纳米流体振荡热管内的液汽相变与传递特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子元器件的集成化和小型化,迫切需要发展更高效的散热技术。振荡热管因其良好的传热特性,成为热门散热技术之一。在基液中添加纳米颗粒形成稀颗粒体积浓度的纳米流体可望改善振荡热管的实际运行性能。这种纳米流体振荡热管受到学术界和工业界的广泛关注,然而相关基础物理现象和过程特性尚未得到充分认识。本文针对纳米流体振荡热管内部传递过程的基础性问题开展深入的研究,分析纳米颗粒改善传递性能的机理,为纳米流体振荡热管的实际应用提供必要基础。
     实验研究中搭建了可视化振荡热管测试系统,分别对纯流体和纳米流体振荡热管的运行性能进行研究。采用竖直振荡热管,对工质流动的振荡特性进行了系统的研究,结果表明,振荡热管在正常高效运行时,内部流动呈现小振幅慢速振荡和大振幅快速振荡交替进行的形式,交替转变受加热段液柱内的剧烈核化和快速相变所控制。在相同的加热功率下,纳米流体振荡热管能在较低的加热段温度下发生这种转变,从而有利于热量的快速传递。采用水平振荡热管,对工质的流型特性进行了细致的研究,结果表明,纯流体工质传热效果较差,流型以简单液柱状流动为主,容易出现加热段蒸干现象。纳米流体在热流密度相对较低时,内部也以简单液柱状流动为主,但传热能力相对略强;热流较高时,发生流型转变,出现了泡状流、弹状流甚至环状流,流型的转变,提升了振荡热管的热流极限,改善了传热性能。
     以经典核化理论为基础,引入溶液热力学的相关理论,建立了纳米流体的核化模型。通过热力学分析得出,体相中的颗粒在汽液界面处的聚集减小了核胚的半径,同时降低了核化势垒,有利于核化的发生;纳米颗粒在三相接触线薄液膜区的有序排列以及在壁面的沉积,改善了流体在壁面的湿润性,有利于液体的蒸发。并通过毛细管内液汽相变实验证实:纳米流体更易核化形成汽泡,汽泡/汽柱的生长速率更快。
     在纯流体振荡热管模型的基础上,建立了纳米流体振荡热管运行的简化模型,进行了数值模拟,发现纳米颗粒对流体核化和液汽相变特性的改善是提高振荡传热性能的一个重要因素,为进一步开展纳米流体振荡热管性能的研究及优化提供了基础。
As electronic devices continuously decrease in size, traditional cooling methodsand technologies are facing great challenges and an urgent demand appears for higherefficiency cooling methods. Oscillating heat pipes, for its high heat-removal efficiency,attract many researchers’ attention. It is found that capabilities of oscillating heat pipecould be improved by adopting nanoparticle suspension and/or nanofluids of diluteparticle volume concentration as the working fluid. The nanofluid oscillating heat pipeoffers a new future to electronics cooling. To provide a knowlegement base fordeveloping higher heat-efficiency cooling technologies, basic phenomena and transportcharacteristics of the nanofluid oscillating heat pipe need to be explored to understandthe mechanism of the improvement of heat efficiency by nanoparticles addition.
     A series of experimental observations were conducted on oscillating heat pipeswith nanfluids and DI water for comparing their operating performance and internalflow phenomena. In a vertical oscillating heat pipe system, internal flow oscillationswere studied. it was found that when the oscillating heat pipe operated normally, theinternal flow was alternately small-amplitude slow oscillation and large-amplitude fastoscillation. The transition depended on drastic nucleation and quick phase change insidethe liquid slug in the evaporator. At the same heat load, nanoparticles addition made thedrastic nucleation and quick phase change to happen at relatively low temperatures. Inanother horizontal oscillating heat pipe system, the internal flow patterns were the focus.In the DI water heat pipe, simple column flow was mainly observed and the evaporatordried out at a relatively high heat load. In the nanofluid heat pipe, simple column flowwas also mainly observed at relatively low heat load but the heat transfer performancewas improved compared with the DI water; however at relatively high heat loads,several interesting flow patterns were observed: bubbly flow, slug flow and annularflow. The flow-pattern changes ensured oscillatory flow inside the oscillating heat pipeand thereby increased operation the limit of operation heat flux and improved the heattransfer performance of the oscillating heat pipe.
     Based on the classical nucleation theory and the thermodynamic theory of solution,a new model of nanofluid nucleation was built up. It was found that nanoparticles accumulation at the vapor-liquid interface decreased the embryo bubble radius and thepotential barrier of nucleation, and facilitated liquid nucleation. Additionally,nanoparticles accumulation in the three-phase contact region and deposition duringnucleate boiling on the wall both improved wettability of nanofluid on the wall, whichimproved liquid evaporation. An experiment about liquid-vapor phase change inside acapillary tube was conducted to further validate the nucleation and wettingcharacteristics of nanofluid: nucleation was easier and growth rates ofbubbles/vapor-plugs were faster in nanofluids than in pure liquids.
     Based on pure fluid oscillating heat pipe computation models, a simplified modelfor nanofluid oscillating heat pipe was built up to model heat and mass transfer innanofluid heat pipes. Results showed that the easy liquid-vapor nucleation andphasechange was the key factor for the improvement of heat transfer of the nanofluidheat pipe. This model can provide essential information for further investigations onnanofluid oscillating heat pipes.
引文
[1] Harper C A. Electronic packaging&interconnection handbook. Second edition,United States, McGraw-Hill Inc.1997.
    [2] Jie W. Challenges in cooling design of CPU packages for high-performance servers.Heat Transfer Engineering,2008,29(2):178-187.
    [3]刘益才.电子芯片冷却技术发展综述.电子器件,2006,29(1):296-300.
    [4]李腾,刘静.芯片冷却技术的最新研究进展及其评价.制冷学报.2004,(3):22-32.
    [5] Hannemann R J. The business of telecom. Plenary Invited Session at XVIII WorldTelecommunications Congress, France,2002.
    [6] Alex V. Power density challenges of next generation telecommunication networks.ElectronicsCooling, February1st,2003.
    [7] Evans J. Harsh environment challenges for next generation automotive electronics.Workshop on Extreme Environments Technologies for Space Exploration, California,2003.
    [8] Wilson J. Challenges in thermal control of military electronics systems.ElectronicsCooling, February1st,2003.
    [9] Garimella S V, Fleischer A S, Murthy J Y, et al. Thermal challenges innext-generation electronic systems. IEEE Transactions on Components and PackagingTechnologies,2008,31(4):801-815.
    [10]高翔,凌惠琴,李明,毛大立. CPU散热技术的最新研究进展,2007,41(增刊):48-52.
    [11]刘一兵.计算机CPU芯片散热技术.低温与超导.2008,36(6):78-82.
    [12] Khandekar S, Groll M, Luckchoura V. An introduction to pulsating heat pipes.ElectronicsCooling,2003,9(2):38-41.
    [13] Karimi G, Culham J R. Review and assessment of pulsating heat pipe mechanism forhigh heat flux electronic cooling. Thermal and Thermomechanical Phenomena inElectronic Systems,2004,2:52-59.
    [14] Rittidech S, Boonyaem A, Tipnet P. CPU cooling of desktop PC by closed-endoscillating heat pipe (CEOHP). American Journal of Applied Sciences,2005,2(12):1574-1577.
    [15] Zhang Y W, Faghri A. Advances and unsolved issues in pulsating heat pipes. HeatTransfer Engineering,2008,29(1):20-44.
    [16]杨洪海, Sameer K, Manfred G.脉动热管技术的研究现状及前沿热点.东华大学学报(自然科学版),2006,32(3):134-138.
    [17]崔晓钰,黄万鹏,翁建华等.振荡热管研究进展及展望.电子机械工程,2009,25(1):6-12.
    [18] Akachi, H.,1990,“Structure of a Heat Pipe,” U.S. Patent4,921,041.
    [19] Nishio S, Nagata S, Kubota T. Study of thermal performance of SEMOS heat pipe.Nippon Dennetsu Shinpojiumu Koen Ronbunshu,2002,39(1):127-128.
    [20]孙海涛.振荡热管传热特性的实验研究与应用[硕士学位论文].天津:天津大学机械工程学院,2009.
    [21] Ma H B, Wilson C, Borgmeyer B, et al. Effect of nanofluid on the heat transportcapability in an oscillating heat pipe. Applied Physics Letters,2006,88:143116.
    [22] Ma H B, Wilson C, Yu Q, et al. An experimental investigation of heat transportcapability in a nanofluid oscillating heat pipe. ASME Journal of heat transfer,2006,128(11):1213-1216.
    [23] Wang X Q, Mujumdar A S. Heat transfer characteristics of nanofluids: a review.International Journal of Thermal Science,2007,46:1-19.
    [24] Wen D S, Lin G P, Vafaei S, et al. Review of nanofluids for heat transfer applications.Particuology,2009,7:141-150.
    [25]郝素菊,蒋武锋,张玉柱.纳米流体—一种强化换热工质.冶金能源,2006,25(3):36-38.
    [26] Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles.Developments and Applications of Non-Newtonian Flows,1995, FED-vol.231/MD-vol.66:99-105.
    [27] Park K, Ma H B. Nanofluid effect on heat transport capability in a well-balancedoscillating heat pipe. Journal of Thermophysics and Heat Transfer,2007,21(2):443-445.
    [28]商福民,刘登瀛,冼海珍等.振荡热管内不同形态纳米颗粒流动及传热特性.化工学报,2007,58(9):2200-2204.
    [29] Lin Y H, Kang S W, Chen H L. Effect of silver nano-fluid on pulsating heat pipethermal performance. Applied Thermal Engineering,2008,28:1312-1217.
    [30]冯剑超.纳米流体脉动热管的传热性能研究[硕士学位论文].北京:中国科学院工程热物理研究所,2008.
    [31]冯剑超,曲伟.纳米流体脉动热管的性能实验.中国科学院研究生院学报,2009,26(1):50-57.
    [32] Qu J, Wu H Y, Cheng P. Thermal performance of an oscillating heat pipe withAl2O3-water nanofluids. International Communications in Heat and Mass Transfer,2010,37:111-115.
    [33]曲伟,袁达忠,李玉华.纳米流体脉动热管的流动与传热性能研究.工程热物理学报,2009,30(10):1697-1699.
    [34] Khandekar S, Groll M, Charoensawan P, et al. Closed and open loop pulsating heatpipes.13th International Heat Pipe Conference (13th IHPC), Shanghai, China,September21-25,2004.
    [35] Schneider M, Khandakar S, Schafer P, et al. Visualization of thermofluidynamicphenomena in flat plate closed loop pulsating heat pipes. Proceedings of the6thInternational Heat Pipe Symposium, Chiang Mai, Thailand,2000.
    [36]周岩,曲伟.微小型脉动热管的传热性能实验研究.中国科学院研究生院学报,2007,24(4):425-430.
    [37]周岩,曲伟.脉动热管的毛细管结构和尺度效应实验研究.工程热物理学报,2007,28(4):46-648.
    [38] Groll M, Khandekar S. Pulsating heat pipes: a challenge and still unsolved problem inheat pipe science. Proceedings of the3rd International Conference on TransportPhenomena in Multiphase System, Kielce, Poland,2002,35-44.
    [39] Khandekar S, Schneider M, Schafer P, et al. Thermofluid dynamic study of flat-plateclosed-loop pulsating heat pipes. Microscale Thermophysical Engineering,2002,6:303-317.
    [40] Khandekar S, Dollinger N, Groll M. Understanding operational regimes of closed looppulsating heat pipes: an experimental study. Applied Thermal Engineering,2003,23:707-719.
    [41] Charoensawan P, Khandekar S, Groll M, et al. Closed loop pulsating heat pipes Part A:parametric experimental investigations. Applied Thermal Engineering,2003,23:2009-2020.
    [42] Katpradit T, Wongratanaphisan T, Terdtoon P, et al. Correlation to predict heattransfer characteristics of a closed end oscillating heat pipe at critical state. AppliedThermal Engineering,2005,15:2138-2151.
    [43] Charoensawan P, Terdtoon, P. Thermal performance of horizontal closed-looposcillating heat pipes. Applied Thermal Engineering,2008,28:460-466.
    [44]权力,贾力.板式脉动热管的实验研究.工程热物理学报,2010,31(6):1009-1012.
    [45]崔晓钰,王妍,翁建华等.不同工质振荡热管的传热性能.上海理工大学学报,2009,31(6):539-543.
    [46]杨洪海,万勍,韩洪大.常规工况下多弯头数脉动热管运行性能的实验研究.热能动力工程,2009,24(1):77-80.
    [47]杨洪海,肖荪, Manfred G.工质热物性对脉动热管运行性能的影响.工程热物理学报,2010,31(1):97-99.
    [48] Khandekar S, Groll M. On the definition of pulsating heat pipes: an overview.Proceeding of5th Minsk International Seminar (Heat Pipes, Heat Pumps andRefrigerators), Minsk, Belarus,2003.
    [49]徐进良,张显明,施慧烈.脉冲热管中的热力型脉动现象及实验测量.自然科学进展,2004,14(4):436-441.
    [50] Rittidech S, Terdtoon P, Murakami M, et al. Correlation to predict heat transfercharacteristics of a closed-end oscillating heat pipe at normal operating condition.Applied Thermal Engineering,2003,23:497-510.
    [51] Khandekar S, Groll M. An insight into thermo-hydrodynamic coupling in closed looppulsating heat pipes. International Journal of Thermal Science,2004,43:13-20.
    [52] Yang H H, Khandekar S, Groll M. Operational limit of closed loop pulsating heatpipes. Applied Thermal Engineering,2008,28:49-59.
    [53]杨薇原,张正芳,马同泽.回路型脉动热管的运行与传热.上海交通大学学报,2003,37(9):1398-1401.
    [54]尹大燕,贾力.脉动热管传热性能的实验研究.工业加热,2006,35(6):23-26.
    [55] Sakulchangsatjatai P, Chareonsawan P, Waowaew T. Mathematical modeling ofclosed-end pulsating heat pipes operating with a bottom heat mode. Heat TransferEngineering,2008,29(3):239-254.
    [56]张显明,徐进良,施慧烈.倾斜角度及加热方式对脉冲热管传热性能的影响.中国电机工程学报,2004,24(11):222-227.
    [57]刘向东,时凯,郭雨含等.闭式振荡热管内流动状态与传热性能实验研究.工程热物理学报,2010,31(10):1735-1738.
    [58]李燕,贾力.脉动热管传热性能实验研究.中国电机工程学报,2009,29(11):75-80.
    [59] Cai Q J, Chen C L, Asfia J F. Operating characteristic investigations in pulsating heatpipe. ASME Journal of Heat Transfer,2006,128:1329-1334.
    [60] Tong B Y, Wong T N, Ooi K T. Closed-loop pulsating heat pipe. Applied ThermalEngineering,2001,21:1845-1862.
    [61] Xu J L, Li Y X, Wong T N. High speed flow visualization of a closed loop pulsatingheat pipe. International Journal of Heat and Mass Transfer,2005,48:3338-3351.
    [62]曹小林,王伟,陈杰.环路型脉动热管的工质流动和传热特性实验研究.热科学与技术,2007,6(1):56-59.
    [63]李惊涛,李志宏,韩振兴等.脉动热管的流型及流向分析.热能动力工程,2009,24(3):347-351.
    [64]李惊涛,肖海平,董向元等.脉动热管内微尺度两相流的电容层析成像测量.中国电机工程学报,2009,29(17):103-107.
    [65]李惊涛,李志宏,韩振兴等.脉动热管流型的电容层析成像识别及热管换热特性.动力工程,2009,29(1):73-77.
    [66] Khandekar S, Charoensawan P, Groll M, et al. Closed loop pulsating heat pipes Part B:visualization and semi-empirical modeling. Applied Thermal Engineer,2003,23:2021-2033.
    [67]尹大燕,贾力.振荡热管管内流型对传热性能的影响.应用基础与工程科学学报,2007,15(3):363-368.
    [68]屈健,吴慧英,郑平.硅基微型振荡热管的流动可视化实验研究.中国科学:技术科学,2010,40(5):575-581.
    [69] Zou Z J, North M T, Wert K L. High heat flux heat pipe mechanism for cooling ofelectronics. IEEE transactions on components and packaging technologies,2001,24(2):220-225.
    [70] Ma H B, Hanlon M A, Chen C L. An investigation of oscillating motions in aminiature pulsating heat pipe. Microfluids and Nanofluids,2005,2(2):171-179.
    [71] Ma H B, Borgmeyer B, Cheng P, et al. Heat transport capability in an oscillating heatpipe. ASME Journal of Heat Transfer,2008,130:081501.
    [72] Zuo Z J, North M T, Ray L. Combined pulsating and capillary heat pipe mechanismfor cooling of high heat flux electronics. American Society of Mechanical Engineers,HTD1999,364:237-243.
    [73] Wong T N, Tong B Y, Lim S M, et al. Theoretical modeling of pulsating heat pipe.Proceedings of11th International Heat Pipe Conference, Tokyo, Japan.1999:347-392.
    [74] Cheng P. Theoretical analysis of oscillating motion, heat transfer, minimum meniscusradius and charging procedure in an oscillating heat pipe[Doctor of Philosophy].Columbia: University of Missouri-Columbia.
    [75] Khandekar S, Cui X, Groll M. Thermal performance modeling of pulsating heat pipesby artifical neutral network. Proceedings of the12th international Heat PipeConference, Moscow,2002.
    [76]崔晓钰,翁建华, M. GROLL.基于神经网络的振荡热管传热性能建模.化工学报,2003,54(9):1319-1322.
    [77]曲伟,周岩,马鸿斌.尺度效应对脉动热管启动和运行的影响.工程热物理学报,2007,28(1):140-142.
    [78]苏磊,张红.回路脉动热管运行稳定性分析.化工学报,2007,58(8):1931-1934.
    [79] Shafii M B, Arabnejad S, Saboohi Y, et al. Experimental investigation of pulsatingheat pipes and a proposed correlation. Heat Transfer Engineering,2010,31(10):854-861.
    [80] Shafii M B, Faghri A, Zhang Y W. Thermal modeling of unlooped and loopedpulsating heat pipes. ASME Journal of Heat Transfer,2001,123(12):1159-1172.
    [81] Sakulchangsatjatai P, Terdtoon P, Wongratanaphisan T, et al. Operation modeling ofclosed-end and closed-loop oscillating heat pipes at normal operating condition.Applied Thermal Engineering,2004,24:995-1008.
    [82]马永锡,张红.振荡热管模型中液膜的分析与假定.化学工程,2010,38(5):22-25.
    [83]张巧慧,朱华.新型传热工质纳米流体的研究与应用.实用节能技术,2006,2:52-54.
    [84] Kabelac S, Kuhnke F. Heat transfer mechanisms in nanofluids-experiment and theory.Proceedings of the13th International Heat Transfer Conference, Sydney, Australian,2006.
    [85] Das S K, Choi S U S, Patel H E. Heat transfer in nanofluids-a review. Heat TransferEngineering,2006,27(10):3-19.
    [86] Wang X Q, Mujumdar A S. Heat transfer characteristics of nanofluids: a review.International Journal of Thermal Science,2007,46:1-19.
    [87] Wen D S, Lin G P, Vafaei S, et al. Review of nanofluids for heat transfer applications.Particuology,2009,7:141-150.
    [88]李强,宣益民.纳米流体强化导热系数机理初步分析.热能动力工程,2002,17(102):568-571.
    [89] Keblinski P, Phillpot S R, Choi S U, et al. Mechanisms of heat flow in suspensions ofnano~sized particles (nano-fluids). International Journal of Heat and Mass Transfer,2002,45(4):855~863.
    [90]谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探.物理学报,2003,52(6):1444-1449.
    [91] Jang S P, Choi S U S. Role of Brownian motion in the enhanced thermal conductivityof nanofluids. Applied Physics Letters,2004,84(21):4316-4318.
    [92] Gupta A, Kumar R. Role of Brownian motion on the thermal conductivityenhancement of nanofluids. Applied Physics Letters,2007,91:223102.
    [93] Nie C, Marlow W H, Hassan Y A. Discussion of proposed mechanisms of thermalconductivity enhancement in nanofluids. International Journal of Heat and MassTransfer,2008,51:1342–1348.
    [94]胡卫峰,宣益民,李强.纳米流体聚集结构的模拟及其分维数分析.南京理工大学学报,2002,26(3):229-234.
    [95]王补宣,盛文彦.纳米流体导热系数的团簇宏观分析模型.自然科学进展,2007,17(7):984-988.
    [96] Xuan Y M, Li Q. Heat transfer enhancement of nanofluids. International Journal ofHeat and Fluid Flow,2000,21:58-64.
    [97] Xue Q Z. Model for effective thermal conductivity of nanofluids. Physics Letters A,2003,307:313-317.
    [98] Kumar D H, Patel H E, Kumar V R R, et al. Model for heat conduction in nanofluids.Physical Review Letters,2004,93(14):144301.
    [99] Xue Q, Xu W M. A model of thermal conductivity of nanofluids with interfacial shells.Materials Chemistry and Physics,2005,90:298-301.
    [100] Timofeeva E V, Gavrilov A N, McCloskey J M, et al. Thermal conductivity andparticle agglomeration in alumina nanofluids: Experiment and theory. PhysicalReview E,2007,76:061203.
    [101]丁国良,姜未汀,彭浩等.一种纳米流体热导率通用模型.工程热物理学报,2010,31(8):1281-1284.
    [102]李东东,李金凯,赵蔚琳. SiO2-水纳米流体稳定性及导热性能.济南大学学报(自然科学版),2010,24(3):247-250.
    [103]李金凯,赵蔚琳,刘宗明等.氧化硅纳米流体的导热性能研究.化工机械,2010,37(4):405-408.
    [104]李泽梁,李俊明,王补宣等. SDBS对氧化铜纳米颗粒悬浮液粘度的影响.工程热物理学报,2003,5(24):849-851.
    [105]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液的粘度、热扩散系数与Pr数.自然科学进展,2004,7(14):799-803.
    [106]郭顺松,骆仲泱,王涛等. SiO2纳米流体粘度研究.硅酸盐通报,2006,25(5):52-55.
    [107] Prasher R, Song D, Wang J L. Measurements of nanofluid viscosity and itsimplications for thermal applications. Applied Physics Letters,2006,89:133108.
    [108]彭小飞,俞小莉,夏立峰. Al2O3纳米粉体悬浮液热物性实验研究.材料科学与工程学报,2007,25(1):52-54.
    [109]彭小飞,俞小莉,夏立峰等.低浓度纳米流体粘度变化规律试验.农业机械学报,2007,38(4):138-141.
    [110] Murshed S M S, Leong K C, Yang C. Investigations of thermal conductivity andviscosity of nanofluids. International Journal of Thermal Sciences,2008,47:560-568.
    [111] Lee J H, Hwang K S, Jang S P, et al. Effective viscosities and thermal conductivitiesof aqueous nanofluids containing low volume concentrations of Al2O3nanoparticles.International Journal of Heat and Mass Transfer,2008,51:2651-2656.
    [112]刘玉东,周跃国,童明伟等. TiO2-H2O纳米流体流变特性的实验研究.材料导报:研究篇,2009,23(3):14-16.
    [113]李长江,尹衍升.纳米流体流变特性研究最新进展.山东陶瓷,2009,32(3):14-17.
    [114]李强,宣益民.纳米流体对流换热的实验研究.工程热物理学报,2002,23(6):721-723.
    [115]李强,宣益民.铜-水纳米流体流动与对流换热特性.中国科学(E辑),2002,32(3):331-337.
    [116] Xuan Y M, Li Q. Investigation on convective heat transfer and flow features ofnanofluids. Journal of Heat Transfer,2003,125:151-155.
    [117] Yang Y, Zhang Z G, Grulke E A, et al. Heat transfer properties ofnanoparticle-in-fluid despersions (nanofluids) in laminar flow. International Journalof Heat and Mass Transfer,2005,48:1107-1116.
    [118] Heris S Z, Esfahany M N, Etemad S Gh. Experimental investigation of convective heattransfer of Al2O3/water nanofluid in circular tube. International Journal of Heat andFluid Flow,2007,28:203-210.
    [119] Jou R Y, Tzeng S C. Numerical research of nature convective heat transferenhancement filled with nanofluids in rectangular enclosures. InternationalCommunications in Heat and Mass Transfer,2006,33:727-736.
    [120] Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of ananofluid in a horizontal tube using two-phase mixture model. Applied ThermalEngineering,2008,28:717-727.
    [121]张邵波,骆仲泱,寿春晖等.层流区CuO-水纳米流体流动与对流换热特性.中国电机工程学报,2009,29(32):58-65.
    [122]谢华清,陈立飞.纳米流体对流换热系数增大机理.物理学报,2009,58(4):2513-2517.
    [123]王金照.汽泡成核的分子动力学研究及纳米颗粒对成核的影响[博士学位论文].北京:清华大学航天航空学院,2005.
    [124] Wen D S, Ding Y L. Experimental investigation into the pool boiling heat transfer ofaqueous based-Al2O3nanofluids. Journal of Nanoparticle Research,2005,7:265-274.
    [125] Wen D S, Ding Y, Williams R L. Pool boiling heat transfer of aqueous based TiO2nanofluids. Journal of Enhanced Heat Transfer,2006,13:231-244.
    [126] Liu Z H, Xiong J G, Bao R. Boiling heat transfer characteristics of nanofluids in a flatheat pipe evaporator with micro-grooved heating surface. International Journal ofMuliphase Flow,2007,33:1284-1295.
    [127] Park K J, Jung D. Enhancement of nucleate boiling heat transfer using carbonnanotubes. International Journal of Heat and Mass Transfer,2007,50:4499-4502.
    [128] Park K J, Jung D. Boiling heat transfer enhancement with carbon nanotubes forrefrigerants used in building air-conditioning. Energy and Buildings,2007,39:1061-1064.
    [129] Das S K, Putra N, Roetzel W. Pool boiling characteristics of nanofluids. InternationalJournal of Heat and Mass Transfer,2003,46:851-862.
    [130] Das S K, Putra N, Roetzel W. Pool boiling of nanofluids on horizontal narrow tubes.International Journal of Multiphase Flow,2003,29:1237-1247.
    [131] Bang I C, Chang S H. Boiling heat transfer performance and phenomena ofAl2O3-water nanofluids from a plain surface in a pool. International Journal of Heatand Mass Transfer,2005,48:2407-2419.
    [132] Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boilingof nanofluids and its effect on critical heat flux. International Journal of Heat andMass Transfer,2007,50:4105-4116.
    [133] Kim S J, Bang I C, Buongiorno J, et al. Study of pool boiling and critical heat fluxenhancement in nanofluids. Bulletin of the Polish Academy of Sciences: TechnicalScience,2007,55:211-216.
    [134] Chopkar M, Das A K, Manna L, et al. Pool boiling heat transfer characteristics ofZrO2-water nanofluids from a flat surface in a pool. Heat and Mass Transfer,2008,44:999-1004.
    [135] Narayan G P, Anoop K B, Das S K. Mechanism of enhancement/deterioration ofboiling heat transfer using stable nanoparticle suspensions over vertical tubes. Journalof Applied Physics,2007,102:074317.
    [136] Wen D S, Corr M, Hu X, et al. Boiling heat transfer of nanofluids: The effect ofheating surface modification. International Journal of Thermal Science,2011,50:480-485.
    [137] Peng H, Ding G L, Jiang W, et al. Heat transfer characteristics of refrigerant-basednanofluid flow boiling inside a horizontal smooth tube. International Journal ofRefrigeration,2009,32:1259-1270.
    [138] Kim S J, McKrell T, Buongiorno J, et al. Subcooled flow boiling heat transfer ofdilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. NuclearEngineering and Design,2010,240:1186-1194.
    [139] Henderson K, Park Y G, Liu L P, et al. Flow-boiling heat transfer of R-134a-basednanofluids in horizontal tube,2010,53:944-951.
    [140] You S M, Kim J H, Kim K H. Effect of nanoparticles on critical heat flux of water inpool boiling heat transfer. Applied Physics Letters,2003,83:3374-3376.
    [141] Vassallo P, Kumar R, Damico S. Pool boiling heat transfer experiments in silica-waternanofluids. International Journal of Heat and Mass Transfer,2004,47:407-411.
    [142] Milanova D, Kumar R. Role of ions in pool boiling heat transfer of pure and silicananofluids. Applied Physics Letters,2005,87:233107.
    [143] Kim H, Kim J, Kim M H. Effect of nanoparticles on CHF enhancement in pool boilingof nano-fluids. International Journal of Heat and Mass Transfer,2006,49:5070-5074.
    [144] Kim S J, KcKrell T, Buongiorno J, et al. Alumina nanoparticles enhance the flowboiling critical heat flux of water at low pressure. ASME Journal of Heat Transfer,2008,130:044501.
    [145] Kim S J, KcKrell T, Buongiorno J, et al. Experimental study of flow critical heat fluxin alumina-water, zinc-oxide-water, and diamond-water nanofluids. ASME Journal ofHeat Transfer,2009,131:043204.
    [146] Kim T I, Jeong Y H, Chang S H. An experimental study on CHF enhancement in flowboiling using Al2O3nano-fluid. International Journal of Heat and Mass Transfer,2010,53:1015-1022.
    [147] Sefiane K. On the role of structural disjoining pressure and contact line pinning incritical heat flux enhancement during boiling of nanofluids. Applied Physics Letters,2006,89:044106.
    [148] Wen D S. Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF).International Journal of Heat and Mass Transfer,2008,51:4958-4965.
    [149] Kim H, Ahn H S, Kim M H. On the mechanism of pool boiling critical heat fluxenhancement in nanofluids. ASME Journal of Heat Transfer,2010,132:061501.
    [150]杨世铭,陶文铨.传热学.北京:高等教育出版社,2005.
    [151]杨世铭.细长竖圆柱外及竖圆管内的自然对流传热.西安交通大学学报,1980,14(3):115-131.
    [152] Gibbs J W. On the equilibrium of heterogeneous substance. Collected Works, NewYork:Longmanns, Green and Co.1928.
    [153]陆建峰.沸腾过程与系统动力学演化特性[清华大学工学博士学位论文].北京:清华大学,2007.
    [154]陆建峰,彭晓峰.团聚填充模型与胚泡形成.中国工程热物理第十届年会传热传质论文集.2001,327-327.
    [155]陆建峰,彭晓峰.团聚的序参数问题.热科学与技术,2002,1(2):173-176.
    [156]田勇,王晓东,彭晓峰.气液相变过程亚稳态体相内部界面分析.工程热物理学报,2004,25(1):100-102.
    [157] Wang X D, Peng X F, Tian Y, et al. Formation, structure, and evolution of boilingnucleus and interfacial tension between bulk liquid phase and nucleus. Heat and MassTransfer,2005,41:651-658.
    [158] Carey V P. Liquid-Vapor Phase-Change Phenomena: An Introduction to theThermophysics of Vaporization and Condensation Processes in Heat TransferEquipment. Hemisphere Publishing Corporation, Washington DC,1992:139-175.
    [159] Fainerman V B, Milier R, Wustneck R. Adsorption of proteins at liquid/fluidinterfaces. Journal of Colloid and Interface Science,1996,183:26-34.
    [160] Fainerman V B, Lucassen-Reynders E H, Miller R. Adsorption of surfactants andproteins at fluid interfaces. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1998,143:141-165.
    [161] Fainerman V B, Lucassen-Reynders E H, Miller R. Description of the adsorptionbehaviour of proteins at water/fluid interfaces in the framework of a two-dimensionalsolution model. Advances in Colloid and Interface Science,2003,106:237-259.
    [162] Bresme F, Oettel M. Nanoparticles at fluid interfaces. Journal of Physics: CondensdMatter,2007,19:1-33.
    [163] Fainerman V B, Kovalchuk V I, Lucassen-Reynders E H, et al. Surface-pressureisotherms of monolayers formed by micrsize and nanosize particles. Langmuir,2006,22(4):1701-1705.
    [164]李春辉.纳米颗粒悬浮液核态沸腾与传热[清华大学工学博士学位论文].北京:清华大学热能工程系,2005.
    [165] OKUBO T. Surface tension of structured colloidal suspensions of polystyrene andsilica spheres at the air-water interface. Journal of Colloid and Interface Science,1995,171:55-62.
    [166] Miller R, Fainerman V B, Kovalchuk V I, et al. Composite interfacial layerscontaining micro-size and nano-size particles. Advances in Colloid and InterfaceScience,2006,128-130:17-26.
    [167] Maruyama S. Molecular dynamics method for microscale heat transfer. Advances inNumerical Heat Transfer,2000,2:189-226.
    [168] Cole R. Boiling bubble nucleation. Advance in Heat Transfer,1974,10:82-151.
    [169] Vafaei S, Borca-Tasciuc T, Podowski M Z, et al. Effect of nanoparticles on sessiledroplet contact angle. Nanotechnology,2006,17:2523-2527.
    [170] Boda D, Chan K Y, Henderson D, et al. Structure and pressure of a hard sphere fluidin a wedge-shaped cell or meniscus. Langmuir,1999,15:4311-4313.
    [171] Tata B V R, Boda D, Henderson D, et al. Structure of charged colloids under a wedgeconfinement. Physical Review E,2000,62:3875-3881.
    [172] Wasan D T, Nikolov A D. Spreading of nanofluids on solids. Nature,2003,423:156-159.
    [173] Chengara A, Nikolov A D, Wasan D T, et al. Spreading of nanofluids driven by thestructural disjoining pressure gradient. Journal of Colloid and Interface Science,2004,280:192-201.
    [174] Trokhymchuk A, Henderson D, Nikolov A, et al. A simple calculation of structuraland depletion forces for fluids/suspensions confined in a film. Langmuir,2001,17:4940-4947.
    [175] Wen D S. On the role of structural disjoining pressure to boiling heat transfer ofthermal nanofluids. Journal of Nanoparticle Research.2008,10(7):1129-1140.
    [176] Sefiane K, Skilling J, MacGillivray J. Contact line motion and dynamic wetting ofnanofluid solutions. Advances in Colloid and Interface Science,2008,138:101-120.
    [177] Ma H B, Cheng P, Borgmeyer B, et al. Fluid flow and heat transfer in the evaporatingthin film region. Microfluidics and Nanofluidics,2008,4(3):237-243.
    [178] Bejan B. Convection Heat Transfer.1995, second edition. John Wiley&Sons,Incorporated, New York.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700