivity timecorrelation functions. Journal of Molecular Liquids,2004,110:169-176
    [217] Kawamura T, Kangawa Y, Kakimoto K, An investigation of thermal conductivity ofnitride-semiconductor nanostructures by molecular dynamics simulation. Journal of CrystalGrowth,2007,298:251-253
    [218] Mclinden M O, Klein S A, Lemmon E W, Peskin A P, NIST Thermodynamic Properties ofRefrigerants and Refrigerants Mixtures Database (REFPROP), NIST Ste. Ref. Database23,Version7.01, NIST, Boulder, CO,2006.
    [219]秦允豪.热学(第二版).北京:高等教育出版社:2004
    [220]陈宗淇,王光新,徐桂英.胶体与界面化学.北京:高等教育出版社,2001
    [221]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社,2003
    [222]谢洪勇.粉体力学与工程.北京:化学工业出版社,2003
    [223]周细应,李卫红,何亮.纳米颗粒的分散稳定性及其评估方法.材料保护.2006,39(6):51-54
    [224]王相田,胡黎明,顾达,胡英.超细颗粒分散过程分析.化学通报,1995,5:13-17
    [225] Moriyama N, The marked viscosity depressions of50wt%titanium dioxide suspensions byadditions of anionic surfactants. CHEMISTRY AND MATERIALS SCIENCE,1977,255:65-72
    [226]何晓囡,李文军,徐瑞芬,侯国平.超分散剂对纳米TiO2的表面改性研究.化工新型材料,2005,33(8):47-49
    [227]苏瑞彩,李文芳,彭继华,杜军.硅烷偶联剂KH570对纳米SiO2的表面改性及其分散稳定性.化工进展,2009,28(9):1596-1599
    [228]马庆芳,方荣生,项立成.实用热物理性质手册.北京:中国农业机械出版社,1986
    [229]吴江涛.高精度流体热物性测试系实验系统的研制及二甲醚热物理性质的研究[博士学位论文].西安:西安交通大学能源与动力工程学院,2003
    [230] Wu J T, Li X J, Zheng H F, Assael M J. Thermal conductivity of liquid dimethyl ether from(233to373)K at pressures up ro30MPa. Journal of Chemical&Engineering Data,2009,54(6).
    [231] Nagasaka Y, Nagashima A. Absolute measurement of the thermal conductivity of electricallyconducting liquids by the transient hot-wire method. J. Phys. E: Sci. Instrum.,1981,14:1435-1440
    [232] Nieto de Castro C A, Taxis B, Roder H M, Wakeham W A. Thermal Diffusivity Measurementby the Transient Hot-wire Technique: A Reappraisal. International Journal of Thermophysics,1988,9(3):293-316
    [233] Park B J, Park B O, Ryu B H, Choi Y M, Kwon K S, Choi H J. Rheological properties of Agsuspended fluid for inkjet pritnting. Journal of Applied Physics,2010,108:102803
    [234] Winkel F, Messlinger S, Sch pf W, Rehberg I, Siebenbürger M, Ballauff M. Thermalconvection in a thermosensitive colloidal suspension, New Journal of Physics,2010,12:053003
    [235] Jiang W T, Ding G L, Peng H, Measurement and model on thermal conductivities of carbonnanotube nanorefrigerants, International Journal of Thermal Sciences,2009,48:1108-1115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700