海藻酸钙固定化面包酵母在有机相中催化苯甲醛和苯乙酮的还原
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,有机相中的细胞催化吸引了越来越多的研究者的关注,已成为生物技术领域一个新的研究热点。
     本论文以苯甲醛为底物,对面包酵母与其它8种酵母在水相中和有机相中的还原能力进行了比较,探索了活化培养基组成、活化时间、海藻酸钠浓度、pH值、溶剂种类、共底物种类、初始底物浓度、摇床转速和温度对海藻酸钙固定化面包酵母在有机相中的还原能力的影响,也考察了以6小时和24小时为利用周期时海藻酸钙固定化面包酵母的重复利用的情况。
     在所考察的9种酵母中,除假丝酵母2#外,面包酵母和其它8种酵母在水相和有机相中都具有还原能力,其中以假丝酵母1#和面包酵母为最强。
     活化培养基以既含氮源又含碳源的YPD培养基为最佳,活化时间以1天和4天最为合适。固定化面包酵母在不进行预先活化的情况下在有机相中也具有还原能力。无论是活化酵母还是未活化酵母,产物浓度都随酵母量的增加而增大,并且在酵母量少时增加的幅度较大。
     海藻酸钠浓度在1-5%之间都可用于固定化面包酵母,其中浓度为3%时制备的固定化面包酵母催化性能最佳。在不同pH的缓冲液制备的固定化面包酵母中,以pH10为最佳。
     溶剂种类对固定化面包酵母的还原能力的影响极大,一般来说细胞活性随LogP值的增大而增大。在所考察的共底物中,大部分醇类物质并不能促进产物浓度的提高,反而有降低产物浓度的趋势。只有高级醇在己烷中才有利于提高产物浓度。
     初始底物浓度对固定化面包酵母的催化性能影响较大,当初始底物浓
    
    浙江大学硕士论文 摘要
    度从 660 mM增大到 990 mM时,使得凝胶球内底物浓度从 41.2 InM增
    大到 84.3 mM,由此造成凝胶球内的产物浓度有较大的下降。
     产物浓度随转速增大几乎成线性增大。以已烷为溶剂时,最佳温度为
    35℃,以乙酸丁酯为溶剂时,最佳温度为30℃。
     以24小时为利用周期时,海藻酸钙固定化面包酵母只能重复利用两
    次,以6小时为利用周期时,可重复利用6次以上。
     以苯乙酮为底物时,海藻酸钠浓度、溶剂种类、共底物种类和初始底
    物浓度对海藻酸钙固定化面包酵母在有机相中还原能力的影响相似。但最
    佳 pH与以苯甲醛为底物时稍有不同,为 pH 4和 pH。
Recently, catalysis by the whole cells in organic solvent has attracted attention of more and more researchers and has become a new hotspot in the field of biotechnology.
    In this thesis, the reduction ability of benzaldehyde by baker's yeast and another 8 strains of yeast in water and in organic solvent was studied, the effects of medium constitute, cultivation time, sodium alginate concentration, pH, organic solvent, co-substrate, initial concentration of substrate, rev of orbital shake and temperature on the reduction by Calcium-Alginate-immobilized baker's yeast in organic solvent were studied, and the reuse of Calcium-Alginate-immobilized baker's yeast with 6 and 24 hours as a period was tested. The substrate of all the above studies is benzaldehyde.
    Except for Cancida 2". cultivated baker's yeast and another 7 strains of yeast all can reduce benzaldehyde to benzyl alcohol in water and in organic solvent.
    When baker's yeast cultivated in YPD medium for 1 or 4 days, the ability of reduction of baker's yeast is highest. Baker's yeast without precultivation also has the ability of reduction. Product concentration would be increased with increase of quantity of cells, and product concentration increase more quickly when quantity of yeast is little.
    Sodium alginate solution whose concentration is within 1-5% can be used to immobilize baker's yeast, and the immobilized baker's yeast made in alginate concentration of 3% had higher ability of reduction than that in other
    
    
    
    concentration. When pH of the buffer used to dissolve yeast is 10, the highest product concentration could be obtained.
    Organic solvent would affect on the ability of reduction by immobilized baker's yeast. In general, the higher LogP of solvent is, the higher the ability of reduction the yeast has. Within the so-substrate studied, a majority of alcohols could not increase the concentration of product. Only with higher alcohols as co-substrate in hexane, it could get higher product concentration.
    When the initial substrate concentration increase from 660 mM to 990 mM, the substrate concentration within bead varies from 41.2 mM to 84.3 mM. With the increase of substrate concentration, the product concentration in solvent and within bead all decrease greatly.
    The product concentration increases almost linearly with rev of orbital shake increasing. The optimum temperature is 35℃ when solvent is hexane and 30℃ when solvent is butylacetate.
    The immobilized yeast could be reused for 2 times with 24 hours as a culture period and for more than 6 times with 6 hours as a culture period.
    When the substrate is acetophenon, the effect of concentration of alginate. sorts of organic solvent, sorts of co-substrate and initial concentration of substrate on the reduction of Calcium-Alginate-immobilized baker's yeast in organic solvent is similar to the results as the substrate was benzaldehy. But the best pH is pH 4 and pH 10, perhaps because the enzymes participate in the reduction of benzaldehyde and acetophenon are slightly different.
引文
1.谢渝春、刘会洲、陈家镛,有机相中的酶促拆分过程,化学进展,1997,Vol.9(3):291-299。
    2.Daniel R. Griffin, Fangxiao Yang, Giorgio Carta, and John L.Gainer, Asymmetric Reduction of Acetophenone with Calcium-Alginate-Entrapped Baker's Yeast in Organic Solvents,Biotechnol. Prog., 1998,14:588-593
    3.Koei Kawakami, Satoshi Tsuruda, and Katsuyoshi Miyagi, Immobilization of microbial Cells in a Mixed Matrix of Silicone Polymer and Calcium Alginate Gel: Epoxidation of 1-Octene by Nocardia corallina B-276 in Organic Media, Biotechnol. Prog., 1990,6:357-361
    4.L.E.S.Brink and J.Tramper, Optimization of Organic Solvent in Multiphase Biocatalysis, Biotechnology and Bioengineering, 1985,Vol.27:1258-1269
    5.Lynda J. Bruce and J. Daugulis, Solvent Selection Strategies for Extractive Biocatalysis, Biotechnol. Prog.,1991,7:116-124
    6.K.D.Green, I.S.Gill, J.A.Khan, and E.N.Vulfson, Microencapsulation of Yeast Cells and Their Use as a Biocatalyst in Organic solvents,Biotechnology and Bioengineering, 1996,Vol.49:535-543
    7.Ryuuichrou Hayakawa, Kazumi Nozawa, Makoto Shimizu and Tamotsu Fujisawa, Control of Enantioselectivity in the Baker's Yeast Reduction of β-Keto Ester Derivatives in the Presence of a Sulfur Compound,Tethahedron Letter, 1998,39:67-70
    8.Gerard A.Sellek and Julian B.Chaudhuri,Biocatalysis in organic media using enzymes from extremophiles, Enzyme and Microbial Technology,1999,25:471-482
    9.潘冰峰、施邑屏、李祖义,不对称生物还原制备手性药物,工业微生物,1998,28(4):42~45
    10.古练权、马林,生物有机化学,高等教育出版社、施普林格出版社出版,P190~195
    
    
    11.韩静淑、赵振英、周礼恺、刘增柱,生物细胞的固定化技术及其应用,科学出版社
    12.O.P. Ward, C.S.Young, Enzyme. Microb. Technol., 1990(July), Vol.12:482-493
    13.刘志煜、李恒光、陈淑华,面包酵母对1,4,4α,8α-四氢-1,4亚甲基萘-5,5-二酮的催化异构化,有机化学,1995,15:619-621
    14.Chen C-S,Zhou B-N,Girdaukas G, Shieh W-R,VanMiddlesworth F, Gopalan AS,Sih CJ, Bioorg. Chem.,1984,12:98
    15.刘红霞、苏镜娱、曾陇梅,四种面包酵母对苯乙酮及乙酰乙酸乙酯的不对称还原,化学通报,1996,1:36-37
    16.Ryuuichrou Hayakawa, Kazumi Nozawa, Makoto Shimizu and Tamotsu Fujisawa, Control of Enantioselectivity in the Baker's Yeast Reduction of β-Keto Ester Derivatives in the Presence of a Sulfur Compound,Tethahedron Letter, 1998,39:67-70
    17.王俊、李保安、陈长治,梨头霉菌在有机相中的最适固定化条件及其反应特性的研究,工业微生物,1996,26(1):12-16
    18.梅乐和博士论文,浙江大学生物工程研究所,2000,5
    19.P. Nikolova and O. P. Ward, Reductive Biotransfirnation by Wild Type and Mutant Strains of Saccharomyces cerevisiae in Apueous-Organic Solvent Biphasic Systems, Biotechnology and Bioengineering,1992,Vol.39:870-876
    20.Jun Wang, Changzhi Chen, Baoan Li, Jinhong Zhang, and Yaoting Yu,Production of hydrocortisone from cortexolone-21-acetate by immobilized Absidia orchidis in cosolvent-containing media, Enzyme and Microbial Technology. 1998,22:368-373
    21.夏仕文、尉迟力、李树本,水-有机溶剂两相体系中甲基单胞菌Z201催化丙烯环氧化的初步研究,生物工程学报,1997,13 (4):446~449
    22.Penka Nikolova, Owen P. Ward, Effect of the support matrix on biocatalysts effective for bioconversions in nonaqueous media, Enzyme Microb. Technol.,1992(May),vol. 14:371-375
    
    biotransformation of benzaldehyde to benzyl alcohol by yeast cells in aqueous and aqueous-organic two phase systems,Journal of Industrial Microbiology,1994,13:172-176
    23. H.M.Pinheiro and J.M.S.Cabral,Screening of whol-cell immobilization procedures for the △-dehydrogenation of steroids in organic medium,Enzyme and Microbial Technology,1992(August) ,Vol.14: 619-624
    24. K.D.Green,I.S.Gill,J.A.Khan,and E.N.Vulfson,Microencapsulation of Yeast Cells and Their Use as a Biocatalyst in Organic solvents,Biotechnology and Bioengineering,1996,Vol.49:535-543
    25. A.C.P.Dias,J.M.S.Cabral,and H.M.Pinheiro,Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents.Enzyme Microb.Technol.,1994,Vol.l6:708-714
    26. 胡忠策、郑晓冬,固定化细胞在有机相中的催化反应,生物技术,1999,9(3) :39-41
    27. Vermuee,M.,Sikkema,J.,Verheul.A.,Bakker,R.,and Tramper,J.,Toxicity of homologous series of organic solvents for the Grampositive bacteria Arthrobacter and Nocardia sp.and the Gramnegative bacteria Acinetobacter and Pseudomonas sp..Biotechnol.Bioeng.,1993,42: 747-758
    28. Inoue,A.and Horikoshi.K.,Estimation of solvent tolerance of bacteria by solvent parameter log P.J.Perm.Bioeng..l991,3: 194-196
    29. Sikkema,J..Weber,F.J..Heipieper,H.J.,and de Bont,J.A.M.,Cellular toxicity of lipophilic compounds: Mechanisms,implications,and adaptions,Biocatalysis.1994,10: 113-122
    30. Juan L.Ramos,Estrella Duque,Jose-Juan Rodr i guez-Herva,Patricia Godoy,Ali Hai dour,Fernando Reyes,and Alejandro Ferndndez-Barrero.Mechanisms for Solvent Tolerance in Bacteria,The Journal of Biological Chemistry,1997Vol.272(7) :3887-3890
    31. Koei Kawakami,Takeshi Abe and Tomoaki Yoshida,Silicone-immobilized
    
    
    32.夏仕文、尉迟力、李树本,单相和两相发酵体系中Methylomonas Z201细胞的生长和环氧丙烷的合成,微生物学报,1998,38(5):371-375
    33.Osborne, S. J., Leaver, J., Tumer, M. K., and Dunnill, P., Correlation of biocatalytic activity in an organic-aqueous two-liquid phase system with solvent concentration in cell membrane. Enzyme Microb. Technol.,1990,12:281-291
    34.李祖义、顾建新、潘冰峰,假丝酵母C-5的不对称生物还原作用研究,生物工程学报,1998(October)Vol.14(4):460-463
    35.Jing-Nan Cui,Tadashi Ema, TaKashi Sakai and Masanori Utaka, Control of enantioseiectivity in the baker's yeast asymmetric reauction or γ-cmoro β-diketones to γ-chloro(S)-β-hydroxy ketones, Tetrahedron Asymmetry, 1998, 9:2681-2692
    36.Kaoru Nakamura, Shin-ichi Kondo,Yasushi Kawai,and Atsuyoshi Ohno,Reduction by Baker's Yeast in Benzene, Tetrahetron Letters,1991,Vol.32(48):7075-7078
    37.Paul G.Dumanski,Peter Florey,Michelle Knettig,Andrew J.Smallredge,Maurie A.Trewhella, The baker's yeast-mediated reduction of conjugated methylene groups in an organic solvent, Journal of Molecular Catalysis B:Enzymatic2001,11:905-908
    38.宋正孝、李晓敏、王诤、彭英,固定化米曲霉菌体细胞光学拆分DL-丙氨酸,生物工程学报1997,13(1):168-173,
    39.Hiromichi Ohta, Naoki Kobayashi, and Kazuhilo Ozaki, Asymmetric Reduction of Nitro Olefins by Fermenting Baker's Yeast,J.Org. Chem., 1989,54:1802-1804
    40.Nick Athanasiou,Andrew J.Smallridge,Maurie A.Trewhella, Baker's yeast mediated reduction of β-keto esters and β-keto amides in an organic solvent system, Journal of Molecular Catalysis B:Enzymatic
    
    2001,(11) :893-896
    41. Amauri F.Patrocinio,Ivan R.Corr e a Jr.and Paulo J.S.Moran,Enantioselective synthesis of α-hydroxysilanes by bioreduction of aroyltrimethylsilanes,J.Chem.Soc.,Perkin Trans.1,1999:3133-3137
    42. Kaoru Nakamura,Shin-ichi Kondo,Nobuyoshi Nakajima,and Atsuyoshi Ohno,Mechanistic Study for Stereochemical Control of Microbial Reduction of a-Keto Ester in an Organic Solvent,Tetrahedron,1995,Vol.51(3) :687-694
    43. Caroline Medson,Andrew J.Smallridge,Maurie A.Trewhella,Baker's yeast activity in an organic solvent system,Journal of Molecular Catalysis B:Enzymatic 2001,11:897-903
    44. Akihiko Kondo,Yan Liu,Motoyuki Furuta,Yasuya Fujita,Takeshi Matsumoto,Hideki Fukuda,Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol,Enzyme and Microbial Technology,2000,27:806-811
    45. John E.Seip and Robert Di Cosimo,Optimization of Accessible Catalase Activity in Polyacrylamide Gel-Immobilized Saccharomyces cerevisiae,Biotechnology and Bioengineering,1992,Vol.40: 638-642
    46. Jose.M.Gaseent ,Franciso.castrjon ,et al,Appl.Microbol,1999,Vol.22:329-340
    47. Sonia Rodriguez,Kersten T.Schroeder,Margaret M.Kayser.and Jon D.Stewart,Asymmetric Synthesis of β-Hydroxy Esters and α-Alkyl-β-hydroxy Ester by Recombinant Escherichia coli Expressing Enzymes from Baker's Yeast,J.Org.Chem.,2000,65:2586-2587
    48. Stefano Servi,Baker's Yeast as a Reagent in Organic Synthesis,SYNHESIS,1990,1-25
    49. Masanore Utaka,Hisatoshe Ito,Toshiyuki Mizumoto,and Sadao Tsuboi.Regio-and Enantioselective Synthesis of (S)-1-Acetoxy-2-hydroxy-4-alkanones by Use of Baker's Yeast Reduction
    
    of 1-Acetoxy-2,4-alkanediones,Tetrahedron: Asymmetry,1995,Vol.6(3) :685-686
    50. Nikolova,P.,Ward,O.P,Production of L-phenylacetyl carbinol by biotransformation:Product and by-product fomation and activities of the key enzymes in wild-type and ADH isoenzyme mutants of Saccharomyces cerevisiae,Biotechnology and Bioengineering,1991,38:493-498
    51. GU Lian-Quan,WEI Hai-Feng,ZHANG Xiao-Chun,XU Gui,MA Lin,Bioreduction of quinone derivatives by immobilized Baker's yeast in hexane,Chinese Journal of Chemistry,1998,Vol.16(1) :45-50
    52. Santoyo,A.B.,Rodriguez,J.B.,Carrasco,J.L.G.,Gonez,E.G.,Rojo,I.A.,and Teruel,M.L.A.,Immobilizationof Pseudomonas sp.BA2 by entrapment in calcium alginate and its application for the production of L-alanine.Enzyme Microb.Technol.1996,18:176-180
    53. Rosa Leon,Ines Garbayo,Raquel Hernandez,Javier Vigara,Carlos Vichez,Organic solvent toxicity in photoautotrophic unicellular microorganisms.Enzyme and Microbial Technology,2001,29:173-180
    54. Cruden,D.L.,Wolfram,J.H.,Rogers,R.D.,and Gibson,D.T,Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organics-aqueous) medium,Appl.Environ.Microb.1992,58:2723-2729
    55. Inoue,A.and Horikoshi,K.,A Pseudomonas putida thrives in high concentration of toluene,Nature,1989,338: 264-266
    56. Vermuee.M.,Sikkema,J.,Verheul,A.,Bakker,R.,and Tramper.J..Toxicity of homologous series of organic solvents for the Grampositivc bacteria Arthrobacter and Nocardia sp.and the Gramnegative bacteria Acinetobacter and Pseudomonas sp.Biotechnol.Bioeng.,1993,42: 747-758
    57. A.Long and O.P.Ward,Biotransformation of Benzaldehyde by Saccharomyces cerevisiae: Characterization of the Fermentation and
    
    Toxicity Effects of Substrates and Products,Biotechnology and Bioengineering,1989,Vol.34:933-941
    58. Ken-ichi Fuhshuku,Nobutaka Funa,Tomohiro Akeboshi,Hiromichi Ohta,Hiroyuki Hosomi,Shigeru Ohba,and Takeshi Sugai,Access to Wieland-Miescher Ketone in an Enantiomerically Pure Form by a Kinetic Resolution with Yeast-Mediated Reduction,J.Org.Chem.,2000,65:129-135
    59. Jyh-Ping Chen,and Juin-Bin Wang,Wax ester synthesis by lipase-catalyzed esterification with fungal cells immobilized on cellulose biomass support particles,Enzyme and Microbial Technology,1997,20:625-522
    60. Colja Laane,Sief Boeren,Kees Vos,and Cees Veeger,Rules for Optimization of Biocatalysis in Organic Solvents,Biotechonology and Bioengineering,1987,Vol.15:81-87
    61. Kaoru Nakamura,Kiyoko Inoue,Kazutoshi Ushio,Shinzaburo Oka,and Atsuyoshi Ohno,Stereochemical Control on Yeast Reduction of α-Keto Esters.Reduction by Immobilizated Bakers' Yeast in Hexane,J.Org.Chem.,1988,53:2589-2593
    62. 酵母遗传学,陈士怡、徐洪基著,科学出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700