鸡毒霉形体HS株TM-1和mgc3基因的表位预测及原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡毒霉形体(Mycoplasma gallisepticum,MG)是鸡慢性呼吸道疾病的病原菌,世界各地均有MG的感染和流行,虽然不直接引起禽的大规模死亡,但疾病的慢性、迁延性流行过程可引起产蛋率下降、孵化率降低、出栏期延长及饲料利用率降低,每年给世界养禽业造成了巨大的经济损失。
     目前MG的诊断方法主要有病原的分离鉴定、血清平板凝集试验、PCR和EHSA等方法,但上述方法由于耗时或操作复杂或需要昂贵仪器等缺点,难以在基层推广应用,因此MG新型的快速诊断也成为该病急需解决的问题之一。胶体金免疫层析快速检测MG的方法简便、快速、直观,但是研制抗不同抗原表位的单克隆抗体是该方法建立的重要前提。本研究对MG菌体保护性蛋白TM-1和mgc3基因的表达及抗原表位进行了探讨,旨在为ELISA方法、胶体金免疫层析法快速检测方法及基因工程抗原疫苗的研制提供理论依据,主要展开了以下研究。
     1.鸡毒霉形体保护性抗原基因TM-1和mgc3的克隆
     参照NCBI收录的TM-1和mgc3基因序列设计引物,以MG基因组为模板,扩增出TM-1和mgc3,经测序,所获得的TM-1基因为819bp;mgc3基因为3186bp。
     2.TM-1和mgc3基因序列的分析及抗原表位的预测
     TM-1基因测序结果在NCBI数据库中BLAST比对,与S6株同源性为99%,其中103-134bp和135-166bp为重复序列,抗原表位及二级结构的预测参数综合分析,该重复区具有强抗原表位活性;与R株有两个同源性序列,同源性分别为91%和93%。对mgc3基因的全基因序列BLAST比对,得到三条同源性达99%的序列,此外还有三条序列只与mgc3基因的1-1300bp具有同源性,分别是99%、98%和91%。选取了HS株的mgc3基因1000-3186bp的区域进行抗原表位软件预测,得到1142-1440bp、1704-2169bp、2165-2521bp和2507-2835bp区域具有较强的抗原活性。它们不仅亲水性、表面可及性、抗原性参数较高,而且每段序列的上下游引物都包含了该区的所有突变位点;MG-HS株的mgc3基因中还有10个编码色氨酸TGA的位点。
     3.鸡毒霉形体TM-1和mgc3基因抗原表位区的原核表达及其活性鉴定
     将经过分析的含有高免疫活性的目的片段亚克隆到表达载体pGEX-KG,经转化、诱导后获得表达蛋白,SDS-PAGE分析表明融合表达的蛋白分子量分别约为55KDa、37KDa和44 KDa。Western blot印迹证明表达蛋白均具有免疫学活性。说明表达蛋白可用于免疫诊断和也为基因工程亚单位疫苗的研制奠定了基础。
Mycoplasma gallisepticum is the aetiologic agent of chronic respiratory disease inchickens.The diseases caused by MG in chickens break out around the world, whichmainly led to high unhealthy chicken rate and egg production of layer dropped, feedconversion efficiency reduced. Infection of MG don't cause large scale death of chickendirectly but it lead to heavier economy loss in chicken firm indirectly all of the world.
     At present, the main of normal methods for MG-diagnosis, such as the isolation andidentification of thallus culture, serum plate agglutination (SPA), polymerase chainreaction (PCR) and enzyme linked immunosorbent assay(ELISA), are limited in spotapplication because of their time-consuming, complicated manipulation or requitingexpensive instruments. The development of rapid diagnosis for MG has become one ofthe problems need to be solved urgently. Gold-immunochromatographic assay (GICA) isconvenient, rapid and direct-viewing. However, the preparation of monoclonal antibody(McAb) against the different epitopes is the prerequisite of GICA. The result of this studywill provide strong theoretical support for the development of the detceted method GICAand ELISA and the preparation of genetically engineering vaccine. The main contents andresults of research are summarized as following:
     1. Cloning of TM-1 and mgc3 genes coding the protective antigen of Mycoplasmagallisepticum
     According to published TM-1 and the mgc3 gene sequences MG in Genbank, primerswith restriction sites were designed and synthesized. The expectant fragments wereamplified from strain HS by common PCR.The sequence analysis showed that TM-landthe mgc3 genes consisted of 819 base pair(bp) and 3186 base pair respectively.
     2. Sequence analysis and epitope prediction of TM-1 and mgc3 by biologicalsoftware.
     The comparison of the TM-1 gene sequence amplified from MG-HS strain to othermycoplasma revealed that their homology were up to 99% with MG-S6 strain. The repeat sequences of TM-1 gene exists as the 103~134bp and 135~166bp in MG-HS strain. Itwas predicted that this epitope have strong antigenically by secondary structure analysis.A striking homology of DNA sequences between MG-HS and MG-R is up to 91% and93 % the sequence of TM-1 gene. It is confirmed that there are three gene sequenceswith high homology up to 99% by blasting of the entire mgc3 gene sequence betweenMG-HS and MG-R. Moreover there are three sequences present homology in front 1100bpof mgc3 gene between MG-HS and MG-S6, their homology is 99%, 98% and 91%respectively. So the 1000-3186bp sequences of mgc3 gene have been analysised andpredictied by software, we found four epitope regions, they are 142~1440bp、1704~2169bp、2165~2521bp and 2507~2835bp respectively. It is prognosed that they arestronge hydrophilic, surface accessible, antigenic. There are 10 TGA codons encodingtryptophan in mgc3 gene sequence.
     3. The expression of MG-HS TM-1 and epitopes of mgc3 in E.coil BL21 (DE3) andthe identification of biologic activity of the expressed protein
     The fragments of TM-1 and mgc3-P1, ngc3-P1 were subcloned into prokaryoticexpressing vector pGEX-KG and expressed induced by IPTG in E. coli B121. Analyzed bySDS-PAGE and western blotting, 29Ku, MGC3-P1 and MGC3-P2 fusion proteinspresented immunogenicity with 55 KDa,37 KDa and 44KDa proteins respectively.
引文
1.毕丁仁.禽源霉形体的分离和鉴定.中国兽医科技,1989,12:49-52
    2.毕丁仁,吴世钦,吴锦.用血细胞吸附抑制试验快速鉴定鸡毒霉形体。中国兽医科技,1990,1:29-31
    3.毕丁仁,许青荣,王桂枝.鸡毒霉形体HS株的病原性研究.中国畜禽传染病,1997,No.5:24-26
    4.毕丁仁,王桂枝编著.动物霉形体及研究方法(第一版).北京:中国农业出版社.1998
    5.毕丁仁,屈小玲,李自力,赵雅心,戴大章.鸡毒霉形体人工感染肉用仔鸡后呼吸系统的病理形态学观察.中国兽医科技,1999,29(6):7-10
    6.陈兴,王更银,丛爱丽.人DAO氨基酸序列片段B2细胞表位的多参数预测.免疫学杂志,2000,16(3):232-234
    7.邓显文,谢芝勋,刘加波.广西鸡毒霉形体血清学调查.广西畜牧兽医,1990,13(1):22-24
    8.邓显文,谢芝勋,唐小飞,谢志勤,庞耀珊,廖敏,刘加波,何竞铭.聚合酶链反应检测鉴别鸡毒霉形体强毒株和弱毒疫苗株的研究.中国兽医科技,2003,33(9):7-11
    9.邓显文,谢芝勋,谢志勤,唐小飞,刘加波,廖敏,庞耀珊.应用PCR-RFLP分析鉴别广西鸡毒霉形体.中国兽医科技,2004,34(3):41-44
    10.丁铲,丁圣青,刘晓文.败血支原体16S rRNA基因的克隆与核酸序列分析.中国预防兽医学报,1999,21(2):134-136
    11.丁建民.鸡毒支原体免疫研究进展.辽宁畜牧兽医,2004,(6):4445
    12.于圣青,丁铲,周怀军,刘晓文,徐步.应用RAPD对鸡败血霉形体DNA多态性的研究.中国兽医学报,1999,Vol.19,No.3.261-263
    13.丁银巧,乌尼,郝永清,周雨霞.内蒙古地区鸡源霉形体的分离和鉴定.内蒙古农牧学院学报,1998,19(1):3641
    14.段晓冬,毕丁仁.四种禽源支原体核酸限制性酶切图谱分析.中国畜禽传染病,1998,20(3):146-148
    15.傅先强.控制鸡霉形体病的新思路.中国家禽,2000,22(8):5-6
    16.郭建华,陈明勇,陈德威.应用Dot-ELISA检测鸡毒支原体血清抗体.中国兽医杂志,1998,24(1):10-11
    17.郭锐.鸡毒霉形体的分离鉴定及其16S/23S rRNA基因间隔区、TM-1基因序列差异分析[硕士学位论文],武汉:华中农业大学,2006
    18.郝永清,王秀青,周艳君,童光志,高金亮,赵振华,乌尼.鸡毒霉形体TM-1基因原核表达载体的构建及表达.中国兽医科技,2004,34(4):18-20
    19.胡思顺,李自力,肖运才,刘梅,毕丁仁,石德时,许青荣,程峰.鸡毒霉形体粘附素蛋 白基因的可隆和表达研究.中国微生物学术年会兽医微生物专业委员会学术年会论文集(2003),331-333
    20.冀锡霖,宁宜宝.鸡感染鸡毒霉形体和滑液霉形体情况的调查.中国兽医科技,1986,(4):16-18
    21.李自力,毕丁仁.禽源霉形体细胞蛋白SDS-PAGE电泳分析.中国兽医科技,1998,28(2):27-29
    22.李自力.禽源霉形体细胞蛋白SDS-PAGE分析.[硕士学位论文].武汉:华中农业大学.1999
    23.刘晓文,丁铲,于圣青,徐步,苏秀文,莫惠.SPF鸡人工感染鸡败血霉形体后呼吸系统的病理变化.中国家禽,2001,23(24):13-14
    24.吕凤林,朱锡华.人C5aR(CD88)序列结构分析及其B细胞表位预测.免疫学杂志,1998,14(3):153-156
    25.吕凤林,巫振洪,李元朝.人C5a B细胞表位的设计及其单克隆抗体的结合.中华微生物学和免疫学杂志,2003,23(10):764-765
    26.毛华伟,赵晓东,杨锡强.人偏肺病毒黏附蛋白的二级结构及B细胞表位初步预测.中华微生物学和免疫学杂志,25(13):1031-1034
    27.苗得园,陈德威,张培君,王栋,龚玉梅,陈小玲.鸡毒支原体株间结构蛋白及其抗原性变异的比较研究.畜牧兽医学报,2000,31(3):255-261
    28.苗得园,张培君,龚玉梅,杨兵.Dot ELISA检测副鸡嗜血杆菌血清抗体的研究.中国预防兽医学报,2000,21(1):52-54
    29.宁宜宝.鸡败血霉形体弱毒F株对鸡的致病性和免疫效力测定.中国兽医学报,1999.vol19.3:264-265
    30.牛建强,王正党,叶志远,王永辉,刘晓明.鸡源霉形体的分离和鉴定.中国兽医科技,2002,32(2):23-24
    31.潘树德,李学俭,沈国顺,刘明春,尹荣焕,陈晓月,赵玉军.鸡霉形体的分离鉴定.畜牧与兽医,2005,37(1):12-15
    32.屈小玲,毕丁仁.鸡毒霉形体感染的PCR检测方法的建立及应用.华中农业大学学报,1998,5:478-483
    33.任家琰,霍乃蕊,郭建华.应用PCR-RFLP分析鉴定鸡毒霉形体.畜牧兽医学报,1999,30(4):370-374
    34.沈青春,毕丁仁,翁长江,李自力,石德时,许青荣,程峰.鸡毒霉形体HS株pMGA多基因族序列分析.中国兽医学报,2003,23(3):243-246
    35.尚永丰,冀锡霖,使用斑点免疫结合试验在霉形体研究中的应用.中国兽医杂志,1991,17(8):3-6
    36.王玫,王柳,于力.用核酸探针诊断鸡毒霉形体和滑液霉形体感染.中国兽医科技,1996,26(2):19-20
    37.王文敬,李明,董文其.鼠疫耶尔森菌LcrV抗原B细胞表位的预测.中国地方病学杂志,2006,25(6):593-595
    38.王秀青.鸡毒支原体H 3株TM-1基因的原核表达与基因免疫的研究.[硕士学位论文],内蒙古农业大学,2004
    39.翁长江,毕丁仁,沈青春,李自力,石德时,许青荣,程峰.鸡毒霉形体HS株pMGA多基因族的研究.中国兽医学报,2003,23(2):149-152
    40.王新军,吴海玮,张兆松.应用因特网对SARS病毒M蛋白B细胞抗原表位的预测.南京医科大学学报,2003,23(6);558-561
    41.万涛,孙涛,吴加金。蛋白顺序性抗原决定簇的多参数综合预测.中国免疫学杂志,1997,13(6):329-333
    42.吴玉章,朱锡华.一种病毒蛋白B细胞表位预测方法的建立.科学通报,1994,(24):69-73
    43.吴玉章,刘茂昌,贾正才.HBV新型免疫原的设计、合成及免疫原性研究.第三军医大学学报,2000,22(10):919-923
    44.吴加金,李伍举,雷红星.核酸和蛋白质序列分析的软件系统-Goldkey.生物技术通讯,1994,5(4):189-193
    45.谢芝勋,庞耀珊,邓显文.应用多重聚合酶链反应检测鸡毒霉形体和滑液霉形体的研究.中国兽医科技,1999,29(10):9-11
    46.谢芝勋,谢志勤,邓显文,庞耀珊,廖敏,刘加波,唐小飞,何竞铭.用SDS-PAGE分析鸡毒霉形体广西分离株的结构蛋白.中国兽医科技,2003,33(2):41-43
    47.谢志勤,谢芝勋,邓显文,庞耀珊,廖敏,刘加波,唐小飞,何竞铭.用RAPD技术分析鸡毒霉形体广西分离株的DNA多态性.中国兽医科技,2003,33(4):26-29
    48.谢芝勋,邓显文,唐小飞,谢志勤,庞耀珊,刘加波,廖敏.9株鸡毒支原体29 Ku多肽基因的克隆与序列分析.中国预防兽医学报,2004,26(4):405-408
    49.杨百亮,赵翠萍,刘天生,李天俊.应用单克隆抗体AC-ELISA检测鸡蛋卵黄中鸡毒支原体.中国预防兽医学报,2001,23(1):50-52
    50.赵化民,幸桂香.鸡毒霉形体血凝抑制试验诊断方法的研究和应用.中国兽医科技,1996,26(5):25-27
    51.章辉,司进,朱荫昌。日本血吸虫病诊断分子B细胞表位的预测和鉴定.中国血吸虫病防治杂志,2006,18(1);19-24
    52.[美]B.W.卡尔尼克主编.高福,苏敬良主译.禽病学(第十版)北京:中国农业出版社,1999,239-258
    53.[美]J.D.May and S.L.Branton.支原体分离物的ELISA诊断法,李自力摘译.广西畜牧兽,1994,2:58
    54.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆试验指南.金冬雁,黎孟枫,侯云德等.第二版.北京:科学出版社,2002
    55. A.Athamana et al, Adherence of Mycoplasma gallisepticum Involves Variable Surface Membrane Proteins. Infection and Immunity, June 1997, p: 2468-2471
    
    56. Am it A G, M ariazza RA, Phillips SE, et al. Three-dimensional structure of an antigen antibody complex at 2.8 A resolution.Science, 1986,233 (4765): 747-753
    
    57. A nandarao R, Swam inathan S, Khanna N. The identification of immunodom inantlinear epitopes of dengue type virus capsid and NS4 a proteins using pinbound peptides. V irusRes, 2005,112 (122): 60-68
    
    58. Avakian A P, Kleven S H, Ley D H. Comparison of Mycoplasma gallisepticum strains and identification of integral membrane proteins with Triton X-114 by immunblotling. Vet Microbiol, 1991, 29:319-328
    
    59. Avakian A.P. Humoral immune response of turkeys to strain S6 and a variant Mycoplasma gallisepticum studied by immunoblotting, 1992, 36(1): 69-77
    
    60. Baseggio N, Glew M D, Markham P F, Whithear K G, Browning G F. Size and genomic location of the pMGA multigene family of Mycoplasma galliseptium.Microbiology,1996,142:1429-1435
    
    61. Benclna D, Kleven S H, Elfadi M G, Snol A, Dove P, Dorrer D & Russ, I. Variablc cxpression of epitopes on the surface of Mycopalsma gallisepticum demonstrated with monoclonal antibodies. Ariam patbol, 1994,23:19-36
    
    62. Bertil Pettersson, Karl-brik Johansson and Mathias Uhlen. Sequence Analysis of 16sRNA from Mycoplasma.by Direct.Solid-Phase.DNA.Sequencing. Environmental Microbiology, 1994, (7): 2456-2461
    
    63. Berzofsky JA. Intrinsic and extrinsic factors in protein antigenic structure. Science, 1985, 229 (4717): 932-940
    
    64. Blythe M.J, Doytch inova IA, F lower DR. JenPep. A databaseof quantitative functional pep tide data for immunology. Bio informatics, 2002,18 (3): 434-439
    
    65. Branton S L, H Gerlach, S H Kleven. Mycoplasma gallisepticum isolation in layers. poult sci, 1984,63: 1917-1919
    
    66. Calvin L, Keeler.Jr, Linda L.Hnatow, Patricia L, Whetzel and John E.Dohms. Cloning and Characterization of a Putative Cytadhsin Gene (mgcl) from Mycoplasma galliseptium. Infection and Immunity, 1996, May, 64:1541-1547
    
    67. Carli K T, Eyigor A. Real-time polymerase chain reaction for Mycoplasma gallisepticum in chicken trachea. Avian Dis, 2003,47(3): 712-717
    
    68. Chou P Y. Prediction of protein structural classes from amino acid composition. Prediction of Protein Structure and the Principles of Protein Conformation. New York: Plenum Press, 1990, 549-586
    
    69. Chou P Y, Fasman G D. Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology, 1978, 47: 45-148
    
    70. Claire M.Fraser, Jesnnine D.Gocayne, Owen White,Mark D, Adams and Rebecca A.Clayton, The Minimal Gene Complement of Mycoplasma genitalium. Science, 1995,270: 397-403
    
    71. Cy .Czifra, T.Tuboly, B .G. Sundquist.L, Stipkovits.Monoclonal antibodies to Mycoplasma gallisepticum membrane proteins. Avian Diease, 1993,37: 689-696
    
    72. Cynthia E. Romero-arroyo. Jarrat Jordan, Susan J.Peacock, Melisa J. Willby, Mark A.Farmer and Duncan C.Rrause. Mycoplasma pneumoniae Protein P30 is required for Cytadherence and Associated with Proper Cell Development. Jounal of Bacteriology, Feb, 1999, Vol.181. No4: 1079-1087
    
    73. Dallo.S.F, Horton.J.B and Baseman.J.B. Identification of P1 gene domain containing epitopes mediating Mycoplasma pneumoniae cytadherence. Journal Exp.Med, 1997.167: 718-723
    
    74. Dat M.H, Beh r C, Jouin H, et al Mimicking a conformational B cell epitope of the heat shock protein PfHsp7021 antigen of Plasmodium falciparum using a multiple antigenic peptide.Parasite Immunol, 2000,22 (11): 535-543
    
    75. David Yogev, Dimttry Menaker, A Surface Epitope Undergoing High-Frequency PHase Variation Is Shared by Mycoplasma galliseptium and Mycoplasma bovis. Infection and Immunity, 1994.62: 4962-4968
    
    76. Elmiro R.Nascimento, Richard Yamamoto, Kevin R, Herrick, Robert C.Tait. Polymerase Chain Reaction for Detection of Mycoplasma gallisepticum. Avian Dis, 1991,35: 62-69
    
    77. Emini E A, Hughes J, Perlow D, et al Induction of hepatitis A virus-neutralizing antibody by a virus2specific synthetic peptide. Journal of Virology, 1985,55: 836-839
    
    78. Ferreira-da-Cruzmde F, Giovanni-de-Simone S, Banic D.M,et al. Can software be used to predict antigenic regions in Plasmodium falciparum Peptides.Parasite Immunol, 1996,18(3): 159-161
    
    79. Forsyth.M.H, Mark E.tourtellotte and Steven J.Geary. Localization of an immunodominant 64KDa lipoprotein (LP64) in the membrance of Mycoplasma galliseptium and its role in cytadherence .Mol.Microbil, 1992,6:2099-2106
    
    80. Garcia M, Elfaki M G& Kleven S H. Analysis of the variability in expression of Mycoplarma gallisepticum surface antigens. Vel Microbiol, 1994,42:147-158
    
    81. Garnier J, Osguthorpe D J, Robson B. Analysis of the accuracy and implications of simple method for predicting the secondary structure of globular proteins. Journal of Molecular Biology, 1978,120: 97-120
    
    82. Gibbs P S, Kleven S H, Jackwood M W. Analysis and characterczation of Mycoplasma gallisepticum isolates from Pennsylvania. Avian Dis, 1993, 38: 475-482
    
    83. Hana C.Hyman. DNA Probes for Mycoplasma gallisepticum and Mycoplasma synoviae: Application Experimentally Infected Chickens. Veterinary Micobiology, 1989, 20: 323-337
    84. Julia M.Inamine, Kuo-chieh Ho, Steve Loechel,and Ping-chuan Hu. Evidence that UGA is read as a Tryptophan Codon rather than as a stop codon by Mycoplasma gallisepticum. Jounal of Bacteriology. 1990, Vol 172, Nol: 504-506
    
    85. Jameson B A, Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants. CAB IOS, 1988,4:181-186
    
    86. Kevin Dybvin and Leroy L.voelker.Mycoplasma molecular biology. Microbiology Review, 1996. 50:25-57
    
    87. Kleven S H, Browning G F,Bulach D M, et al. Examination of Mycoplasma gallisepticum strains using restriction endonuclease DNA analysis and DNA-DNA hybridization.Avian Pathology, 1988,17: 559-570
    
    88. Kleven S H, M I Khan, Yamamoto.Fingerprinting of Mycoplasma gallisepticum isolated from multiple-age layers vaccined with live F strain. Avian Dis, 1990,34: 984-990
    
    89. Kolaskar A S, Kulkam i-Kale U. Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology, 1999, 261(1):31-42
    
    90. Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 1982,157:105-132
    
    91. Leka P, Timothy S. G, et al. The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R_(low). Microbiology, 2003,149:2307-2316
    
    92. Levisohn S, M.J.Dykstra. A quantitative study of single and mixed infection of the chicken trachea by Mycoplasma gallisepticum. Avian disease, 1987,31:1-12
    
    93. Li Liu, Payne D M, Vick L, Van S, Kevin D, Victor S P. A Protein (M9) Associated with Monoclonal antibody-mediated agglutination of Mycoplasma gallisepticum is a member of the pMGA family. Infect Immu, 1998,5570-5575
    
    94. Linda L.Hnatow et al. Characterization of MGC2,a Mycoplasma gallisepticum Cytadhesin with Homology to the Mycoplasma pneumoniae 30-Kilodalton Protein P30 and Mycoplasma genitalium P32. Infection and Immunity, 1998,3436-3442
    
    95. M.SGoh, T.S.Gotyon, M.H.Forsyth, K.E.Troy and S.J.Geary, Molecular and biochemical analysis of a 105KDa Mycoplasma gallisepticum cytadhesin (GapA). Microbiology, 1998, 144(11): 2971-2978
    
    96. Markham P F, Glew M, Brandon M R, et al. Characterization of a major hemagglutinin protein from Mycoplasma gallisepticum. Infect. Immun, 1991, 60: 3885-3891
    
    97. Markham P F, Glew M D , Whithear K G and Walker I D. Molecular Cloning of a Member of the Gene Family that Encodes pMGA, a Hemagglutinin of Mycoplasma galliseptium. Infection and Immunity, 1993, 61(3): 903-909
    98. Marois C, Savoye C, Kobisch M., Kempf I.A reverse transcription-PCR assay to detect viable Mycoplasma synoviae in poultry environmental samples .2002, 89 (1): 17-28
    
    99. Michelle D.Glew, Philip F.Markham, Glenn F.Browning and Lan D,Walker..Expression studies on four members of the pMGA multigene family in Mycoplasma galliseptium S6. Microbiology, 1995,141: 3005-3014
    
    100. Michelle D.Glew Nina Baseggio,Philip.F.Markham,Glenn F.Browning and Ian D.Walker, Expression of the pMGA Genes of Mycoplasma gallisepticum Is Controlled by Variation in the GAA Trinucleotide Repeat Lengths within the 5' Noncoding Regions. Infection and Immulogy, 1998, 5833-5841
    
    101. Nina Baseggio, Michelle.D.glew, Philip.F.Markham, Kevin.GWhithear and Glenn F.Browning. Size and genomic location of the pMGA multigene family of Mycoplasma galliseptium. Microbiology, 1996,142:1429-1435
    
    102. P.F.Markham, M.D.Glew, K.G.Whithear and I.D.Walker. Molecular Cloning of a Member of the Gene Family that Encodes pMGA, a Hemagglutinin of Mycoplasma galliseptium. Infection and Immunity, 1993, Mar. 61: 903-909
    
    103. Philip F. Markham , Michelle D.Glew, Glunn F.browning and Lan D.Wslker. Expression of two Members of the pMGA Gene Family of Mycoplasma gallisepticum Oscillates and Is Influenced by pMGA-Specific Anibodies. Infection and Immunity, 1998, June: 1845-2853
    
    104. Papazsi L,Troy K E, Gorton T S, Liao X, Geary S J. Analysis of cytadherence-deficient, GapA-negative Mycoplasma gallisepticum strain R. Infect Immu, 2000, 68 (12): 6643-6649
    
    105. Pellequer JL , Westhof E, Van Regenmortel M.H. Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol L ett, 1993,36 (1) : 83-99
    
    106. Petzke MM, Suri PK, Bungiro R, et al. Schistosoma mansoni gene GP22 encodes the tegumental antigen sm25: (1) antibodyies to a predicted B-cell epitope of Sm25 cross-react with other candidate vaccine worm antigens; (2) characterization of a recombinant product containing tandem-repeats of this peptide as a vaccine. Parasite Immunol, 2000,22 (8): 381-395
    
    107. Ralf Himmelreich, Helmut Hilbert,Helga Plagens,Eisbeth Pirkl,Bi-Chen Li and Richard Herrmann, Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Research, 1996, Vol24, No.22.4420-4449
    
    108. Razin S. Mycolasma taxonomy studied by electrophoresis of cell proteins. Bacteriol, 1996, 96: 687-694
    
    109. Shigeto Y , Ayumi F, Yoshinari T, et al. Identification and Expression of a Mycoplasma gallisepticum Surface Antigen Recognized by a Monoclonal Antibody Capable of Inhibiting Both Growth and Metabolism. Infection and Immunity, 2000, 28(6): 3186-3192
    
    110. Shuji Saito, Ayumi Fujisawa, Setsuko Ohkawa, Nobukazu Nishimura, Takaharu Abe, Kazumi Kodama, Kouicghi Kamogawa, Sigemi Aoyama, Yosikazu Iriani, Yoshiyuki Hayashi. Cloning and DNA sequence of a 29 kilodalton polypeptide gene of Mycoplasma gallisepticum as a possible protective antigen. Vaccine, 1993,11 (10): 1061-1066
    
    111.Tajima, M.,Yagihashi,T.and Miki,Y. Capsular material of Mycoplasma gallisepticum and its possible relevance to the pathogenic process. Infect and Immunology, 1982, 36: 830-833
    
    112. Talkington F D, S H Kleven, J Brown. An enzyme-linked immunosorbent assay for the detection of antibodies to Mycoplasma gallisepticum in experimentally infected chickens. Avian Dis, 1985, 29:53-70
    
    113. Van Regenmo rtelMH, Pellequer JL. Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem. Pept Res, 1994,7 (4): 224-228
    
    114. Van Roekel, H M lesiuk. The etiology of chronic respiratory disease proc 90~(th). New York :Annu Meet Am Vet Med Assoc, 1953, 289-303
    
    115. Winner F, R.Rosengarten, C.Citti. In vitro cell invasion of mycoplasma gallisepticum. Infect Immun, 2000, 68: 4238-4244
    
    116. Waine GJ, Mazzer DR, Brand ER, et al. A dominant B-cell epitope on the 22 KDa tegumenttal membrane-associated antigen of Schistosom a japonicum maps to an EF-hand calcium binding domain. Parasite Immunol, 1997,19 (8): 337-345
    
    117. Zimmerman J M, Eliezer N , Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Bio 1,1968, 21 (2): 170-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700