取代苯对红裸须摇蚊生物标志物系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
取代芳烃类化合物多属有机污染物,随着工业废水、农业径流水、生活污水流人水体,对水生生物的生长、发育和繁殖构成危害,破坏了水生生态系统平衡,而且对人体健康具有潜在危害。摇蚊是一种分布广泛且种类数量众多的底栖生物,常作为水体质量监测的重要指示生物。本文在中国水中优先控制污染物黑名单的基础上,按照取代基的类型、位置及取代基个数的不同筛选出12种取代苯化合物,以红裸须摇蚊(Propsilocerus akamusi Tokunaga)4龄幼虫为研究对象,测定了12种取代苯对其急性毒性、联合毒性以及亚致死剂量(0.4、4、40mg/L)的4种取代苯对摇蚊生长发育和体内6种生物化学标志物(GST、CarE、CAT、POD、SOD)的影响。结果如下:
     (1)摇蚊幼虫暴露于取代苯类污染物溶液中表现出典型的中毒症状:甲苯、氯苯、苯酚和对氯苯酚溶液中的幼虫表现出活动减慢和行动迟缓;苯酚溶液中幼虫体表粘性增大;对苯二胺溶液中的幼虫体色变黑,部分体节还会出现炭黑色的点或环状斑。这些现象表明取代苯具有麻痹性、腐蚀性和灼伤性的毒性特点。摇蚊幼虫对取代苯类有机污染物的忍耐性较高,12种取代苯类对摇蚊4龄幼虫24 h LC50范围为90~1100 mg/L,其中最小的是对氯苯酚,LC50为90.07mg/L,最大的是苯胺,LC50为1069.71mg/L。按照有机物的毒性作用机制区分:苯、苯胺、氯苯和邻、间、对-二甲苯为非极性麻醉性化合物;苯酚、对氯苯酚和硝基苯为急性麻醉性化合物;对苯二胺和间苯二胺为反应性有机化合物。取代苯类有机污染物苯环上取代基不同,其毒性不同,基团毒性的贡献为:-NO2>-OH>-C1>-CH3>-NH2;3种二甲苯同分异构体毒性大小依次为邻二甲苯>间二甲苯>对二甲苯;二苯胺同分异构体毒性大小依次为对苯二胺>间苯二胺。
     (2)4种指数法对19组二元取代苯联合毒性结果的评价并不完全一致:对联合毒性结果的定性判断上,TU法和MTI法评价结果完全一致,Al法和λ法的评价结果完全一致;对联合毒力强弱程度的判断上TU法与λ法一致,Al法和MTI法一致。4种评价方法对于协同和简单相加毒性效应的评价结果一致,对于部分相加和拮抗作用的评价结果则有所不同。综合4种评价方法结果表明一半以上(52.63%)的二元取代苯在等比毒性配比下的联合作用类型为协同作用;极少数(0.05%)表现为简单相加作用,其余(42.11%)表现为部分相加和拮抗作用。
     (3)苯酚影响摇蚊生长发育。亚致死剂量(0.4、4、40 mg/L)苯酚降低摇蚊幼虫干湿重和化蛹率,这表明摇蚊幼虫生长和化蛹过程中对苯酚的胁迫敏感,可将其作为慢性毒性效应指标。摇蚊幼虫体内的生物标志物(SOD、CAT、GST、CarE、ACP、ALP)对于4种亚致死剂量取代苯溶液的胁迫表现一定的时间—剂量效应。对于暴露时间最为敏感的生物化学标志物是SOD和CarE,暴露于苯酚和对氯苯酚6 h,摇蚊体内SOD和CarE就呈现出应答反应。对于浓度最为敏感的指标是SOD,摇蚊体内的SOD能响应0.4mg/L对氯苯酚和对苯二胺的胁迫。对于剂量效应响应最为明显的指标是GST和CarE,摇蚊体内的GST和CarE均随着浓度增加,活性被诱导增强。综合时间-剂量效应及酶响应程度来看,6种生物化学指标对于取代苯胁迫的敏感性大小依次为SOD>CAT>GST>CarE >ALP>ACP。
     本研究结果表明取代苯类有机污染物对摇蚊幼虫具有慢性毒性,生长发育指标化蛹率对苯酚胁迫敏感,可以作为慢性毒性效应的标志物之一。摇蚊幼虫体内酶系CAT. SCD、GST和CarE参与了取代苯类有机污染物胁迫的应答反应,并表现出一定时间—剂量效应,可作为水体环境质量监测的早期预测预报。
Substituted aromatic compounds are mostly organic pollutants. With the industrial waste water, agricultural runoff, domestic waste flowing into waters, these organic pollutants with potential hazard to human health damaged the growth, development and reproduction of aquatic organisms, and destroyed the balance of aquatic ecosystems.Chironomids are widely distributed and numerous species of benthic organisms and often as an important indicator organism to monitor water quality. In this study,we selected twelve substituted benzenes according to the type, site and numbers of substituted group based on the list of China prefered controlled pollutants in water. We determined the acute and joint toxicity of twelve substituted benzenes to 4th-instar larval of Propsilocerus akamusi. The effects of sublethal doses of substituted benzenes on weight, pupation rate and six biochemical markers,GST, CarE, CAT, POD,SOD,of 4th-instar larval were also investigated in this study. The results showed as follow:
     (1) The typical poisoning symptoms of larval chironomid were showed after chironomid larvae were exposed to substituted benzene. The larvae expressed slowly activity and moving under the treatment of toluene, chlorobenzene, phenol and chlorophenol. The surface viscosity of larvae increased under exposure of phenol. The body color of larvae exposed to p-phenylene-nediamine turned black,and some larvae appeared carbon black point or ring spot in some sections. These phenomena indicated the substituted benzenes have the paralytic, corrosive and burnable toxic characteristics. The chironomid larvae have high tolerance to the organic pollutants of substituted benzenes.The LC50 value range of 12 kinds of substituted benzenes was 90-1100 mg/L. Among them, the substituted benzenes of minium LC50 and maxium LC50 was p-chlorophenol(90.07mg/L)and aniline(1069.71 mg/L), respectively. According to toxicity mechanism of organic compounds, Benzene, aniline, chlorobenzene and 1,(2,3,4)-dimethylbenzene belonged to non-polar narcotic compounds while phenol, p-chlorophenol, nitrobenzene belonged to polar narcotic compounds. The 1,3-dimethylbenzene and p-phenylene diamine belonged to reactive organic compounds. The different substituted group in the benzene ring displayed the different toxicity among all substituted benzenes. The order of toxicity were-NO2>-OH>-C1>-CH3>-NH2. The order of toxicity among three isomers of dimethylbenzene were 1,2-dimethylbenzene>1,3-dimethylbenzen>1,4-dimethylben-en while p-phenylene diamine> p-phenylene diamine.
     (2) The joint toxicities of 19 binary substituted benzenes were not completely consistent according to four evaluation methods. The evaluation results of TU were completely consistent with the evaluation results of MTI while the results of AI were completely consistent with of the results ofλ. But the evaluation results of TU were completely consistent with the evaluation results ofλwhile AI was consistent with MTI based on toxic extent to joint toxicity of binary substituted benzenes. The evaluation results of four methods were consistent for the synergim and simple addition but the evaluation results were different for the partial addition and antagonism. The above results showed that 52.63%,0.05% and 42.11% of the toxic effects for binary substituted benzene indicated synergistic, simple addition and partial addition or antagonism, respectively, under mixture of equal proportion.
     (3) The phenol had an effect on growth and development of chironomid. The dry weight, fresh weight and pupation percentage of 4th-instar larval chironomid were decreased by treatment of phenol with the sublethal concentration of 0.4,4 and 40 mg/L. These indicators can be used to monitor chronic toxic effect because the larval chironomids were sensitive to phenol in the periods of growth and pupation.The SOD,CAT, GST,CarE,ACP and ALP as biochemical markers in vivo chironomid larval exposed in sublethal dose substituted benzene solution were in a concentration- and time-dependent way with increase of concentration and exposure. The SOD and CarE were most sensitive to exposure time because of they could respond to the stress of phenol and p-chlorophenol under 6 h of treatment. The SOD was most sensitive to the concentration because of it could respond to the stress of 0.4 mg/L of p-chlorophenol and p-phenylene diamine. The GST and CarE were most sensitive to dose because of the enzymatic activities incresed with increase of concentration. According to time-and dose- effect and responsive extent of enzyme activities, the sensibility of six biochemical markers to the stress of substituted benzene were SOD>CAT>GST>CarE.
     These results showed that substituted benzene indicated chronic toxicity to larval chironomids.The pupation percentage was sensitive to the stress of phenol and can be as a marker of chronic toxicity effects. The SOD,CAT, GST and CarE among enzymatic system in larval chironomid could respond to the stress of substituted benzene and were in a concentration- and time-dependent way. Therefore, these four biochemical markers can be used to monitor the environmental quality of water.
引文
[1]刘红霞,花翅摇蚊乙酰胆碱酯酶生化特性及其在水质检测中的应用.博士学位论文,2006:10-25
    [2]陈传平,张庭廷,何梅,等.苯胺、苯酚对淡水藻类生长的影响.应用生态学报,2007,18(1):219-223
    [3]Saha N C,Bhunia F,Kaviraj A.Toxicity of phenol to fish and aquatic ecosystems. Bull Envi-rion Contam Toxicol,1999(63):195-202.
    [4]周文敏,傅德黔,孙宗光.中国水中优先控制污染物黑名单筛选程序.中国环境监测,1990,6(4):1-3
    [5]周丐州.部分芳香类有机污染物的QSAR的研究.兰州大学硕士学位论文,2009:1-4
    [6]崔玉川,傅涛.我国水污染及饮用水源中有机物染物的危害.城市环境与城市态,1998,11(3):23-25
    [7]王晓燕,尚伟.水体有毒有机污染物的危害及优先控制污染物,首都师范大学学报(自然科学版),2002,23(3):73-78
    [8]Fisher T,Crane M,Callaghan A. An optimized microtiter plate assay to detect aceyylcholine sterase activity in individual Chironomus riparius Meigen. Environ Toxiccol Chem,2000,19:1749-1752
    [9]张彤,金洪钧.摇蚊幼虫的水生态毒理学研究进展.环境保护科学,1995,21(4):17-21
    [10]Callaghan A,Hiethe G,Fisher T. Effects of short time exposure to chlorpyrifos on biochemical be havioural and lifehistory biomarkers in Chironomus riparius Meigen. Ecotoxic Enviroen Saf,2001,59:19-24
    [11]徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报,1995,19(2):171-184
    [12]赵于丁,徐敦明,范青海,等.生物标志物在农药水生态毒理学中的应用的进展.江苏农业学报,2009,25(1):203—209
    [13]于瑞莲,胡恭任.环境化学中有机化合物毒性的SAR研究方法.环境科学与技术,2003,26(1):57-59
    [14]戴康.贝叶斯规整化神经网络预测苯取代物的毒性.中南民族大学学报(自然科学版),2007.26(2):32-35
    [15]肖乾芬,戴玄吏.取代苯对人体细胞的定量结构—遗传毒性研究.中国环境学.2005,25(1):18-22
    [16]Larry H K,Welliam A T.Priority pollutants.Environ.Sci.Techol,1979,13(4):416.
    [17]王子健,吕怡兵,王毅,马梅.淮河水体取代苯类污染及其生态风险.环境科学学报.2002,22(3):300-304
    [18]丁中海,杨怡,等.三种农药对斑马鱼的急性毒性和生物浓缩系数.应用生态学报,2004,15(5):888-890
    [19]Lu G H,Yuan X,Zhao Y H. QSAR study on the toxicity of substituted benzenes to the algae (Scenedesmus obliquus). Chemosphere,2001,44:437-440
    [20]Yang H,Tian C R,Li L.QSPR analysis of soil sorption coefficient for a group of fluorine contained aromatics. Environ Sci,1998,19 (6):49-51
    [21]崔长俊,翟平阳.松花江水质有机毒物生态污染防治.北方环境,2005,30:24-26.
    [22]Yang R S H.Some critical issues and conerns related to research advances on the toxicology of chemical mixtures.Environ.Health Perspeet,1998,106(sup4):1059-1063
    [23]张颖,酚类化合物对水生生物的毒性研究.东北师范大学硕士学位文,2002:1-5
    [24]Bliss C F.The toxicity of poisons applied jointly. Annals of Applied Biology,1939,26:585-591
    [25]WHO. Technic Report,1981,662:8-9
    [26]Plackett R L,Hewlett P S.Quantal responses to mixtures of poisons. Journal of The Royal Statistal Society B,1952,14:141-154
    [27]Faust M,Altenburger R,et al.Algal toxicity of binary combinations of pesticides. Bull Environ Contam ToxicoL,1994,53:134-141
    [28]纪云晶等.实用毒理学手册.北京:中国环境科学出版社,1993,37-55
    [29]Sprague J B,Ramsay B A.Lethal levels of mixed copper-zinc solution for juvenile salmon. Journal of the Fisheries Research Board of Canada,1965,22:425-432
    [30]Marking L L,Dawson V K.Method of assessment of toxicity or effieacy of mixtures of chemicals. Fish and Wildlife Service in Washington,1975,67:1-8
    [31]Marking,L L. Method for assessing additive toxicity of chemical mixtures.Aquatic Toxicology and Hazard Eavaluation,1977,634:99-108
    [32]Christensen E R,Chen C Y.Modeling of combined toxic effects of chemical,Harzard Assessment of Chemicals, NewYork:Hemispere Publishing,1989,6:125-186
    [33]苏丽敏,孟庆俊,袁星.苯胺和硝基苯胺对大型蚤(Daphnia magna)的联合毒性.环境科学研究,2002,15(6)42-44
    [34]Koneman H. Fish toxicity tests with mixtures of more thantwo chemicals:A proposal for a quantitative approach and experimental results. Toxicology,1981,19:229-238
    [35]Depledge M H,Fossi,M C.The role of biomarkers in environmental assessment Invertebrates.Ecotoxicology,1994,3:161-172
    [36]Fossi M C,Marsili L,Lenonizio C,et al.The use of non-destructive biomarker in Mediterranean Cetaceans:prelimniary data on MFO activity in skin biopsy.Marine Pollution Bullin,1992,24:459-461
    [37]Gadagbui B K M.and A.Goksoyr, CYP1A and other biomarker responses to effluents from a textile mill in the Volta River(Ghana)using caged tilapia (Oreochromis niloticus) and sediment exposed mudfish(Clarias anguillaris).Biomarkers.1996,1:252-261
    [38]王海黎,陶澍.生物标记物在水环境研究中的应用,中国环境科学,1999,19(5):421-426
    [39]Regoli F, Gorbi S, Frenzilli G, et al. Oxidative stress inecotoxicology:from analysis of individual antioxidants to a more integrated app roach. Mar Environ Res,2002,54:419-423.
    [40]王悠,姜爽,赵晓玮,等.2种有机污染物对鲈鱼生化标志物系统的影响及作用评价.环境科学,2010,31(3):801-806.
    [41]Bowen R E,Dep ledgeM H. Rap id assessment ofmarine pollution(RAMP).Mar Pollu Bull, 2006,53:631-639.
    [42]朱江.镉-菲复合污染物对安德爱胜蚓(Eisenia Andrei)和白线蚓(Fridericia bulbosa)的生态毒理学效应研究.上海交通大学博士学位论文,2008:23-25
    [43]Sarkar A,Ray D,Shrivastava AN,et al. Molecular biomarkers:their significance and application in marine pollution monitoring. Ecotoxicolog,2006.,15:333-340.
    [44]万斌.生态毒理学中生物标志物研究进展.国外医学卫生学分册,2000,27(2):110-114.
    [45]Kristin E, et al. Use of acetylcho linesterase activity to detect sublethal toxicity in stream invertebrates expo sed to low concentrations of organphosphate insecticides Aquatic Toxicology,1990,18(2):101-113
    [46]Tortelliv, Colares E.P.,Robaldo R.B.,et al. Use of cholinesterase activity in environmental monitoring:importance of kinetic parameters determination in Estuarine fish.Chemo fish.2006,65 (4):560-566
    [47]Bakry N M,Osman K A, Elaawad A F,et al. Biomonitoring of pesticide contamination from the pesticide industry Egypt Soc Toxicol,2001,24:107-111
    [48]Salles J B,Cunhabastosv L F,Silvafilho M VA novel butyryl cholinesterase from serum of Leporinus m acrocephalus,a Neotropical fish. Biochimie,2006,88 (1):59-68
    [49]闫建国,汝少国,王蔚久.效磷对黄鳝乙酰胆碱酯酶、羧酸酯酶和磷酸酶活性的影响.安全与环境学报,2006,6,6(3):61-63
    [50]Krisoff G, Guerrero NRV, Cochon AC. Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl. Aquatic Toxicology,2010,96:115-123
    [51]Schriever C A,Callaghan A,Biggs J P,et al.Freshwater biological indicators of Pesticide contamination.Enviroment Agency,2008:8-13
    [52]来有鹏,刘贤进,余向阳,等.羧酸酯酶和谷胱甘肽转移酶在农药安全性评价中的应用初探.江苏农业学报.2008,24(6):944-947
    [53]Pascual P,Pedrajas J R,Toribi F,et al. Effect of food deprivation on oxidative stress biomarke in fish(sparus aurata). Chemico-Biological Interact,2003,145:191-199
    [54]Oruc E O,Sevgiler Y,Uner N,Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comarative Pharmacology and Tox-icology. Part C,2004, 137(1):43-51
    [55]Zhang J F,Shen H,Wang X R,et al. Effects of chronic exposure of 2-42 dichlorophenol on the antioxidant svstem in liver of fresh water fish. Carasius Auratus Chemosphere,2004,55(2):167-174
    [56]Sole M,Porte C,Barcelo D,Vitellogen in Induction and Other Biochemical Responses in Carp,Cyprinus Carpio, After Experimental Injection with 17 Alphaethynylestradiol. Environ Pollution.2000,38:494-500
    [57]Bello S M,Franks D G,Stegeman J J, etal,Acquired resistence to ahreceptor agonists in a population of Atlantic Killifish (Fundulusheteroclitus)inhabiting a marine superfund Site: in vivo and invitro Studies on the Inducibility of xenobiotic metabolizing enzymes. Toxicol.Sci.2001,60:77-91
    [58]刘硕,周启星.抗氧化酶诊断环境污染研究进展.生态学杂志,2008,27(10):1791-1798
    [59]Vander O, B J,VermeulenN P E,Fish Bioaccumulation and Biomarkers in Enviromental Risk Assessmen:ta Review Environmental Toxicology and Pharmacology,2003,13:57-149
    [60]李修伟.摇蚊GSTs特性分析及雷公藤杀虫活性应用研究.西北农林科技大学博士学位论文,2009:14-15
    [61]孙兴宾,摇蚊幼虫生态学特征及其在水处理过程中去除技术研究.哈尔冰工业大学博士学位论文,2006:10
    [62]张恩楼,长江中下游地区典型湖泊摇蚊亚化石-湖水总磷定量模型研究.科学通报,2006,51(11):1318-1325
    [63]Lucia Guilhermino,Amadeu M.V.M Soares,Arselio P.Carvalho,et al.Acute effects of 3,4-dichloroaniline on blood of male wistar rats.Chemosphere,37(4):619-632
    [64]李铁军,郭远明,尤矩炬,等.苯酚、苯胺、氯苯和硝基苯对三疣梭子蟹Portunus tribetuberculatus(Miers)的急性毒性研究.现代渔业信息,2009,24(1):15-17
    [65]王宏,沈英娃,卢玲,等.几种典型有害化学品对水生生物的急性毒性.应用与环境生物学报,2003,9(1):49-52
    [66]郑先云,龙文敏,郭亚平,等.Cd-(2+)对红裸须摇蚊(Propsilocerus akamusi)的急性毒性研究.农业环境科学学报,2008,27(1):0086-0091
    [67]Munox M J,Tarazona J V.Synergistieeffect of two-and four-component combinations of thePolycyclic aromiatic hydrocarbons:phenanthrene,anttiracene,naphthalene,naphthalene and acenaphthene on Daphnia magna.Bull.Environ.Contam.Toxico,1993,50:363-368
    [68]Lewis M A.The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwawer and marine life.Wat Res,1993,26(8):1013-1023
    [69]Nirmalakllandan N, Arulgnanend V, et al.Toxicity of mixtures of organic chemicals to microorganisms. Wat Res,1994,28(3):543-551
    [70]Feron V J, Cassee F R, et al.Toxicology of chemical mixtures:international perspective,Environ Health perspect,1998,106(supplement,6):1281-1289
    [71]闫宾萍.镍、汞和五氯酚对摇蚊幼虫的毒性作用.青岛科技大学研究生学位论文,2006,12-14.
    [72]Fargasova A.sensitiviyt of Chironomus plumosus Larvae to,V5+,Mo6+,Mn2+,Ni2+,Cu2+and Cu+metal ions and their combinations.Contam.toxicol.1997,59:956-962
    [73]于瑞莲,林喜燕,胡恭任.酚类化合物对发光菌的联合毒性.华侨大学学报(自然科学版):2009(35):549-552
    [74]Kiyun Park,Jungan,Park,Jongkyu Kim,et al.Biological and molecular responses of Chironomus riparius(Diptera,Chrionomidae) to herbicide 2,4-D(2,4-dichlorophenoxyacetic acid).Comparative Biochemistry and Physiology,Part C,2010,151:439-436
    [75]Lee S W, Choi J. Multi-level ecotoxicity assay on the aquatic midge, Chironmus tentaans(Dipetera, Chironomidae) exposed to octacholorostyrene. Environmental Toxicology and Pharmacology,2009,28:269-274
    [76]宋志慧,陈天乙,刘如冰.三丁基锡对摇蚊幼虫的毒性作用,环境科学,1998,19(2):87-91.
    [77]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry,1976, 72 (2):248-254
    [78]Beauchamp C O, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamidae gels. Analytical Biochemistry.1971,44:276-287
    [79]Cohen GP, Dembieck D, Marcus J, et al. Measurement of catalase activity in tissue extracts. Analytical Biochemistry,1970,34:30-38
    [80]Habig WH, Pabst MJ, Jacob WB. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry,1974,249:7130-7139
    [81]Ibrahim H, Kheir R, Helmi S, et al. Effects of organophosphorus, carbamate, pyrethroid and organochlorine pesticides, and a heavy metal on survival and cholinesterase activity of Chironomus riparius Meigen. Bulletin of Environmental Contamination and Toxicology.1998.60:448-455
    [82]马红梅,陈海婴,柳小青,等.德国小蠊磷酸酯酶及谷胱甘肽-S-转移酶生化特性的变化与抗药性的关系研究.中国媒介生物学及控制杂志.2008.9(5):422-423.
    [83]Lee S B, Choi J. Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diphtera, Chironomidae). Environmental Toxicology and Chemistry,2006,25:3006-3014
    [84]王丽平,郑丙辉,孟伟.环境污染物对水生生物产生氧化压力的分子生物标志物,生态学报,2007,27(1):380-387
    [85]赵元凤,吕景才,宋晓阳,等.镉污染对鲢鱼超氧化物歧化酶和过氧化氢酶活性的影响.农业生物技术学报,2002,10(3):267-271
    [86]刘祎男,范学铭,阚晓微,等.苯、苯酚、硝基苯对水丝蚓的急性毒性及超氧化物
    [87]刘慧,王晓蓉,王为木,等.低浓度锌及其EDTA配合物长期暴露对鲫鱼肝脏锌富集及抗氧化系统的影响.环境科学,2005,26(1):173-176
    [88]瞿建宏,陈家长,胡耕东,等苯酚胁迫下罗非鱼组织中过氧化氢酶与谷胱甘肽-S-转移酶的动态变化.生态环境,2006,15(6):687-692
    [89]李响,刘征涛,沈萍萍,等.卤代酚类物质对抗氧化酶活性影响的研究及构效分析,环境 科学学报,2004,24(5):900-904
    [90]Koponen K,Lindstrom-Seppa P,Kukkonen J V K.Aecumulation Pattern and Biotransformation enzyme induction in rainbow trout embryos exposed to Sublethal aque-ous concentratations of 3,3,4,4-tetrachlorobiphenyl.Chemosphere,2000,40:245-253
    [91]Rao J V,Sublethal effects of an organophosphorus insecticide(RPR-Ⅱ)on biochemical parameters of tilapia,Oreochromis mossambicus.Comparative Biochemistry and physiology,Part C,2006,143:492-498
    [92]黄周英,陈奕欣,赵扬,等.三丁基锡对文蛤鳃酸性磷酸酶、碱性磷酸酶和Na+, K+ATP酶活性的影响.海洋环境科学,2005,24(3):56-59
    [93]Dyrby M.Light and heat sensitivity of red cabbage extract in soft drink model systems.Food Chemistry,2001(72):431-437
    [94]黎艳霞,杨俭美.4种杀虫药剂对大型蚤(Daphnia magna)的毒性和酶活性影响的比较.北京大学学报(自然科学版)),1997,33(2):197-202
    [95]李静.污染物对日本囊对虾(Marsupenaeus Japonicus)幼体摄食、消化酶和碱性磷酸酶活力的影响中国海洋大学硕士学位论文,2004,1-64
    [96]Lam P K S, Gray J. The use of biomarkers in environmental monitoring programes. Mar Pollution Bull,2003,46:182-186
    [97]Galloway T S,Brown R J, Browne M A, et al. A multi biomarker approach to environmental assessment [J]. Environ Sci Technol,2004,38:1723-1731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700