纳米流体强化动量与热量传递机理的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米流体是指在液体(水、油、醇类等)中添加一定比例的纳米颗粒,制备成的均匀、稳定、高热导率的新型换热工质。纳米流体这一类新型工质的优点是:导热系数高,流动换热性能好,且在低浓度时的阻力增大不明显。以纳米流体作为换热工质,研究推广新一代强化传热技术具有重要的实际意义。纳米流体所表现出的宏观强化传热效果,其本质是由于内部无数纳米颗粒的微观共同作用。而对这些微观的作用机制,很难用宏观的实验、数值模拟等研究方法进行揭示,因而限制了纳米流体强化传热理论的发展。为此,本课题通过分子动力学这一微观数值模拟方法对纳米流体开展研究,揭示纳米流体强化传热的微观机理,因此本课题具有重要的理论研究价值。
     纳米流体强化传热的原因,一方面是由于增大的导热系数,另一方面则是由于改变的流动特性,为此本文从导热和流动两方面开展研究工作。在导热方面,通过分子动力学模拟研究,证实了纳米颗粒表面吸附层、纳米颗粒微运动是纳米流体导热强化的微观机制;同时,根据径向分布函数对纳米流体微观结构的分析结果,提出纳米流体总体呈现出类似固体的微观结构特征,也是纳米流体导热强化的微观机理。依据模拟得到的导热强化静态机制和动态机制建立了纳米流体导热系数预测模型,模型的预测结果得到实验数据的验证。根据统计分析纳米颗粒的原子势能分布,提出以纳米颗粒中所含高能原子比例的高低作为判据,来判断纳米颗粒强化纳米流体导热系数能力的强弱。在流动方面,根据分子动力学模拟结果,提出以单个纳米颗粒为核心,由液体吸附层、旋转液体层、有限存在空间构成的旋转流体微元结构,并进一步分析了由无数旋转流体微元构成的纳米流体动态微观结构。综合导热强化机理的研究结果,揭示了导热强化、流体内部掺混加强、以及传热方式发生根本改变是纳米流体流动换热强化的机理。模拟得到纳米流体的近壁面附近速度梯度和温度梯度均增大。同时,本文还对纳米流体的导热与流动特性的影响规律进行了探讨。
     本文从导热和流动两个方面揭示纳米流体强化传热的微观机理,通过分子动力学模拟研究,分别分析了纳米流体导热强化机理和流动换热强化机理,建立导热系数的预测模型,给出表观导热系数强化的判据,探讨纳米流体的导热和流动特性的影响规律,并得到纳米流体在近壁面附近速度梯度和温度梯度均增大的模拟结果。
Nanofluids, by adding a certain proportion of nanoparticles into conventional working fluids, present significantly increased thermal conductivity, enhanced heat transfer performance, and meanwhile the flow resistance does not show significantly increases. By applying nanofluids, developing a new generation of enhanced heat transfer technology has an important practical significance. The macroscopic enhanced heat transfer performance of nanofluids is based on the microscopic strengthening mechanisms by nanoparticles, while macroscopic experimental and numerical simulation methods could not effectively reveal these microscopic mechanisms, which makes the heat transfer theory of nanofluids still needs to be determined. Therefore, by using Molecular Dynamics method, this dissertation is intended to reveal the microscopic strengthening mechanism of heat transfer in nanofluids. Thus, this research subject has an important theoretical research value.
     This dissertation attempts to reveal the strengthening mechanisms of heat transfer in nanofluids from two aspects, including:heat conduction and flow. Through Molecular Dynamics simulations, it is confirmed the absorption layer and micro-motions of nanoparticles are to be responsible for the heat conduction enhancement. By analyzing microscopic structure of nanofluids with radial distribution function, nanofluids are found to have a special microscopic structure similar to that of solid. Thus, the changed microscopic structure of nanofluids is suggested to be a strengthening mechanism in heat conduction as well. With consideration of these static and dynamic strengthening mechanisms, a renovated Jeffrey model for predicting thermal conductivity of nanofluids has been proposed, and the prediction results have been validated by experiments. Through statistical analysis for atomic potential energy distributions in nanoparticles, the ratio of energetic atoms in nanoparticles has been suggested to be a criterion for examining the ability of nanoparticles for the thermal conductivity enhancement. The rotating fluid element has been introduced, which is composed of one nanoparticle as the core, absorption layer, rotating fluid, and limited existence volume. Furthermore, the dynamics microscopic structure of nanofluids is analyzed. Enhanced heat conduction, strengthened internal blending, and changed heat transfer mode are proposed to be the mechanisms of convective heat transfer enhancement. Both the velocity gradient and temperature gradient are found to be increased. Meanwhile, the influencing laws for heat conduction and flow characteristics of nanofluids are summarized.
     This dissertation has investigated the mechanisms for enhanced thermal transport in nanofluids. By means of Molecular Dynamics simulation, the microscopic strengthening mechanisms in heat conduction and flow are investigated. Based on the mechanisms, a revised prediction model for thermal conductivity has been proposed. And the ratio of energetic atoms in nanoparticles has been suggested to be the criterion for examining the ability of nanoparticles for the thermal conductivity enhancement. The influencing laws for heat conduction and flow characteristics of nanofluids have been summarized. Both velocity gradient and temperature gradient of nanofluids near wall have been found to be increased.
引文
[1]2012年BP世界能源统计年鉴[R].London:BP公司,2012.
    [2]国家能源局. 石化行业能源利用效率问题研究[EB/OL]. [2012,02,10].http://www.nea.gov.cn/2012-02/10/c_131402897.htm.
    [3]MAXWELL J. C. A treatise on electricity and magnetism[M].2"d edition. London:Clarendon Press,1881:364-365.
    [4]AHUJA A. S. Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results[J]. Journal of Applied Physics,1975,46:3408-3416.
    [5]AHUJA A. S. Augmentation of heat transport in laminar flow of polystyrene suspensions. II. Analysis of the data[J]. Journal of Applied Physics,1975,46:3417-3425.
    [6]CHOI S. U. S. Enhanceing thermal conductivity of fluids with nanoparticles [C]//SIGINER D. A., WANG H. P. Developments and applications of non-newtonian flows. New York:ASME, 1995:99-103.
    [7]XUAN Y. M., LI Q. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow,2000,21:58-64.
    [8]XIE H. Q., WANG J. C., XI T. G., LIU Y., AI F., WU Q. R. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics,2002, 91:4568-4572.
    [9]XUAN Y. M., LI Q. Investigation on convective heat transfer and flow features of nanofluids[J]. Journal of Heat Transfer,2003,125:151-155.
    [10]HU Z.S., DONG J. X. Study on antiwear and reducing friction additive of nanometer titanium oxide [J]. Wear,1998,216:92-96.
    [11]WEN D.S., DING Y. L. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[J]. International Journal of Heat Mass Transfer,2004,47:5181-5188.
    [12]宣益民,李强.纳米流体能量传递理论与应用[M].北京:科学出版社,2010:132-140.
    [13]HWANG K. S., JANG S. P., CHOI S. U. S. Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime[J]. International Journal of Heat and Mass Transfer,2009,52:193-199.
    [14]HE Y., JIN Y., CHEN H., DING Y., CANG D., LU H. Heat transfer and flow behaviour of aqueous suspensions of Ti02 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer,2007,50:2272-2281.
    [15]MASUDA H., EBATA A., TERAMAE K., et al. Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Y-Al2O3, SiO2, and TiO2 ultra-fine particles)[J]. Netsu Bussie (Japan),1993,4:227-233.
    [16]LEE S., CHOI S. U. S., et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Journal of Heat Transfer,1999,121:28-289.
    [17]XUAN Y. M., LI Q., HU W. F. Aggregation structure and thermal conductivity of nanofluids[J].AIChE Journal,2003,49:1038-1043.
    [18]EASTMAN J. A., CHOI S.U.S., et al. Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles[J]. Applied Physics Letters,2001,78:718-720.
    [19]王补宣,李春辉,彭晓峰.纳米颗粒悬浮稳定性分析[J].应用基础与上程科学学报,2003,11:167-173.
    [20]LEE D., KIM J. W., KIM B. G. A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension[J]. Journal of Physical Chemistry B,2006,110:4323-4328.
    [21]ASSAEL M. J., METAXA I.N., ARVANITIDIS J., et al. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the present of two different dispersants[J].International Journal of Thermophysics,2005,26:647-664.
    [22]PATEL H. E., DAS S. K., SUNDARARAJAN T., et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids:manifestation of anomalous enhancement and chemical effects[J]. Applied Physics Letters,2003,83:2931-2933.
    [23]MURSHED S. M. S., LEONG K. C., YANG C. Enhanced thermal conductivity of TiO2-water based nanofluids[J]. International Journal of Thermal Science,2005,44:367-373.
    [24]DAS S.K., PUTRA N., THIESEN P., ROETZEL W. Temperature dependence of thermal conductivity enhancement for nanofluids[J]. Journal of Heat Transfer,2003,125:567-574.
    [25]CHON C. H., KIHM K. D. Thermal conductivity enhancement of nanofluids by Brownian motion[J]. Journal of Heat Transfer,2005,127:810.
    [26]LI C. H., PETERSON G. P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions(nanofluids) [J]. Journal of Applied Physics,2006,99:084314.
    [27]HONG T. K., YANG H. S., CHOI C.J. Study of the enhanced thermal conductivity of Fe nanofluids[J]. Journal of Applied Physics,2005,97:064311.
    [28]LIU M., LIN M., TSAI C. Y., WANG C. Enhanced of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. International Journal of Heat and Mass Transfer,2006,49:3028-3033.
    [29]WANG X., XU X., CHOI S. U. S. Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics and Heat Transfer,1999,13:474-480.
    [30]DAS S. K., PUTRA N., ROETZEL W. Pool boiling characteristics of nano-fluids[J]. International Journal of Heat and Mass Transfer,2003,46:851-862.
    [31]PUTRA N., ROETZEL W., DAS S. K. Natural convection of nano-fluids[J]. Heat and Mass Transfer,2003,39:775-784.
    [32]PRASHER R., SONG D., WANG J., PHELAN P. Measurements of nanofluid viscosity and its implications for thermal applications[J]. Applied Physics Letters,2006,89:133108.
    [33]LEE J. H., HWANG K. S., JANG S. P., KIM J. H., CHOI S. U. S., et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles[J]. International Journal of Heat and Mass Transfer,2008,51:2651-2656.
    [34]彭小飞.车用散热器中纳米流体高温传热基础问题研究[D].杭州:浙江大学,2007.
    [35]郭顺松,骆仲泱,王涛,赵佳飞,岑可法.Si02纳米流体粘度研究[J].硅酸盐通报,2006,25:52-55.
    [36]CHEVALIER J., TILLEMENT 0., AYELA F. Rheological properties of nanofluids flowing through microchannels[J]. Applied Physics Letters,2007,91:233103.
    [37]NGUYEN C. T., DESGRANGES F., ROY G., et al. Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon[J]. International Journal of Heat and Fluid Flow,2007,28:1492-1506.
    [38]刘玉东,李夔宁,童明伟,何钦波,刘彬,陈胜立.TiO2-水纳米流体的粘度修正公式[J].重庆大学学报(自然科学版),2006,29:52-55.
    [39]CHEN H., DING Y., TAN C. Rheological behaviour of nanofluids [J]. New Journal of Physics, 2007,9:367.
    [40]CHEN H., DING Y., HE Y., TAN C. Rheological behaviour of ethylene glycol based titania nanofluids[J]. Chemical Physics Letters,2007,444:333-337.
    [41]GARG J., POUDEL B., CHIESA M., GORDON J. B., MA J. J., WANG J. B., et al. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanof luid[J]. Journal of Applied Physics,2008,103:074301.
    [42]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液的粘度、热扩散系数与Pr数[J].自然科学进展,2004,14:799-803.
    [43]RAMAKRISHNAN S., et al. Characterizing nanoparticle interactions:Linking models to experiments[J]. Journal of Chemical Physics,2000,113:1237.
    [44]ZAMAN A. A., et al. Impact of self-assembled surfactant structures on rheology of concentrated nanoparticle dispersions[J]. Journal of Colloid and Interface Science,2002, 251:381.
    [45]TSENG W. J., et al. Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions[J]. Acta Materialia,2002,50:3757.
    [46]TSENG W.J., et al. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions[J]. Materials Science and Engineering:A,2003,355:186.
    [47]LI J. M., et al. Experimental viscosity measurements for copper oxide nanoparticle suspensions[J]. Tsinghua Science and Technology,2002,7:198-201.
    [48]CORCIONE M. Empirical correlating equations for predicting the effective thermal conductivity and dynamics viscosity of nanofluids[J]. Energy Conversion and Management, 2011,52:789-793.
    [49]HOSSEINI M. S., MOHEBBI A., GHADER S. Correlation of Shear Viscosity of Nanof luids Using the Local Composition Theory[J]. Chinese Journal of Chemical Engineering,2010,18:102-107.
    [50]KULKARNI D. P., DAS D. K., CHUKWU G. A. Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)[J]. Journal of Nanoscience and Nanotechnology,2006,6:1150-1154.
    [51]PAK B.C., CHO Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer,1998,11(2):151-170.
    [52]谢华清.纳米颗粒悬浮液热物理行为研究[D].上海:中国科学院上海硅酸盐研究所,2001.
    [53]李强,宣益民.纳米流体对流换热的实验研究[J].上程热物理学报,2002,23(6):721-723.
    [54]DING Y., ALIAS H., WEN D., et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)[J].International Journal of Heat and Mass Transfer,2006, 49:240-250.
    [55]KHANAFER K., VAFAI K., LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer,2003,46:3639-3653.
    [56]金翼,DING Y. L., WEN D. S.,苍大强,宗燕兵.TiO2纳米流体的对流换热系数测定[J].冶金能源,2006,25(6):47-50.
    [57]CHEN H. S., YANG W., HE Y. R., DING Y. L., et al. Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids)[J]. Power Technology,2008, 183:63-72.
    [58]MANSOUR R. B., GALANIS N., NGUYEN C. T. Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids[J]. Applied Thermal Engineering,2007, 27:240-249.
    [59]YANG Y., ZHANG Z.G., GRULKE E.A., et al. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow[J]. International Journal of Heat Mass Transfer,2005,48:1109-1116.
    [60]陈骁,李俊明,李成,王补宣.小圆管内纳米流体层流流动特性的实验研究[J].工程热物理学报,2007,28(6):1004-1006.
    [61]戴闻亭,李俊明,陈骁,王补宣.细圆管内纳米悬浮液对流换热的实验研究[J].工程热物理学报,2003,24:633-636.
    [62]ANOOP K. B., SUNDARARAJAN T., DAS S. K. Effect of particle size on the convective heat transfer in nanofluid in the developing region[J]. International Journal of Heat and Mass Transfer,2009,52(9-10):2189-95.
    [63]张邵波,骆仲泱,寿春晖,倪明江,岑可法.层流区CuO-水纳米流体流动与对流换热特性[J].中国电机工程学报(英文版),2009,32:58-65.
    [64]DUANGTHONGSUK W., WONGWISES S. An experimental study on the heat transfer performance and pressure drop of TiO2 -water nanofluids flowing under a turbulent flow regime[J]. International Journal of Heat and Mass Transfer,2010,53:334-44.
    [65]SUNDAR, L. S., SHARMA, K. V. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts [J]. International Journal of Heat and Mass Transfer,2010,53:1409-1416.
    [66]TENG T. P., HUANG Y. H., JWO C. S., et al. Pressure drop of TiO2 nanofluid in circular pipes[J]. Particuology,2011,9:486-491.
    [67]ARANI A. A. A., AMANI J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid[J]. Experimental Thermal and Fluid Science,2012, Article in Press, http://dx.doi.org/10.1016/j.expthermflusci.2012.08.014.
    [68]ESMAEILZADEH E., ALMOHAMMADI H., VATAN S. N., et al. Experimental investigation of hydrodynamics and heat transfer characteristics of γ-Al2O3/water under laminar flow inside a horizontal tube[J]. International Journal of Thermal Sciences,2013,63:31-37.
    [69]HEYHAT M. M., KOWSARY F., RASHIDI A.M., et al. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanfluids in fully developed flow regime[J]. Experimental Thermal and Fluid Science,2012, Article in Press, http://dx.doi.org/10.1016/j.expthermflusci.2012.08.009.
    [70]HEYHAT M. M., KOWSARY F., RASHIDI A. M., et al. Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime[J]. International Communications in Heat and Mass Transfer,2012, 39:1272-1278.
    [71]YU W., XIE H. Q., LI Y., CHEN L. F., WANG Q. Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid[J]. Power Technology,2012,230:14-19.
    [72]KAYHANI M. H., SOLTANZADEH H., HEYHAT M. M., et al. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid[J]. International Communications in Heat and Mass Transfer,2012,39:456-462.
    [73]CORCIONE M., CIANFRINI M., QUINTINO A. Heat transfer of nanofluids in turbulent pipe flow[J]. International Journal of Thermal Sciences,2012,56:58-69.
    [74]VAJJHA R. S., DAS D. K., KULKARNI D. P. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids[J]. International Journal of Heat and Mass Transfer,2010,53:4607-18.
    [75]屈健,吴慧英,吴信宇,郑平.A1203-水纳米流体在微圆管内的流动特性[J].化学工程,2009,37:21-24.
    [76]李新芳,朱冬生.Cu-水纳米流体对流换热特性研究[J].真空科学与技术学报,2010,30:297-301.
    [77]廖亮,刘振华.CuO纳米颗粒悬浮液在小管内的流动和强制对流换热特性[J].上海交通大学学报,2009,43:789-794.
    [78]张海佳,李惟毅,云海涛.Ti02-蒸馏水纳米流体在内螺纹铜管内表面传热试验研究[J].机械工程学报,2012,48(12):150-155.
    [79]武婷婷.纳米流体水平圆管内低雷诺数流动换热特性的实验研究[D].杭州:浙江大学,2011.
    [80]徐淼.纳米流体热物性及在波壁管内流动特性研究[D].大连:大连理工大学,2010.
    [81]徐淼,崔文政,白敏丽,卞永宁,张亮,吕继组.波壁管内SiO2-水纳米流体流动不稳定性的实验研究[J].实验流体力学,2011,25(1):29-34.
    [82]CUI W. Z., BAI M.L., LV J.Z., ZHANG L., LI G.J., XU M. On the flow characteristics of nanofluids by experimental approach and molecular dynamics simulation [J]. Experimental Thermal and Fluid Science,2012,39:148-157.
    [83]崔文政,白敏丽,吕继组,张亮,李晓杰,徐淼,纳米流体强化内燃机冷却系统流动的基础研究[J].内燃机学报,2012,30(1):49-55.
    [84]KEBLINSKI P., PHILLPOT S.R., CHOI S. U.S., EASTMAN J.A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J]. International Journal of Heat and Mass Transfer,2002,45:855-863.
    [85]YU W., CHOI S. U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids:A renovated Maxwell model [J]. Journal of Nanoparticle Research,2003, 5:167-171.
    [86]YU W., CHOI S. U. S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids:A renovated Hamilton-Crosser model[J]. Journal of Nanoparticle Research, 2004,6:355-361.
    [87]XUE Q.Z. Model for effective thermal conductivity of nanofluids[J]. Physics Letters A,2003,307:313-317.
    [88]周乐平,王补宣.颗粒尺寸与表面吸附对低浓度非金属纳米颗粒悬浮液有效导热系数的影响[J].自然科学进展,2003,4:426-429.
    [89]LI Z. H., GONG Y. J., PU M., et al. Determination of interfacial layer thickness of a pseudo two-phase system by extension of the Debye equation[J]. Journal of Physics D:Applied Physics,2001,34:2085-2088.
    [90]YU C. J., RICHTER A. G., DATTA A., et al. Molecular layering in a liquid on a solid substrate:an X-ray reflectivity study[J]. Physics B,2000,283:27-31.
    [91]XUE L., KEBLINSKI P., PHILLPOT S. R., et al. Effect of liquid layering at the liquid-solid interface on thermal transport[J].International Journal of Heat and Mass Transfer,2004,47:4277-4284.
    [92]TILLMAN P., HILL J. M. Determination of nanolayer thickness for a nanofluid[J]. International Communications in Heat and Mass Transfer,2007,34:399-407.
    [93]WANG B. X., ZHOU L. P., PENG X. F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles[J]. International Journal of Heat and Mass Transfer,2003,46:2665-2672.
    [94]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液有效导热系数的分形模型[J].自然科学进展,2003,9:838-842.
    [95]王补宣,盛文彦.纳米流体导热系数的团簇宏观分析模型[J].自然科学进展,2007,7:984-988.
    [96]王补宣.颗粒团聚对纸浓度纳米流体热性质和热过程的影响[J].机械工程学报,2009,45:1-4.
    [97]PRASHER R., PHELAN P. E., BHATTACHARYA P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluids)[J]. Nano Letters,2006, 6:1529-1534.
    [98]XU J., YU B. M., ZOU M. Q., XU P. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles[J]. Journal of Physics D:Applied Physics,2006, 39:4486-4490.
    [99]JANG S. P., CHOI S. U.S. Role of Brownian motion in thermal conductivity of nanof luids[J]. Applied Physics Letters,2004,84:4316-4318.
    [100]JANG S.P., CHOI S.U. S. Effects of various parameters on nanofluid thermal conductivity[J]. Journal of Heat Transfer,2007,129:617-623.
    [101]PRASHER R., EVANS W., MEAKIN P., et al. Effect of aggregation on thermal conduction in colloidal nanofluids[J]. Applied Physics Letters,2006,89:143119.
    [102]PRASHER R., BHATTACHARYA P., PHELAN P. E. Brownian-motion-based convective conductive model for the effective thermal conductivity of nanofluids[J]. Journal of Heat Transfer, 2006,128:588-594.
    [103]K00 J., KOO C. A new thermal conductivity model for nanofluids[J]. Journal of Nanoparticle Research,2004,6:577-588.
    [104]KOO J., KOO C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanof luids [J]. International Communications in Heat and Mass Transfer,2005, 32:1111-1118.
    [105]REN Y. J., XIE H. Q., CAI A. Effective thermal conductivity of nano-fluids containing spherical nanoparticles[J]. Journal of Physics D:Applied Physics,2005,38:3958-3961.
    [106]KUMAR D. H., PATEL H. E., KUMAR V.R.R., et al. Model for heat conduction in nanof luids [J]. Physics Review Letters,2004,93:144301-144305.
    [107]LI C. H., PETERSON G.P. Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids)[J]. International Journal of Heat and Mass Transfer,2007,50:4668-4677.
    [108]NIE C., MARLOW W. H., HASSAN Y. A. Discussion of proposed mechanisms of thermal conductivity enhancement in nanof luids[J]. International Journal of Heat and Mass transfer, 2008,51:1342-1348.
    [109]MURSHED S.M. S., LEONG K. C., YANG C. A combined model for the effective thermal conductivity of nanofluids[J]. Applied Thermal Engineering,2009,29:2477-2483.
    [110]SITPRASERT C., DECHAUMPHAI P., JUNTASARO V. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer[J]. Journal of Nanoparticle Research,2009,11:1465-1476.
    [111]LEONG K.C., YANG C., MURSHED S.M. S. A model for the thermal conductivity of nanofludis-the effect of interfacial layer[J]. Journal of Nanoparticle Research,2006, 8:245-254.
    [112]XUAN Y.M., ROETZEL. Conceptions for heat transfer correlation of nanofluids[J]. International Journal of Heat and Mass Transfer,2000,43:3701-3707.
    [113]姚正平.基于格子Boltzmann方法的纳米流体流动与能量传递机理研究[D].南京:南京理工大学,2003.
    [114]吴轩,宣益民.基于晶格-Boltzmann方法的纳米流体流动和传热模型[J].工程热物理学报,2003,24(1):121-123.
    [115]徐凯.纳米流体流动与能量传递的格子Boltzmann方法[D].南京:南京理工大学,2003.
    [116]宣益民,徐凯,吴轩,李强.基于Lattice-Boltzmann方法的纳米流体流动与传热分析[J].工程热物理学报,2004,25(6):1022-1024.
    [117]XUAN Y. M., YU K., LI Q. Investigation on flow and heat transfer of nanofluids by thermal Lattice Boltzmann model[J]. Progress in computational fluid dynamics,2005,5(1):13-19.
    [118]李强.纳米流体强化传热机理研究[D].南京:南京理工大学,2004.
    [119]谢华清,陈立飞.纳米流体对流换热系数增大机理[J].物理学报,2009,58(4):2513-2517.
    [120]WEN D. S., DING Y. L. Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels[J]. Microfluidics and Nanofluidics,2005, 1:183-189.
    [121]BUONGIORNO J. Convective transport in nanofluids[J]. Journal of Heat Transfer,2006, 128:240-250.
    [122]强爱红.纳米颗粒悬浮液强化对流传热的研究[D].天津:天津大学,2006.
    [123]肖波齐,范金土,蒋国平,陈玲霞.纳米流体对流换热机理分析[J].物理学报,2012,61(15):154401.
    [124]MAIGA S. E. B., NGUYEN C. T., GALANIS N., ROY G. Heat transfer behaviours of nanofluids in a uniformly heated tube[J]. Superlattices and Microstructures,2004,35(3-6):543-557.
    [125]MAIGA S.E. B., NGUYEN C. T., GALANIS N., ROY G., MARE T., COQUEUX M. Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2006,16(3):275-292.
    [126]NAMBURU P. K., DAS D. K., TANGUTURI K. M., VAJJHA R. S. Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties[J]. International Journal of Thermal Sciences,2009,48:290-302.
    [127]OZERINC S., YAZICIOGLU A. G., KAKAC S. Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion[J]. International Journal of Thermal Sciences,2012,62:138-148.
    [128]BEHZADMEHR A., SAFFAR-AVVAL M., GALANIS N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach [J]. International Journal of Heat and Fluid Flow,2007,28(2):211-219.
    [129]HE Y. R., MEN Y.B., ZHAO Y. H., LU H.L., DING Y. L. Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions[J]. Applied Thermal Engineering,2009,29:1965-1972.
    [130]MOKMELI A., SAFFAR-AVVAL M. Prediction of nanofluid convective heat transfer using the dispersion model[J]. International Journal of Thermal Sciences,2010,49:471-478.
    [131]BIANCO V., CHIACCHIOF., MANCA 0., NARDINI S. Numerical investigation of nanofluids forced convection in circular tubes [J]. Applied Thermal Engineering,2009,29:3632-3642.
    [132]FARD M. H., ESFAHANY M.N., TALAIE M. R. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model [J]. International Communications in Heat and Mass Transfer,2010,37:91-97.
    [133]BIANCO V., MANCA 0., NARDINI S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube[J]. International Journal of Thermal Sciences,2011,50:341-349.
    [134]GHAFFARI 0., BEHZADMEHR A., AJAM H. Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach [J]. International Communications in Heat and Mass Transfer,2010,37(10):1551-1558.
    [135]AKBARINIA A., BEHZADMEHR A. Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes[J]. Applied Thermal Engineering,2007,27:1327-1337.
    [136]LOTFI R., SABOOHI Y., RASHIDI A.M. Numerical study of forced convective heat transfer of Nanofluids:Comparison of different approaches [J]. International Communications in Heat and Mass Transfer,2010,37(1):74-78.
    [137]SHARIAT M., AKBARINIA A., NEZHAD A. H., BEHZADMEHR A., LAUR R. Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts[J]. Applied Thermal Engineering, 2011,31(14-15):2348-2359.
    [138]AKBARI M., GALANIS N., BEHZADMEHR A. Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer[J]. International Journal of Thermal Sciences,2011,50(8):1343-1354.
    [139]王鹏,白敏丽,吕继组,崔文政,张亮,徐哲.纳米流体流动特性的多维模拟模型比较[C].西安:中国工程热物理学会(传热传质学),2011.
    [140]GIDASPOW D. Multiphase Flow and Fluidization:Continuum and Kinetic Theory[M]. Boston: Academic Press,1994.
    [141]FAN L. S., ZHU C. Principle of Gas-Solid Flows[M]. New York:Cambridge University Press,1998.
    [142]DREW D. A., PASSMAN S. L. Theory of Multicomponent Fluids[M].Berlin:Springer,1999.
    [143]OHARA T., SUZUKI D. Intermolecular energy transfer at a solid-liquid interface[J]. Microscale Thermophysical Engineering,2000,4:189-196.
    [144]范庆梅,卢文强.纳米流体热导率和粘度的分子动力学模拟计算[J].工程热物理学报,2004,25:268-270.
    [145]刘娟芳.流体输运特性和物态转变的分子动力学研究[D].重庆:重庆大学,2005.
    [146]石小燕.固体近表面流体拟有序层的分子动力学模拟研究[D].重庆:重庆大学,2005.
    [147]SHUKLA R.K., DHIR V. K. Numerical study of the effective thermal conductivity of nanofluids[C]//2005 ASME Summer Heat Transfer Conference, San Francisco, USA,2005, Paper No. HT2005-72577,9 pages.
    [148]SOBHAN C. B., MATHEW N., RATNAPAL R., SANKAR N. Molecular dynamics modeling of thermal conductivity of engineering fluids and its enhancement due to nanoaprticle inclusion[C]/ Proceedings of CANEUS2006, Toulouse, France,2006, Paper No. CANEUS2006-11019.
    [149]SARKAR S., SELVAM R. P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids[J]. Journal of Applied Physics,2007,102:074302.
    [150]EAPEN J., LI J., YIP S. Mechanism of thermal transport in dilute nanocolloids[J]. Physics review letters,2007,98:028302.
    [151]SELVAM R. P., SARKAR S. Equilibrium molecular dynamics simulation study on the effect of nanoparticle loading and size on thermal conductivity of nanofluids[C]//2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada,2007, Paper No. HT2007-32314,9 pages.
    [152]LIU J., LU W. Q. Molecular dynamics simulation of the thermal conductivity of Ar-Al nanofluid using simplified model [C]//ASME 2009 2nd Micro/Nanoscale Heat and Mass Transfer International Conference, Shanghai, China,2009, Paper No. MNHMT2009-18275,7 pages.
    [153]LI L., ZHANG Y. W., MA H. B., YANG M. An investigation of molecular layering at the liquid-solid interface in nanofludis by molecular dynamics simulation[J]. Physics Letters A,2008,372:4541-4544.
    [154]LI L., ZHANG Y. W., MA H. B., YANG M. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids[J]. Journal of Nanoparticle Research,2010,12:811-821.
    [155]李凌,杨沫,卢玫,余敏.纳米流体导热系数的分子动力学研究[C].中国工程热物理学会第十五届学术年会(传热传质学),2009,青岛.
    [156]陈俊,史琳,安青松.利用分子动力学模拟纳米流体有效导热系数[J].清华大学学报(自然科学版),2010,50:1983-1987.
    [157]LIANG Z., TSAI H. L. Thermal conductivity of interfacial layers in nanofluids[J]. Physical Review E,2011,83:041602.
    [158]KANG H. B., ZHANG Y. W., YANG M. Molecular dynamics simulation of thermal conductivity of Cu-Ar nanofluid using EAM potential for Cu-Cu interactions[J]. Applied Physics A,2011, 103:1001-1008.
    [159]LIN Y. S., HSIAO P.Y., CHIENG C. C. Roles of nanolayer and particle size on thermophysical characteristics of ethylene glycol-based copper nanofluids[J]. Applied Physics Letters,2011,98:153105.
    [160]SUN C.Z., LU W. Q., BAI B. F., LIU J. Anomalous enhancement in thermal conductivity of nanofluid induced by solid walls in a nanochannel[J].Applied Thermal Engineering,2011, 31:3799-3805.
    [161]SUN C. Z., LU W. Q., LIU J., BAI B.F. Molecular dynamics simulation of nanofluid's effective thermal conductivity in high-shear-rate Couette flow[J]. International Journal of Heat and Mass Transfer,2011,54:2560-2567.
    [162]CUI W. Z., BAI M. L., LV J. Z., LI X. J. On the influencing factors and strengthening mechanism for thermal conductivity of nanofluids by molecular dynamics simulation[J]. Industrial & Engineering Chemistry Research,2011,50(23):13568-13575.
    [163]LV J. Z., CUI W. Z., BAI M. L., LI X. J. Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition[J]. Microfluidics and Nanofluidics,2011,10(2):475-480.
    [164]LV J. Z., BAI M. L., CUI W. Z., LI X. J. The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles systemt[J]. Nanoscale research letters,2011,6(1):200-208.
    [165]李国杰.纳米流体润滑的分子动力学模拟[D].大连:大连理工大学,2012.
    [166]ALLEN M. P., TILDESLEY D. J. Computer simulation of liquids[M]. Oxford:Clarendon Press, 1987.
    [167]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007:84-118.
    [168]ANDERSON H. C. Molecular dynamic at constant press and/or temperature[J]. Journal of Chemical Physics,1980,72(4):2384-2393.
    [169]EWALD P. Due berechnung optischer und elektrostatischer Gitterpotentiale [M]. Annalen Der Physik,1921,64:253-287.
    [170]VERLET L. Computer experiments on classical fluids [J]. Physical Review,1967,159(1): 98-103.
    [171]SWOPE W.C., ANDERSEN H. C., BERENS P. H., et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters[J]. Journal of Chemical Physics,1982,76(1):637-649.
    [172]HOCKNEY R. W. Methods in computational physics[J].1970,9:136-211.
    [173]GEAR C.W. Englewood Cliffs[M]. Prentice-Hall,1971.
    [174]钱学森.物理力学讲义[M].北京:科学出版社,1962:223-227.
    [175]BERENDSEN H.J. C., GRIGERA J.R., STRAATSMA T. P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry,1987,91 (24):6269-6271.
    [176]DAW M. S., BASKES M. I. Embedded atom method derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B,1984,29 (12):8486-8495.
    [177]MISHIN Y., MEHL M.J., PAPACONSTANTOPOULOS D. A., et al. Structural stability and lattice defects in copper:Ab initio, tight-binding, and embedded-atom calculations[J]. Physical Review B,2001,63:224106.
    [178]FOILES S.M., DAW M.S. Application of the embedded atom method to NisAl[J]. Journal of Materials Research,1987,2(1):5.
    [179]VOGELSANG R., HOHEISEL C., CICCOTTI G. Thermal conductivity of the Lennard-Jones liquid by molecular dynamics calculations[J]. Journal of Chemical Physics,1987, 86:6371-6375.
    [180]ERKOG S. Empirical potential energy functions used in the simulations of materials properties[M]//STAUFFER D. Annual reviews of computational physics IX. Singapore:World Scientific Pubishing Company,2001:1-104.
    [181]PLATHE F. M. A simple nonequilibrium molecular dynamics method to calculating the thermal conductivity[J]. Journal of Chemical Physics,1997,106:6082-6085.
    [182]YU W., FRANCE D.M., CHOI S.U.S., ROUTBORT J.L. Review and assessment of nanofluid technology for transportation and other applications[R]. Argonne:Argonne National Laboratory,2007.
    [183]JEFFREY D. J. Condition through a random suspension of spheres [J]. Proceedings of the Royal Society of London, Series A,1973,335:355-367.
    [184]HAMILTON R. L., CROSSER O.K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals,1962,1(3):187-191.
    [185]DAVIS R. H. The effective thermal conductivity of a composite material with spherical inclusions[J]. International Journal of Thermophysics,1986,7(3):609-620.
    [186]LU S., LIN H. Effective conductivity of composites containing aligned spherical inclusions of finite conductivity[J]. Journal of Applied Physics,1996,79(9):6761-6769.
    [187]BRUGGEMAN D. A. G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen[M]. Annalen der Physik Leipzig,1935,24:636.
    [188]JIANG W. T., DING G. L., PENG H., GAO Y. F., WANG K. J. Experimental and model research on nanorefrigerant thermal conductivity[J]. HVAC & R Research,2009,15:651-669.
    [189]PRASHER R., BHATTACHARYA R., PHELANA P. E. Thermal conductivity of nanoscale colloidal solutions (nanofluids)[J]. Physical Review Letters,2005,94:025901.
    [190]XUE Q. Z. Model for the effective thermal conductivity of carbon nanotube composites[J]. Nanotechnology,2006,17:1655-1670.
    [191]CHEN G. Non-local and non-equilibrium heat conduction in the vicinity of nanoparticles[J]. Journal of Heat Transfer,1996,118(11):539-545.
    [192]丁国良,姜未汀,彭浩,胡海涛.一种纳米流体热导率通用模型[J].工程热物理学报,2010,31(8):1281-1284.
    [193]PROBSTEIN R.F. Physicochemical Hydrodynamics-An Introduction[M]. New York:John Wiley & Sons,1994.
    [194]MURSHED S. M. S., LEONG K.C., YANG C. Thermal conductivity of nanoparticle suspensions[C].//Proceedings of IEEE, Zhuhai, China,2006,155158.
    [195]德意志联邦共和国工程师协会工艺与化学工程学会.传热手册[M].北京:化学工业出版社,1983:143-210.
    [196]张邵波.纳米流体强化传热的实验和数值模拟研究[D].杭州:浙江大学,2009.
    [197]PERRY R. H. PERRY化学工程手册(上卷)(第六版)[M].北京:化学工业出版社,1992:(3)9-57.
    [198]HERIS S. Z., ETEMAD S. G., ESFAHANY M. N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer[J]. International Communications in Heat and Mass Transfer,2006,33:529-535.
    [199]E.R.G.埃克特,R.M.德雷克.传热与传质分析[M].北京:科学出版社,1983:273-280.
    [200]谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探[J]. 物理学报,2003,52(6):1444-1449.
    [201]LAMB H. Hydrodynamics[M]. New York:Dover,1945.
    [202]RICK S. W. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums[J]. Journal of Chemical Physics,2004,120(13):6085.
    [203]NADA H., EERDEN Jan P. J. M. An intermolecular potential model for the simulation of ice and water near the melting point:A six-site model of H2O[J]. Journal of Chemical Physics, 2003,118(16):7401.
    [204]FLOROVA P., SKLENOVSKY P., BANAS P., OTYEPKA M. Explicit water models affect the specific salvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact[J]. Journal of Chemical Theory and Computation, 2010,6(11):3569-3579.
    [205]IZVEKOV S., VOTH G. A. Multiscale coarse graining of liquid-state systems [J]. Journal of Chemical Physics,2005,123(13):134105.
    [206]JORGENSEN W. L. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water[J]. Journal of the American chemical society,1981, 103 (2):335-340.
    [207]BERENDSEN H. J. C., POSTMA J. P.M., GUNSTEREN W. F., HERMANS J. Interaction models for water in relation to protein hydration[M]//PULLMAN A. Intermolecular forces. Dordrecht: Springer,1981:331-342.
    [208]JORGENSEN W. L., CHANDRASEKHAR J., MADURA J. D., IMPEY R. W., KLEIN M. L. Comparison of simple potential functions for simulating liquid water[J]. Journal of Chemical Physics, 1983,79(2):926-935.
    [209]HORN H. W., SWOPE W. C., PITERA J. W., MADURA J. D., DICK T. J., HURA G. L., HEAD-GORDON T. Development of an improved four-site water model for biomolecular simulation: TIP4P-Ew[J]. Journal of Chemical Physics,2004,120:9665-9678.
    [210]ABASCAL J. L. F., SANZ E., FERNANDEZ R. G., VEGA C. A potential model for the study of ices and amorphous water:TIP4P/Ice[J]. Journal of Chemical Physics,2005,122:234511.
    [211]ABASCAL J.L. F., VEGA C. A general purpose model for the condensed phases of water: TIP4P/2005[J]. Journal of Chemical Physics,2005,123:234505.
    [212]MAHONEY M.W., JORGENSEN W.L. A five-site model liquid water and the reproduction of the density anomaly by rigid, non-polarizable models[J].Journal of Chemical Physics, 2000,112:8910-8922.
    [213]王补宣.工程传热传质学(上册)[M].北京:科学出版社,1982,361-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700