利尿酸对书虱生态适合度及GSTs毒理学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜卷书虱Liposcelis bostrychophila (Badonnel)和嗜虫书虱L. entomophila (Enderlein)隶属于啮虫目Psocoptera、书虱科Liposcelididae,是世界范围内广泛发生并能造成严重经济损失的一类储藏物害虫。谷胱甘肽S-转移酶(Glutathione S-transferases, GSTs; EC 2.5.1.18)是生物体内广泛存在的一类功能多样的超基因家族酶,能催化内源还原性谷胱甘肽(GSH)与各种有害的亲电性底物相结合,增加后者的可溶性从而有利于其从细胞内排出,进而保护生物体内的核酸和蛋白质免受亲电基团攻击。GSTs活性能够被各种亲电子化合物如药剂、杀虫剂、植物次生代谢物质等所诱导。本论文以嗜卷书虱和嗜虫书虱为研究对象,利用生命表方法对利尿酸连续胁迫下嗜卷书虱的生态适合度进行研究,结合生理生化和毒理学方法,明确了利尿酸对嗜卷书虱GSTs的活体胁迫作用;比较分析了利尿酸胁迫30天后嗜卷书虱和嗜虫书虱GSTs的生化毒理学特性差异。主要研究结果如下:
     1利尿酸对嗜卷书虱生态适合度的影响
     通过组建生命表的方法,系统观察了不同饲料饲喂下(含0.5和3%利尿酸的人工饲料分别记为0.5%和3% EA,常规人工饲料为对照)嗜卷书虱淮北和北碚种群各世代的存活率、平均发育速率、净增殖率、发育历期等生命表参数,以明确利尿酸连续胁迫对嗜卷书虱生态适合度的影响。结果表明,利尿酸连续胁迫下,嗜卷书虱各代卵的存活率升高而一龄若虫的存活率却显著下降,但对其它各龄若虫的存活率则无显著影响;嗜卷书虱各世代成虫寿命显著延长,其中F,的寿命最长。利尿酸连续胁迫对嗜卷书虱各代的产卵期、寿命、平均产卵量均有影响,淮北种群(3% EA)平均每雌产卵量F2最低(13.21头);北碚种群各代平均每雌产卵量均高于对照(对照平均每雌产卵量为40.87头)。根据组建的嗜卷书虱实验种群特定时间生命表,计算出利尿酸连续胁迫下书虱各代种群生命表参数。利尿酸连续胁迫后,与对照相比,2个种群(3% EA)内禀增长率rm均降低,其中F2最低;而北碚种群0.5% EA处理组的rm均升高。以R0为基准,相对于对照,淮北种群(0.5%和3% EA)F2生态适合度分别下降到0.72和0.313,其余处理组的相对生态适合度均升高;北碚种群0.5% EA组各代的生态适合度均升高,3% EA处理组F1和F2生态适合度均降低,分别为0.84和0.54。
     2利尿酸持续胁迫对嗜卷书虱GSTs生化毒理学特性的影响
     采用药膜法测定了利尿酸处理前后嗜卷书虱各世代成虫对溴氰菊酯的敏感性。实验结果表明,与对照相比,嗜卷书虱淮北种群各世代对溴氰菊酯的敏感性降低;而利尿酸胁迫后北碚种群对溴氰菊酯更敏感。与对照相比,淮北种群各代的比活力升高且达到显著水平;就北碚种群而言,利尿酸处理后F2(0.5%EA)和F1(3%EA)的比活力最低。以GSH为底物时,淮北种群(0.5%和3%EA)F1的Km值最高,北碚种群各代Km值均低于对照;淮北种群(0.5%EA)Vmax值与对照之间的差异不显著,北碚种群(0.5%和3%EA)各代Vmax最高均高于对照。以CDNB为底物时,利尿酸处理组嗜卷书虱的Km值与对照相比差异显著;就Vmax而言,其变化趋势与以GSH为底物时相似。利尿酸处理后,嗜卷书虱GSTs酶促反应的最适温度为37℃,最适pH范围变为pH 7.5-8.5。与对照相比,利尿酸处理后嗜卷书虱各代GSTs对利尿酸、双硫仑、马来酸二乙酯和溴氰菊酯的敏感性降低,但15 mM以上剂量溴氰菊酯对嗜卷书虱(3% EA)的GSTs几乎没有抑制作用。
     3利尿酸胁迫对两种书虱GSTs纯化产物的影响
     为明确利尿酸胁迫对嗜卷书虱和嗜虫书虱GSTs纯化产物的影响,比较研究了0.5%和3% EA饲养前和连续饲养30天后两种书虱GSTs的活性差异。结果表明,利尿酸对书虱GSTs的活体胁迫具有明显的剂量效应和种效应关系。利尿酸处理后,嗜卷书虱(0.5%和3% EA)对溴氰菊酯的LC50均降低,而嗜虫书虱(0.5%和3% EA)对溴氰菊酯的LC50均升高。经0.5%和3% EA胁迫后,嗜卷书虱GSTs比活力分别下降了1.87和10.00倍;嗜虫书虱GSTs比活力也明显被抑制,其中0.5%EA的抑制作用最强(下降了11.23倍)。以GSH为底物时,嗜卷书虱处理组Km值显著升高,嗜虫书虱处理组Km值均降低;嗜卷书虱(0.5%和3% EA)Vmax显著低于对照,嗜虫书虱(0.5% EA)Vmax最高。以CDNB为底物时,嗜卷书虱和嗜虫书虱(0.5%和3% EA)Km值均降低;就Vmax而言,其变化趋势与以GSH为底物时Vmax一致。利尿酸处理前后,嗜卷书虱和嗜虫书虱GSTs酶促反应的最适温度均为37℃;最适pH范围为pH 7.0-8.0,而嗜虫书虱(0.5% EA)最适pH范围为pH6.5-7.5。利尿酸处理后,嗜卷书虱对利尿酸、马来酸二乙酯和溴氰菊酯的敏感性降低;嗜虫书虱对利尿酸的敏感性增加,对马来酸二乙酯和溴氰菊酯的敏感性降低。
The Liposcelis Bostrychophila and L. Entomophila Belonging to Liposcelididae, Psocoptera, Two Sub-group of Pest Insects, Are Important Causative Agents of Economic Damage to Stored Food Products. Glutathione S-transferase (Gsts, Ec 2.5.1.18) Have Been Implied in A Variety of Functions in Eukaryotic Organisms, Including Cellular Detoxification and Homeostasis. and the Gsts Activity Can Be Induced by Chemicals, Insecticides, Secondary Metabolisms of Plant, and So on. Here in This Report, We Through Studied on Ethacrynic Acid (Ea) Continuously Stimulate to L. Bostrychophila Get the Main Parameters of Life Table, in Parallel, Investigate the Influence to Gsts Activity. and the Activity of Gsts from L. Bostrychophila and L. Entamophila After Dietary on 0.5% and 3%Ea for 30 Days Were Also Investigated. the Project Was Lasted for 2 Years, and the Main Results Are As Follows:
     1 Influence of Ea on Ecological Fitness of L. Bostrychophila
     Different Life Table Parameters, Including Survival Rate, Development Rate, Intrinsic Rate of Increase and Developmental Time of Three Generations of L. Bostrychophila Under the Impact of Continuous Ea Treatment Were Compared Through Constructing the Life Table, to Clarify the Influence of Continuous Ea Treatment on the Ecological Fitness of L. Bostrychophila. the Results Showed That the Mean Survival Rates of Eggs Were Increased Significantly, But the Survival of the First Stadiuman Were Decreased After Dietary on Ea for Three Generations. However on Significant Difference Were Observed for Other Stage. the Adult Longevities of Two Populations After Feed on Ea for Three Generations Were All Longer Than Control, and Fi Showed the Longest Adult Period. Adult Longevity, Oviposition Period and Mean Number of Eggs in Each Generation Were Affected by the Continous Ea Treatment. the Mean Number of Eggs Laid by Per Female Was Lowest in Fi of Huaibei Populations (3%Ea) and the Control of Beibei Population,13.21 and 40.87, Respectively. According to the Life Tables, the Life Table Parameters in Each Generation After Dietary on Ea Were Calculated, Respectively. the Values of Rm Were All Decreased for Two Populations (3%Ea) and Lowest in F2, But Increased for Beibei Populations (0.5%Ea). Using Rvalues, the Fitness for F2 of Huaibei Populations (0.5%Ea and 3%Ea) and F] and F2 of Beibei Populations (3%Ea) Relative to Control Were Calculated As 0.72,0.313, 0.84 and 0.54, Respectively.
     2 Influence of Continous Ea Impact on Gsts of L. Bostiychophila
     The susceptibility of deltamethrin against L. bostrychophila after dietary on 0.5% and 3%EA for three generations were assayed by using the pesticide-membrane method. The results indicated that all generations of Huaibei populations were less susceptible to ediethyl maleate. But for Beibei populations, the psocids were more susceptible to it after feed on EA for three generations. Compared to the control, Huaibei population possessed higher specific activity of GSTs, but the F2 (0.5%EA) and F1 (3%EA) shared the lowest GSTs specific activity. GSTs in F1 of Huaibei population possessed a significantly lower affinity to the substrate GSH, but all generations of Beibei populations exhibited higher affinity to it. Meanwhile, GSTs of Beibei populations had higher catalytic activities for GSH, but no difference of catalytic activities for GSH were observed in Huaibei populations (0.5%EA) comparing with the control. The optimal pH of GSTs activity assay for each generation of two psocids was pH 7.5-8 and 37℃was considered to be optimal for the assay. The in vitro inhibition studies showed GSTs of two psocids after dietary 0.5%and 3%EA for three generations were less susceptible to ethacrynic acid, disulfiram and ediethyl maleate, and 15 mM eltamethrin exhibited poor inhibitory effects on GSTs of L. bostrychophila after dietary on 3%EA.
     3 Influence of EA on purified GSTs of L. bostrychophila and L. entamophila
     In order to definite the influence of ethacrynic acid on purified glutathione S-transferase from booklice. The activities of GSTs from L. bostrychophila and L. entamophila after dietary on 0.5%and 3%EA for 30 days and without EA were investigated. The results showed that the influence of EA on glutathione S-transferases from booklice exsert dose-and populations-dependent manners. After dietary of on 0.5%and 3%EA for 30 days, the LC50 values of deltamethrin form L. bostrychophila were all decreased, while for L. entamophila, the LC50 values were increased. The GSTs specific activities were decreased 1.87-and 10.00-fold (L. bostrychophila), and the GSTs specific activities of L. entamophila were also decreased after reared on the food contain 0.5%and 3%EA, respectively. GSTs of L. bostrychophila exhibited lower Km values (CDNB) and Vmax values (GSH and CDNB), but higher Km values (GSH) in comparing with control. The Km values of GSH and CDNB in L. entamophila after dietary on 0.5%and 3%EA were all deceaed respectively. The GSTs activities of L. bostrychophila and L. entamophila showed same temperature (37℃), and same pH stabilities (pH 7.0-8.0), excepting the psocids of L. entamophila (0.5%EA), who reached its activity peak at pH 6.5-7.5. The in vitro inhibition studies of GSTs indicated That the Populations of L. Bostrychophila and L. Entamophila After Dietary Ea for 30 Days Were Less Susceptible to Ediethyl Maleate and Deltamethrin Compared with Control Groups. Furthermore, As to Ethacrynic Acid, L. Bostrychophila Were Less Susceptible to Ethacrynic Acid, But L. Entamophila Were More Susceptible to It in Comparing with Control. Sds-page Revealed One Band at 23 Kda for the Psocids After Dietary on Ea.
引文
[1]Pearl R, Parker S L. Experimental studies on the duration of life.1. Introductory discussion of the duration of life in Drosophila. American Naturalist,1921:481-509.
    [2]张娜.苜蓿叶象甲实验种群生命表及翅型分化研究.2010.新疆农业大学.
    [3]于令媛.大草蛉的预蛹耐寒性和实验种群生命表研究.2011.山东农业大学.
    [4]张孝羲.昆虫生态及预测预报.北京.2001.中国农业出版社.
    [5]Chi H. Life-table' analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology,1988,17(1):26-34.
    [6]Chi H. Timing of control based on the stage structure of pest populations:a simulation approach. Journal of Economic Entomology,1990,83(4):1143-1150.
    [7]Jia F X, Yang M S, Yang W J, et al. Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environmental Entomology,2009,38(5):1365-1372.
    [8]沈佐锐.昆虫生态学及害虫防治的生态学原理.2009.中国农业大学出版社.
    [9]牛洪涛,宗建平,王海迎等.小菜蛾对丁烯氟虫腈的抗性选育及生物适合度.农药学学报,2007,9(3):245-250.
    [10]陈利,陈建明,何月平等.抗感吡虫啉褐飞虱在抗虫水稻品种上的适合度比较.应用昆虫学报ISTIC,2011,48(5):1381-1386.
    [11]陈亮,吴兴富,陈若霞等.桃蚜抗吡虫啉品系和敏感品系某些生物学特性比较.昆虫知识,2006,43(4):504-508.
    [12]韩晓莉,高占林,党志红等.麦长管蚜抗吡虫啉品系和敏感品系的生殖力比较.昆虫知识,2008,45(002):243-245.
    [13]刘泽文,韩召军,王荫长.褐飞虱抗有机磷品系的交互抗性及适合度研究.南京农业大学学报,2001,24(4):37-40.
    [14]王凯,张淑颖,谢兰芬等.小菜蛾抗溴氰菊酯品系的相对适合度和抗性遗传方式.农药,2010,49(10):729-731.
    [15]兰亦全,赵士熙.抗三氟氯氰菊酯甜菜夜蛾品系的相对适合度研究.华东昆虫学报,2004,13(001):88-91.
    [16]曹辉.家蝇的抗性与相对适合度的研究.2010.山东师范大学.
    [17]Banks C, Needham P. Comparison of the biology of Myzus persicae Sulz. resistant and susceptible to dimethoate. Annals of Applied Biology,1970,66(3):465-468.
    [18]于金凤,慕立义,王开运.抗性棉蚜生殖力与存活率的研究.华东昆虫学报,1997,6(2):52-56.
    [19]Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides:current status and future prospects. Archives of Insect Biochemistry and Physiology,2005,58(4):200-215.
    [20]Denholm I, Devine G, Williamson M. Insecticide resistance on the move. Science,2002, 297(5590):2222-2223.
    [21]Sheehan D, Meade G, Foley V M, et al. Structure, function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal,2001,360(Pt 1):1-16.
    [22]Booth J, Boy land E, Sims P. An enzyme from rat liver catalysing conjugations with glutathione. Biochemical Journal,1961,79(3):516-524.
    [23]Enayati A, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology,2005,14(1):3-8.
    [24]Bartling D, Radzio R, Steiner U, et al. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. European Journal of Biochemistry,1993,216(2):579-586.
    [25]Hayes J D, Strange R C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology,2000,61(3):154-166.
    [26]Sun L, Schemerhorn B, Jannasch A, et al. Differential transcription of cytochrome P450s and glutathione S-transferases in DDT-susceptible and-resistant Drosophila melanogaster strains in response to DDT and oxidative stress. Pesticide Biochemistry and Physiology,2011,100(1): 7-15.
    [27]Low W Y, Feil S C, Ng H L, et al. Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-Transferase D1. Journal of Molecular Biology,2010, 399(3):358-366.
    [28]Morris M J, Liu D, Weaver L M, et al. A structural basis for cellular uptake of GST-fold proteins. Plos one,2011,6(3):e17864.
    [29]Torres-Rivera A, Landa A. Glutathione transferases from parasites:a biochemical view. Acta Tropica,2008,105(2):99-112.
    [30]Akley A. Glutathione transferases:a structural perspective. Drug Metabolism Reviews,2011, 43(2):138-151.
    [31]Alander J, Johansson K, Heuser V D, et al. Characterization of a new fluorogenic substrate for microsomal glutathione transferase 1. Analytical Biochemistry,2009,390(1):52-56.
    [32]Schmidt-Krey I, Mitsuoka K, Hirai T, et al. The three-dimensional map of microsomal glutathione transferase 1 at 6 A resolution. The EMBO Journal,2000,19(23):6311-6316.
    [33]Morel F, Aninat C. The glutathione transferase kappa family. Drug Metabolism Reviews,2011, 43(2):281-291.
    [34]蔡群芳.谷胱甘肽转移酶的研究进展.海南医学院学报,2011:17(12):1375-1378.
    [35]Bing W, Yingjie P, Tianlong Z, et al. Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism. Biochemical Journal, 2011,439(2):215-225.
    [36]Wilce M C J, Parker M W. Structure and function of glutathione S-transferases. Biochimica et Biophysica Acta Protein Structure and Molecular Enzymology,1994,1205 (1):1-18.
    [37]Zeng Q Y, Lu H, Wang X R. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae). Biochimie,2005,87(5):445-455.
    [38]Zeng Q Y, Wang X R. Catalytic properties of glutathione-binding residues in a t class glutathione transferase (PtGSTU1) from Pinus tabulaeformis. FEBS Letters,2005,579(12): 2657-2662.
    [39]Ohnuma T, Anan E, Hoashi R, et al. Dietary diacetylene falcarindiol induces phase 2 drug-metabolizing enzymes and blocks carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation. Biological & Pharmaceutical Bulletin,2011,34(3): 371-378.
    [40]房守敏.昆虫谷胱甘肽S-转移酶的基因组学研究及其介导的抗药性.蚕学通讯,2011,30(4):28-35.
    [41]Ketterman A J, Saisawang C, Wongsantichon J. Insect glutathione transferases. Drug Metabolism Reviews,2011,42(2):253-265.
    [42]Che-Mendoza A, Penilla R P, Rodriguez D A. Insecticide resistance and glutathione S-transferases in mosquitoes:A review. African Journal of Biotechnology,2010,8(8): 1386-1397.
    [43]Ranson H, a Prapanthadara L, Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochemical Journal,1997, 324(Ptl):97-102.
    [44]Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochemistry and Molecular Biology,2000,30(11):1009-1015.
    [45]Snyder M J, Maddison D R. Molecular phylogeny of glutathione S-transferases. DNA and Cell Biology,1997,16(11):1373-1384.
    [46]Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insect glutathione iS-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal,2001,359(Pt 2):295-304.
    [47]Snyder M J, Walding J K, Feyereisen R. Glutathione S-transferases from larval Manduca sexta midgut:sequence of two cDNAs and enzyme induction. Insect Biochemistry and Molecular Biology,1995,25(4):455-465.
    [48]Singh M, Silva E, Schulze S, et al. Cloning and characterization of a new theta-class glutathione S-transferase (GST) gene, gst-3, from Drosophila melanogaster. Gene,2000,247(1):167-173.
    [49]Wei S, Clark A, Syvanen M. Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochemistry and Molecular Biology,2001,31(12):1145-1153.
    [50]Ding Y, Ortelli F, Rossiter L, Hemingway J, Ranson H. The Anopheles gambiae glutathione transferase supergene family:annotation, phylogeny and expression profiles. BMC Genomics, 2003,4:35.
    [51]Hayes J D, Flanagan J U, Jowsey I R. Glutathione transferases. Annual Review of Pharmacology and Toxicology,2005,45:51-88.
    [52]Hayes J D, Pulford D J. The glutathione S-transferase supergene family:regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology,1995,30(6):445-600.
    [53]Hayes J D, Strange R C. Invited commentary potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radical Research,1995, 22(3):193-207.
    [54]Feng Q, Davey K, Pang A, et al. Glutathione S-transferase from the spruce budworm, Choristoneura fumiferana:identification, characterization, localization, cDNA cloning, and expression. Insect Biochemistry and Molecular Biology,1999,29(9):779-794.
    [55]Uchida K.4-hydroxy-2-nonenal:a product and mediator of oxidative stress. Progress in Lipid Research,2003,42(4):318-343.
    [56]Tang A H, Tu C. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. Journal of Biological Chemistry,1994,269(45):27876-27884.
    [57]Huang H S, Hu N T, Yao Y E, et al. Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology,1998,28(9):651-658.
    [58]Dou W, Wang J J, Zhao Z M. Toxicological and biochemical characterizations of GSTs in Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelididae). Journal of Applied Entomology,2006,130(4):251-256.
    [59]Agianian B, Tucker P A, Schouten A, et al. Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products. Journal of Molecular Biology,2003,326(1):151-165.
    [60]Toba G, Aigaki T. Disruption of the microsomal glutathione S-transferase-like gene reduces life span of Drosophila melanogaster. Gene,2000,253(2):179-187.
    [61]赵国栋.家蚕谷胱甘肽-S-转移酶基因转录水平定量研究.2010.苏州大学.
    [62]侯成香,桂仲争.家蚕谷胱甘肽硫-转移酶的组织分布及发育期变化规律.蚕业科学,2007,33(3):409-413.
    [63]Yamamoto K, Zhang P, Miake F, et al. Cloning, expression and characterization of theta-class glutathione S-transferase from the silkworm, Bombyx mori. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2005,141(3):340-346.
    [64]Yamamoto K, Zhang P, Banno Y, et al. Identification of a sigma-class glutathione S-transferase from the silkworm, Bombyx mori. Journal of Applied Entomology,2006,130 (9-10):515-522.
    [65]Gui Z Z, Kim B Y, Lee K S, et al. Glutathione S-transferases from the larval gut of the silkworm Bombyx mori:cDNA cloning, gene structure, expression and distribution. European Journal of Entomology,2008,105 (4):567-574.
    [66]陈凤菊.棉铃虫谷胱甘肽 S-转移酶的诱导表达及其基因克隆.2003.中国农业大学.
    [67]豆威.书虱谷胱甘肽 S-转移酶的纯化及生化毒理学特性研究.2008.西南大学.
    [68]张秀波,汤方,刘玉升等.单宁酸对杨小舟蛾谷胱甘肽 S-转移酶活性的诱导.昆虫知识, 2009,46(4):579-584.
    [69]郭玉莲,陶波,高希武.玉米谷胱甘肽转移酶(GSTs)特性及除草剂的诱导作用.玉米科学,2008,16(1):122-125.
    [70]李修伟,张兴.雷公藤总生物碱对摇蚊幼虫杀灭活性和谷胱甘肽硫转移酶的影响.西北农林科技大学学报,2010,38(4):157-163.
    [71]Wu S, Dou W, Wu J J, et al. Purification and partial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Archives of Insect Biochemistry and Physiology,2009,70(2):136-150.
    [72]Le G G, Hilliou F, Siegfried B D, et al. Xenobiotic response in Drosophila melanogaster. sex dependence of P450 and GST gene induction. Insect Biochemistry and Molecular Biology, 2006,36 (8):674-682.
    [73]Hayaoka T, Dauterman W. Induction of glutathione S-transferase by phenobarbital and pesticides in various house fly strains and its effect on toxicity. Pesticide Biochemistry and Physiology,1982,17(2):113-119.
    [74]Pu X, Yang Y, Wu S, et al. Characterisation of abamectin resistance in a field evolved multiresistant population of Plutella xylostella. Pest Management Science,2010,66(4): 371-378.
    [75]Papadopoulos A, Stamkou E, Kostaropoulos I, et al. Effect of organophosphate and pyrethroid insecticides on the expression of GSTs from Tenebrio molitor Larvae. Pesticide Biochemistry and Physiology,1999,63(1):26-33.
    [76]Konanz S, Nauen R. Purification and partial characterization of a glutathione S-transferase from the two-spotted spider mite, Tetranychus urticae. Pesticide Biochemistry and Physiology, 2004,79(2):49-57.
    [77]Rauch N, Nauen R. Characterization and molecular cloning of a glutathione S-transferase from the whitefly Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochemistry and Molecular Biology,2004,34(4):321-329.
    [78]Vanhaelen N, Francis F, Haubruge E. Purification and characterization of glutathione S-transferases from two syrphid flies(Syrphus ribesii and Myathropa florae). Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2004,137(1): 95-100.
    [79]Dou W, Xiao L S, Niu J Z, et al. Characterization of the purified glutathione S-transferases from two psocids Liposcelis bostrychophila and L. entomophila. Agricultural Sciences in China, 2010,9(7):1008-1016.
    [80]马素永,周先碗,张庭芳.玉米螟谷胱甘肽转硫酶的纯化及性质研究.北京大学学报:自然科学版,1999,35(4):474-478.
    [81]Awasthi Y C, Ansari G, Awasthi S. Regulation of 4-Hydroxynonenal mediated signaling by glutathione S-Transferases. Methods in Enzymology,2005,401:379-407.
    [82]Sedlak T W, Saleh M, Higginson D S, et al. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proceedings of the National Academy of Sciences,2009, 106 (13):5171-5176.
    [83]Edwards R, Dixon D P. Plant glutathione transferases. Methods in Enzymology,2005,401: 169-186.
    [84]Grant D F, Hammock B D. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti. Molecular and General Genetics MGG,1992,234(2):169-176.
    [85]Vontas J G, Small G J, Nikou D C, et al. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochemical Journal,2002,362(Pt2):329-337.
    [86]吕敏,孙婳婳,王丽红等.植物次生物质对棉蚜谷胱甘肽S-转移酶和羧酸酯酶活性的诱导作用.中国农学通报,2012,28(3):253-256.
    [87]汤方,周玉宝,张秀波等.2-十三烷酮和槲皮素对杨小舟蛾谷胱甘肽S-转移酶活性的影响.植物保护学报,2009,36(4):377-378.
    [88]丁伟,王进军.书虱实验种群饲养技术研究.西南农业大学学报,2001,23(4):304-306.
    [89]郅军锐,李景柱,盖海涛.西花蓟马取食不同豆科蔬菜的实验种群生命表.昆虫知识,2010,42(2):313-317.
    [90]El Taj H, Jung C. Effect of temperature on the life-history traits of Neoseiulus californicus (Acari:Phytoseiidae) fed on Panonychus ulmi. Experimental and Applied Acarology,2012, 56(3):247-260.
    [91]Murungi L K, Nyende A, Wesonga J, et al. Effect of African nightshade species (Solanaceae) on developmental time and life table parameters of Tetranychus evansi (Acari:Tetranychidae). Experimental and Applied Acarology,2010,52(1):19-27.
    [92]Payandeh A, Dehghan A. Life table parameters of the dubas bug, Ommatissus lybicus (Hem: Tropiduchidae) at three constant temperatures. African Journal of Biotechnology,2011,10(83): 19489-19493.
    [93]Cheng W X, Dou W, Chai Y X, et al. Comparison of biochemical and toxicological characterizations of glutathione S-transferases and superoxide dismutase between Liposcelis bostrychophila Badonnel and L. entomophila (Enderlein) (Psocoptera:Liposcelididae). Pesticide Biochemistry and Physiology,2007,89(2):151-157.
    [94]齐军山,辛志梅,李林等.应用SPSS软件进行农药试验数据的统计分析.山东农业科学,2008,(7):100-104.
    [95]Michael W, Pabst M, Jakoby W. Glutathione S-Transferase. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry,1974,22(25):7130-7139.
    [96]尹大强.钩虾胆碱酯酶(ChE)和谷胱甘肽转硫酶(GST)的敏感性和特异性比较研究.应用生态学报,2001,12(4):615-618.
    [97]尹晓辉,林荣华,陶传江等.溴氰菊酯对麦穗鱼谷胱甘肽 S-转移酶(GST)的影响.农药学学报,2005,7(3):249-253.
    [98]丁伟,王进军,赵志模.书虱实验种群饲养技术研究.西南农业大学学报,2001,23(4):304-306.
    [99]Rodriguez M A, Bosch D, Avilla J. Resistance of Spanish codling moth (Cydia pomonella) populations to insecticides and activity of detoxifying enzymatic systems. Entomologia Experimentalis et Applicata,2011,138(3):184-192.
    [100]高希武,董向丽.棉铃虫的谷胱甘S-转移酶(GSTs):杀虫药剂和植物次生性物质的诱.昆虫学报,1997,40(2):122-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700