废胶粉的生物法与化学法脱硫再生技术、机理及结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物法脱硫是利用与硫有代谢能力的菌体,定向诱发硫化橡胶的硫交联键断裂,达到再生废橡胶的目的。这是近年来发展的一种新的无污染的废胶回收方法。符合国家保护环境和持续发展的科学发展理念。
     本论文自培养、筛选、驯化了四种菌体(氧化亚铁硫杆菌、排硫硫杆菌、鞘氨醇单胞菌和酵母菌),研究了各种菌体的生长工艺条件;考察了弹性体和橡胶助剂对菌体的毒性;确定了四种菌剂分别与废胎面胶粉共培养脱硫的工艺条件、培养基配方、接种量等,用四种菌体分别对废轮胎胎面胶粉进行脱硫再生实验;通过测定脱硫后废胶粉表面的化学基团、元素含量、结合能状态和溶胶含量的变化及脱硫胶粉与橡胶共混胶料的加工性能、综合使用性能和形态结构,系统评价了废胶粉与菌体培养脱硫的效果,定量计算了胶粉脱硫后对胶料性能的贡献,为这种新的再生方法奠定了理论和应用基础。
     研究结果表明,天然橡胶、丁苯橡胶等对四种菌体的毒性很小,氧化锌和硫化促进剂对菌体有较高的毒性,因此脱硫过程必须采取先用乙醇对废胶粉解毒,然后再加入到已生长旺盛的菌体培养液中进行脱硫再生的工艺;氧化亚铁硫杆菌最佳脱硫时间为20天。培养基中Fe2+浓度为9K培养基的25%,脱硫效果显著。其能将胶粉表面的S代谢为硫盐,对胶粉表面的共轭C=C双键有一定的破坏作用,经脱硫后,胶粉表面的S元素含量下降了52.8%,溶胶份数增大了58%;排硫硫杆菌与废胶粉共培养脱硫7天后培养基中的S2-2O3消耗殆尽,但菌体还可维持较高的生物量,说明菌体可以利用废胶中的化合硫。继续培养20天后,胶粉表面的S含量下降了40.6%, S-S键和S-C键分别减少了18.3%和42.3%,在脱硫胶粉表面形成了S=O基团,脱硫胶粉的溶胶份数增大了46.7%。还发现该菌可将胶粉表面的C=C氧化为C=O键,有氧化降解的功效;鞘氨醇单孢菌是个相对比较温和,对环境耐受程度较高的首次培育的新菌种,采用置换培养基工艺,鞘氨醇单孢菌与胶粉共培养脱硫25~50天,胶粉中部分硫交联键被氧化生成亚砜S=O基团,部分亚砜基团继续被氧化生成砜O=S=O基团,该菌也能氧化破坏部分C=C键生成C=O基团。脱硫的胶粉表面S元素含量下降了22.9%,溶胶份数增大了85%;酵母菌代谢产物G-SH也有定向对废胶粉脱硫的效果,共培养脱硫6天后,胶粉表面S-S键明显减少,而S-C键保持不变。脱硫胶粉硫含量减少了56%,脱硫胶粉的溶胶份数增大了55%。综合考虑,鞘氨醇单胞菌对废胶粉的脱硫再生效果更显著和经济。
     与原胶粉分别与天然胶和丁苯胶共混胶料比,四种菌剂脱硫再生获得的改性胶粉-橡胶共混胶料力学性能、动态力学性能得到明显改善,胶粉与基胶间的界面结合作用增强。
     用鲨鱼烯硫化交联产物作为硫化橡胶的模型化合物,揭示鞘氨醇单孢菌对化合硫的代谢-转变机理。培养基对模型化合物结构无影响,在培养基中接入菌剂后,模型化合物的颜色变浅。液相色谱-紫外(HPLC-UV)测试发现,脱硫后鲨鱼烯硫化交联产物的峰位明显降低;质谱测试进一步表明,鲨鱼烯硫化交联产物中单硫和双硫交联键略减少,三硫交联键明显降低,四硫键交联的模型化合物则消失。这充分证明鞘氨醇单孢菌对硫交联键,尤其是多硫键有代谢转变效果。
     使用工业中广泛应用的再生剂420脱硫再生废胶粉。脱硫过程即发生了主链断裂,又发生了交联键的断裂。胶粉总的交联密度和多硫交联密度降低,双硫交联键的密度略有减少,而单硫交联键的密度几乎保持不变。脱硫之后,胶粉的交联键主要为单硫键和多硫键。延长脱硫时间可以提高脱硫效果,最佳的脱硫温度为180℃。
Microbial desulfurization method uses bacteria which exhibit biologicalactivity towards sulfur to break down sulfur crosslinkds of vulcanized rubberso as to achieve the purpose of regeneration of waste rubber. It is a newmethod for recycling waste rubber in recent years and meets the nationalrequirements of scientific and sustainable development.
     In this paper, four different bacterias (Thiobacillus ferrooxidans,Thiobacillus sp., Sphingonomas sp., and Yeast) after culture, isolation, andidentification are used for ground tire rubber (GTR) desulfurization. Thetoxicity test about the growth of bacterias in presence of different elastomersand rubber additives are invested. The optimal conditions for each bacteriumco-cultured with GTR such as desulfurization process, medium formulation,pH values, and inoculum are researched. The desulfurization effect on GTR bybacterias is systematically evaluated through analysis of the chemical groups,element content, bonding energy, and sol fraction before and afterdesulfurization. The contribution to the properties of the rubber blend withdesulfurated GTR (DGTR) are quantitatively calculated though evaluation ofprocessing performance, integrated application performance, and morphologystructure. All these results settle the theory and application basis of this newrecycling method.
     The results show that the toxicity of natural rubber and styrene-butadienerubber is low to the bacterias. Zinc oxide and vulcanization accelerator havehigh toxicity to bacteria. Therefore, GTR must be taken a detoxification byethanol before desulfurization, and then added to medium with vigorousgrowing bacteria. Thiobacillus ferrooxidans has a good effect ondesulfurization GTR when co-cultured time is20days and Fe2+concentrationof medium is25%of9K medium. T. ferrooxidans can oxide sulfur on the surface of GTR to SO_4~(2-). A rupture of conjugated C=C bonds and a reductionof sulfur content by52.8%on the surface of GTR have occurred duringdesulfurization. The sol fraction of GTR increases by58%, from its original4.69%to7.43%. When Thiobacillus sp. is co-cultured desulfurization withGTR for7days, S2-2O3in medium has been exhausted and biomass can alsokeep a high level. It is revealed that bacteria can take advantage of sulfur onGTR surface. When continued co-cultured to20days, sulfur content on thesurface of GTR decreses by40.6%, and the content of S-S groups and S-Cgroups are respectivily reduced by18.3%and42.3%. S-O groups are formedon the DGTR surface. The sol fraction of GTR increases by58%.Thiobacillus sp. can oxide C=C bonds to C=O groups. Sphingomonas sp. is anew and relatively moderate strain with high environmental tolerance. It isfirst used for rubber desulfurization. Sphingonomas sp. is co-cultured withGTR for25-50days by replacement medium procress. After desulfurization,sulfur crosslinks are broken down to form S=O sulfoxide groups duringdesulfurization process, and partical sulfoxide groups are continuely oxidizedto form the sulfone O=S=O groups. Sphingonomas sp. can oxide C=C bondsto C=O groups. Sulfur content on the surface decreases by22.9%and solfraction increses by85%. G-SH, thiol-containing product generated duringYeast metabolism, can be used for the desulfurization regeneration of wasterubber. After desulfurization, sulfur content is reduced by56%, S-S groupsare increased by54%, and S-C groups remain unchanged. The sol fraction isincreased by55%. Though comprehensive consideration, desulfurizationeffect on GTR by Sphingonomas sp. is more remarkable and economy.
     Compared with rubber composites filled with GTR, DGTR filled rubbercomposites has better mechnical properties, dynamic mechnical properties,and improved interface between DGTR and rubber matrix.
     Sulfur crosslined squalene is used as a model of vulcanized rubbercompounds for revealing sulfur crosslink bonds metabolism mechanism bySphingomonas sp. Medium has no effect on the structure of modelcompounds. After inoculation of Sphingomonas sp., the color of the modelcompounds fades and the peak values of the model compounds aresignificantly reduced by Liquid chromatography-ultraviolet (HPLC-UV)test. Mass spectrometry furthur indicates that the monosulfide bonds anddisulfide bonds decrease slightly, trisulfide bonds decrease significantly and four-sulfur cross-linked model compounds disappeares. The relsutessuggest that Sphingomonas sp. indeed has desulfurization effect on GTRand mainly cut polysulfur cross-linked bonds during desulfurizationprocess.
     Desulfurization regeneration activitor420(RA420) is widely used forindustrial recycling waste rubber. Both main chain scissions and crosslinkscissions are ocuured during desulfurization process. The total amount ofcrosslink as well as the fraction of the polysulfidic crosslink obviouslydecreases, whereas the disulfidic crosslink slightly decreases and themonosulfidic crosslink remains constant. After reclaiming, the crosslinksstill present in waste rubber are mainly disulfide and monosulfidecrosslink. Extending the desulfurization time can increase thedesulfurization and the optimal temperature for desulfurization180°C.
引文
2003,3:3-6
    [2]邓海燕.废旧轮胎的几种综合利用途径[J].中国资源综合利用,2002,12:30-33
    [3]郑咸雅.国外废旧轮胎利用概况一瞥[J].中国资源综合利用,2004,7:18-24.
    [4]纪奎江莪国废旧橡皎循环利用产业发展新思路[J].中国轮胎资源综合利用,2011,6:23-26.
    [5] Klingensmith B. Recycling, production and use of reprocessed rubbers[J]. RubberWorld,1991,203:16-9.
    [6] Jana GK, Mahaling RN, Das CK. A novel devulcanization technology for vulcanizednatural rubber[J]. J. Appl. Polym. Sci.,2006,99:2831-2840
    [7]张萍,邓涛,许国玉.常温法精细硫化胶粉在轮胎胶料中的应用研究[J].橡胶工业,2001,48(10):596-602.
    [8]董城春.微波脱硫法生产再生胶[J].特种橡胶制品,2003,24(5):10-13.
    [9]叶春葆.废橡胶的微生物脱硫[J].世界橡胶工业,2007,34(3):34-37
    [10] Zhang XX, Lu CH, Liang M. Properties of natural rubber vulcanizates containingmechanochemically devulcanized ground tire rubber [J]. J. Polym. Res.,2009,16:411-419.
    [11] Novotny DS, Marsh RL, Masters FC, Tally DN. Microwave devulcanization of rubber.USA: Good year Tire and Rubber;1978[US:4104205].
    [12] Tyler KA, Cerny GL. Method of reducing pollution in microwave devulcanizationprocess. USA: Good year Tire and Rubber;1984[US:4459450].
    [13]李春田.八十年代国外再生胶工业生产技术概况[J].橡胶工业,1989,36(3):166
    [14]刘玉强.废旧橡胶脱硫方法新进展[J].废橡胶利用,2002,11:15.
    [15] Kumnuantip C, Sombatsompop N. Effect of reclaimed rubber content in NR/carbonblack vulcanizates using microwave irradiation system[J]. Antec.,2005,75:3211-3215
    [16] Pelofsky A H. Rubber Reclamation using Ultrasonic Energy[P]. US Patent, US3725314.1973-04-03
    [17]奥田昌本,渡多野保夫.橡胶超声波脱硫方法[P]. JP:62121714.1987-06-03
    [18] Hong C K, Isayev A I. Continuous ultrasonic devulcanization of carbon black-filledNR vulcanizates[J]. J. Appl. Polym. Sci.,2001,79(13):2340-2348
    [19] Massey J L, Jennifer C P, Wagler T A, Meerwall E, Hong C K, Isayev A I. Ultrasounddevulcanization of unfilled natural rubber networks, studied via component molecularmobility[J]. Polym. Inter.,2007,56(7):860-869
    [20] Scuracchio C H, Bretas R E S, Isayev A I. Blends of PS with SBR devulcanized byultrasound: rheology and morphology[J]. Journal of Elastomers and Plastics,2004,36(1):45-75
    [21] Roberson, Paul R. Method and apparatus for continuous de-vulcanization of rubber[P].USA5799880,1989-09-01.
    [22] Roberson, Paul R. Method and apparatus for continuous de-vulcanization of rubber[P].USA6095440,2000-08-01.
    [23]周瑞敏,刘兆民.辐射技术在橡胶硫化中的作用[J].核技术,2000,23(6):427-430
    [24]由莉.废旧丁基橡胶的辐射再生[J].天津橡胶,2000,(2):33-34
    [25] Hamid A, Schocke DA, Barry B. Process for recycling of rubber materials[P]. USA5904885,1999-03-18.
    [26]思明.横滨公司开发出废胶再生新技术[J].中国橡胶,2002,18(5):28.
    [27]徐僖,王琪.力化学反应器[P].中国,95111258.9,1996-09-11.
    [28] Zhang XX, Lu CH, Liang M. Preparation of rubber composites from ground tirerubber reinforced with waste-ttre fiber through mechanical milling[J]. J. Appl. Polym. Sci.,2007,103:4087-4094
    [29] Adhikari B, De D, Maiti S. Reclamation and recycling of waste rubber[J]. Prog. Polym.Sci.,2000,25(7):909-948
    [30] Bateman L, Hargrave K R. Oxidation of Organic Sulphides. II. Interaction ofCyclohexyl Methyl Sulphide with Hydroperoxides in Hydrocarbons[J]. Proc. R. Soc. Lond.A,1954,224(1158):399-411
    [31] Rajan, V V, Dierkes W K, Joseph R. et al. Science and technology of rubberreclamation with special attention to NR-based waste latex products[J]. Prog. Polym. Sci.,2006,31(9):811-834
    [32]刘安华,刘军.橡胶再生与再生剂的研究现状[J].橡胶工业,2003,7(50):441-444
    [33] Moore CG, Trego BR. Structural characterization of vulcanizates. Part IV. Use oftriphenylphosphine and sodium di-n-butyl phosphite to determine the structures of sulfurlinkages in natural rubber, cis-1,4-polyisoprene, and ethylene–propylene rubber vulcanizatenetworks[J]. J. Appl. Polym. Sci.,1964,8:1957-1983.
    [34] Saville B, Watson AA. Structural characterization of sulfur-vulcanized rubbernetworks[J]. Rubber Chem. Technol.,1967,40:100-148.
    [35] Bristow GM, Porter M. Structural characterization of vulcanizates. Part V.Determination of degree of chemical crosslinking of natural rubber gum vulcanizatenetworks[J]. J. Appl. Polym. Sci.,1967,11(8):904-909.
    [36] Parks CR, Pasrker DK, Chapman DA, Cox WL. Pendent accelerator groups in rubbervulcanizates[J]. Rubber Chem. Technol.,1970,43:572-587.
    [37] Studebaker ML. Lithium aluminum hydride analysis of sulfur-cured vulcanizates[J].Rubber Chem. Technol.,1970,43:624-650.
    [38] Studebaker ML, Nabors LG. Sulfur group analyses in natural rubber vulcanizates[J].Rubber Chem. Technol.,1959,32:941-961.
    [39] Gregg Jr EC, Katrenick SE. Chemical structures in cis-1,4-polybutadiene vulcanizates.Model compound approach[J]. Rubber Chem. Technol.,1970,43:549-571.
    [40] Selker ML, Kemp AR. Sulfur linkage in vulcanized rubbers[J]. Ind. Eng. Chem1.,1944,36:16-28.
    [41] Selker ML. Reaction of methyl iodide with sulfur compounds[J]. Ind. Eng. Chem1.,948,40:1467-1470.
    [42] Selker ML, Kemp AR. Sulfur linkage in vulcanized rubber. acetone extraction ofvulcanizates[J]. Rubber Chem. Technol.,1949,22:8-15.
    [43] Moore CG. The nature of the crosslinks in tetramethylthiuram disulfide–zincoxide–natural rubber vulcanizates[J]. J. Polym. Sci.,1958,32:503-506.
    [44] Manik SP, Banerjee S. Sulfenamide accelerated sulfur vulcanization of natural rubberin presence and absence of dicumyl peroxide[J]. Rubber Chem. Technol.,1970,40:1311-1326.
    [45] Webb, FJ, Cook, WS, Albert, HE, Smith, GEP. Arylamine sulfide catalysts inreclaiming GR-S vulcanizates[J]. Ind. Eng. Chem.,1954,46(8):1711-1715
    [46] De D, Das A, De D, Dea B, De SC, Roy BC. Reclaiming of ground rubber tire (GTR)by a novel reclaiming agent[J]. Euro. Polym. J.,2006,42:917-927
    [47] De D, De D, Singharoy G M. Reclaiming of ground rubber tire by a novel reclaimingagent. I. virgin natural rubber/reclaimed GRT vulcanizates[J]. Polym. Eng. Sci.,2007,47(7):1091-1100
    [48]麦尔斯,尼克森,莫伊尔.橡胶脱硫化方法[P].中国专利, CN96197899.6.2002-07-02
    [49]吴翠,廖小雪,陈荣风.废旧橡胶脱硫再生胶的研究方法[J].特种橡胶制品,2010,31(5):66-69.
    [50] Kawabata N, Nakagawa T, Nakao T, Yamashita S. Stereochemistry of thecycloaddition reaction of methylcarbenoid of zinc to cyclic allylic alcohols[J]. J. Org.Chem.,1977,42(18):3031-3035.
    [51] Sandip R, Ganesh C B, Pradip K M, Anil K B. New Route for Devulcanization ofNatural Rubber and the Properties of Devulcanized Rubber[J]. J. Polym. Environ.,2011,19(2):382-390
    [52] Yamashita S, Kawabata N, Sagan S. Reclamation of vulcanized rubbers by chemicaldegradation. V. Degradation of vulcanized synthetic isoprene rubber byphenylhydrazine-ferrous chloride system[J]. J. Appl. Polym. Sci.,1977,21(8):2201-2209
    [53] Kojima M, Ogawa K, Mizoshima H. Devulcanization of sulfur-cured isoprene rubberin supercritical carbon dioxide[J]. Rubber Chem. Technol.,2003,76(4),957-968.
    [54]葛佑勇,李晓林,辛晓,伍社毛,张立群.超临界二氧化碳中再生硫化天然橡胶的影响因素及脱硫效果[J].合成橡胶工业,2010,33(5):370-373.
    [55] Sekhar B C, Subramaniam A. Improvements in and relating to the reclaiming ofnaturel and synthetic rubbers[P]. Europe Patent, EP0748837A1,1996-12-18.
    [56] Tatiana W, Aline Z, Rosmary N B, Janiana S C. Grinding and Characterization ofScrap Rubbers Powders[J]. Journal of Elastomers and Plastics,2008,40(2):147-159.
    [57]周彦豪,尚贵才,胡丽萍,陈福林,童速玲,高琼芝.废旧橡胶再生剂的改进与机理的探讨[J].橡胶科技市场.2003,12:10-11.
    [58] Nicholas P. The scission of crosslinks in scrap rubber[J]. Rubber Chem. Technol.,1982,(55):1499-1515
    [59] Milani M, Schork F J, Liotta C L. Model compound studies of the devulcanization ofrubber via phase transfer catalysis[J]. Polym. React. Eng.,2001,9(1):19-36
    [60] Dinsmore H L, Smith D C. Analysis of natural and synthetic rubber by infraredspectroscopy[J]. Anal. Chem.,1948,20:11-24.
    [61] Kasai K, Watanabe T, Harada K. Reclaimed rubber[P]. JPN, JP77105951,1977-03-12.
    [62] Kawabata N, T Nakagawa, T Nakao, Yamashita S. Stereochemistry of thecycloaddition reaction of methylcarbenoid of zinc to cyclic allylic alcohols[J]. J. Org.Chem.,1977,42(18):3031-3035.
    [63] De D, Maiti S, Adhikari B. Reclaiming of rubber by a renewable resource material:Assessment of vulcanized SBR reclaiming process[J]. Kauts. Gummi. Kunst.,2000,53(6):346-351
    [64]熊晓红,周彦豪,陈福林,高琼芝. RRM再生废旧橡胶新技术[J].特种橡胶制品,2003,24(4):4-8.
    [65]袁博,王鹏,聂海珊,刘安华.柠檬皮汁作为橡胶再生剂的探讨[J].橡胶工业,2006,6:352-355.
    [66]王金,王鹏,袁博,刘安华.大蒜汁作为橡胶再生剂的研究[J].橡胶工业,2006,53(1):27-30.
    [67] Holst O, Stenberg, B, Christianssonet M. Biotechnological possibilities for wastetyre-rubber treatment[J]. Biodegradation,1998,9:301-310.
    [68] Torma A E, Raghavan D. Biodesulfurization of rubber materials[A]. BioprocessEngineering Symposium[C]. American Society of Mechanical Engineers, BioengineeringDivision,1990,16:81-87
    [69] Romine R A, Romine M F, Rubbercycle: a bioprocess for surface modification ofwaste tyre rubber[J]. Polym. Degrad. Stab.,1998,59:353-358
    [70] Axel K, Hans B, Fritz W. Chemical and Physical Characterization of Interfacial-ActiveLipids from Rhodococcus erythropolis Grown on n-Alkanes[J]. Appl Environ Microbiol,1982,44(4):864-870
    [71] Purdy R F, Lepo J E, Ward B. Biodesulfurization of organic-sulfur compounds[J].Current Microbiology,1993,27(4):219-222
    [72] Kilbane J J. Desulfurization of coal: the microbial solution[J]. Trends in Biotechnology,1989,7(4):97-101
    [73] L ffler M. Modifizierung von Altgummimehl durch mikrobielleOberfl chenentschwefelung Ein Beitrag zum stofflichen Recycling von Altgummi[D].Germany: der Mathematisch-Naturwissenschaftlich-Technischen Fakult t-FachbereichVerfahrenstechnik der Martin-Luther-Universit t Halle-Wittenberg,1998
    [74] L ffler M, Straube G, Straube E. Desulfurization of rubber by Thiobacilli[J].Biohydrometall. Symp.,1993,2:673–680
    [75] L ffler M, Neumann W, Straube E. et al. Microbial surface desulfurization of scraprubber crumb-a contribution towards material recycling of scrap rubber[J]. Kautsch.Gummi Kunstst.,1995,48(6):454-457
    [76] Neumann W, Lōffler M. Die folgenden angaben sind den vom anmelder eingereichtenunterlagen entnommen[P]. German pantent, DE19728036A.1999-07-01
    [77] Straube G, Straube E. Method for Reprocessing Scrap Rubber[P]. US Patent, US5275948A1.1994-01-04
    [78] Christiansson M, Stenberg B, Wallenberg L R. Reduction of surface sulphur uponmicrobial devulcanization of rubber materials[J]. Biotechnol. Lett,1998,20(7):637-642
    [79] Kim J K, Park J W. The biological and chemical desulfurization of crumb rubber forthe rubber compounding[J]. J. Appl. Polym. Sci.,1999,72(12):1543-1549
    [80]刘娟,刘春秀,王雅琴.发酵法生产GSH的研究进展[J].微生物学通报,2002,29(6):72-75.
    [81]王大慧,卫功元. GSH的应用前景及生产研究现状[J].化学与生物工程,2004,3:10-12
    [82]陈坚,卫功元,李寅.微生物发酵法生产GSH[J].无锡轻工业大学学报,2004,23(5):104-110.
    [83] Stevens S E Jr, Burgess W D. Microbial desulfurization of coal[P]. US patent,US4851350.1985-07-25
    [84]覃柳莎,赵素合,王雅琴,等.天然橡胶硫化胶粉的微生物脱硫初探[J].合成橡胶工业,2008,31(1):36-40
    [85]赵素合,覃柳莎,王雅琴,等.一种废旧橡胶的生物脱硫方法[P].中国专利,CN101289549A.2008-10-22
    [86] Sato S, Honda Y, Kuwahara M. et al. Microbial scission of sulfide linkages invulcanized natural rubber by a white rot Basidiomycete, Ceriporiopsis subvermispora[J].Biomacromolecules,2004,5(2):511-515
    [87] Fliermans C B. Microbial Processing of Used Rubber[P]. US Patent, US6479558B1.2002-11-12
    [88] Bredberg K, Persson J, Christiansson M. et al. Anaerobic desulfurization of groundrubber with the thermophilic archaeon Pyrococcus furiosus-a new method for rubberrecycling[J]. Appl. Microbiol. Biotechnol.,2001,55(1):43-48
    [89] Akio Tsuchii, Yutaka Tokiwa. Microbial degradation of tyre rubber particles[J].Biotechnol. Lett.,2001,23(12):963-969.
    [90] Akio Tsuchii, Yutaka Tokiwa. Microbial degradation of the natural rubber in tire treadcompound by a strain of Nocardia[J]. J. Polym. Environ.,2006,14(4):403-409.
    [91] A. Jenisch-Anton, Adam P, Michaelis W. et al. Molecular evidence for biodegradationof geomacromolecules[J]. Geochim. Cosmochim. Acta,2000,64(20):3525-3537
    [92] Helge B B, Kirsten K, Dieter J. Bacterial degradation of natural and synthetic rubber[J].Biomacromolecules,2001,2:295-303.
    [93] Yuichi I. Rubber powder treated with microorganism and rubber compositioncompounded with the rubber powder[P]. Japan patent, JP2006182952(A).2006-07-13
    [94] Nicholas C, Geoffrey M J. Rubber treatment method[P]. PCT patent,WO2004076492(A3).2004-10-14
    [95] Ram V R, Mithu D, Rintu B, Anil K B. Comparative studies on crosslinked anduncrosslinked natural rubber biodegradation by Pseudomonas sp.[J]. Bioresource Technol.,2006,97:2485-2488.
    [96]佟明友,马挺,张全, et al.利用休止细胞法选择性脱除燃料油中有机硫[J].环境科学,2005,26(1):24-27
    [97]马挺,王仁静,刘键,等.柴油循环生物脱硫的实验研究[J].炼油技术与工程,2004,34(1):52-54
    [98] Kodama K, Umehara K, Shimizu K. Microbial conversion of petro-sulfur compounds.Identification of microbial products from dibenzothiophene and its proposed oxidationpathway[J]. Agr. Biol. Chem.,1973,37(1):45-50
    [99] Monticello D J, Finnerty W R. Microbial desulfurization of fossil fuels[J]. AnnualReview of Microbiology,1985,39:371-389
    [100] Gary M K, David T G. Metabolism of Dibenzo-p-Dioxin and Chlorinated Dibenzo-p-Dioxins by a Beijerinckia species[J]. Appl. Environ. Microbiol.,1980,39(2):288-296
    [101] Takashi O, Yoshikazu I. Microbial desulfurization of organic sulfur compounds inpetroleum[J]. Biosci. Biotechnol. Biochem.,1999,63(1):1-9
    [102]侯影飞,孔瑛,李春虎,等. UP-3生物催化降解二苯并噻吩的机理[J].分子催化,2007,21
    [103]史德青,赵金生,侯影飞,等.石油生物催化脱硫菌Agrobacterium tumefaciensUP3的分离筛选[J].微生物学报,2004,44(2):248-250
    [104] Christiansson M, Stenberg B, Hōlst O. Toxic additives: A problem for microbialwaste rubber desulphurisation[J]. Resour. Environ. Biotechnol.,2000,3(1):11-21
    [105] Stevenson K, Stallwood B, Hart A G. Tire Rubber Recycling and Bioremediation: AReview[J]. Biorem. J.,2008,12(1):1-11
    [106] Asgher M, Bhatti H N, Ashraf M, Legge R L. Recent developments in biodegradationof industrial pollutants by white rot fungi and their enzyme system[J]. Biodegrada.,2008,19:771-783
    [107] Campbell D S, Saville B. Current principles and practices in elucidating structure insulfur vulcanized elastomers[A]. in: Proceeding of the International Rubber Conference[C].Brighton, UK:1967,1-14
    [108] Li S Y, Lamminmaki J, Hanhi K. Effect of ground rubber powder and devulcanizateson the properties of natural rubber compounds[J]. J. Appl. Polym. Sci.,2005,97(1):208-217
    [109] Horikx M M. Chain scissions in a polymer network[J]. J. Polym. Sci.,1956,19(93):445-454
    [110] Shultz A R. Crosslinking efficiencies in the methyl methacrylate-ethylenedimethacrylate and ethyl methacrylate-ethylene dimethacrylate systems. degradativeanalysis by electron Irradiation[J]. J. Am. Chem. Soc.,1958,80(8):1854-1860
    [111] Isayev A I, Yushanov S P, Kim S H. Ultrasonic devulcanization of waste rubbers:Experimentation and modeling[J]. Rheol. Acta,1996.35(6):616-630.
    [112] Sun X M. The devulcanization of unfilled and carbon black filled isoprene rubbervulcanizates by high power ultrasound[D]. USA:University of Akron,2007.
    [113] Flory, P J. Statistical Mechanics of Swelling of Network Structures[J]. J. Chem. Phys.,1950,18(1):108-111.
    [114] Flory P J, Rehner Jr. Statistical Mechanics of Cross-Linked Polymer Networks I.Rubberlike Elasticity[J]. J. Chem. Phys.,1943,11(11):512-520.
    [115] Mark J E. Polymer Data Handbook[M]. Fourth edition. Cincinnati,1998,614.
    [116] Mark J E. Polymer Data Handbook[M]. Fourth edition. Cincinnati,1998,983.
    [117]张传福等.氧化亚铁硫杆菌生长延迟期的影响因素[J].中南工业大学学报,1999,30(5):489-492
    [118]梅健,陶秀祥,袁鹏慧.高铁离子浓度环境下氧化亚铁硫杆菌的生长行为[J].选煤技术,2007,3:14-16
    [119] Cundell A M, Mulock A P, Hills D A. The influence of antioxidants and sulfur levelon the microbiological deterioration of vulcanized rubber[J]. Rubber J.,1973,155:22-25.
    [120] Shelton J R, Koneing J L, Coleman M M. Raman Spectroscopic Studies of theVulcanization of Rubbers. II. Raman Spectroscopic Studies as a Function of Cure Time.Rubber Chem. Technol.,1971,44:904-1013.
    [121] Koneing J L, Coleman M M, Shelton1J R, Starmer P H. Raman SpectrographicStudies of the Vulcanization of Rubbers. I. Raman Spectra of Vulcanized Rubbers. RubberChem. Technol.,1971,44:71-86.
    [122] Hulst R, Seyger R M, Duynhoven J P M, Does L V D, Noordermeer J W M, BanyesA. Vulcanization of Butadiene Rubber by Means of Cyclic Disulfides.3. A2D Solid StateHRMAS NMR Study on Accelerated Sulfur Vulcanizates of BR Rubber. Macromolecules,1999,32(22):7521-7529.
    [123] D.布里格斯.聚合物表面分析:X射线光电子能谱(XPS)和静态次级离子质谱(SSIMS)[M].曹立礼,邓宗武译.北京:化学工业出版社,2001.51
    [124] Moulder J F, Stickle W F, Sobol P E, Bomben K D. Hand book of x-ray photoelectronspectroscopy[M]. Eden Prairie, MO: Perkin Elmer Corporation Physical ElectronicsDivision,1992.
    [125] Yang, Y, Allen E R. Biofiltration control of hydrogen sul sulphide:2, Kinetics,biofilter performance and maintenance. J. Air Waste Manage.,1994,44:1315-1321.
    [126]布坷南R E,吉本斯N E.伯杰细菌鉴定手册(第八版)[M].中国科学院微生物研究所译.北京:科学出版社,1984,634-638.
    [127] Vishniac W, Santer M. The thiobacilli[J]. Bacteriological Reviews,1957,21(3):195-213
    [128] Vishniac W. The metabolism of Thiobacillus thioparus. I. The oxidation ofthiosulfate[J]. J. Bacterial.,1952,64(3):363-373
    [129] Pan P, Umbreit W W. Growth of obligate autotrophic bacteria on glucose in acontinuous flow-through apparatus[J]. J. Bacterial.,1972,109(3):1149-1155
    [130] Ismail H, Nordin R, Noor A M. Cure characteristics, tensile properties and swellingbehaviour of recycled rubber powder-filled natural rubber compounds. Polym. Test,2002(21):565-569.
    [131] Phadke A A, Bhowmick A K, De S K. Effect of cryoground rubber on properties ofNR. J. Appl. Polym. Sci.,1986(32):4063-4074.
    [132] Mathew G, Singh R P, Nair N R. et al. Use of natural rubber prophylactics waste as apotential filler in styrene-butadiene rubber compounds[J]. J. Appl. Polym. Sci.,1996,61(11):2035-2050
    [133] Cai M, Xun L. Organization and regulation of pentachlorophenol-degrading genes inSphingobium chlorophenolicum ATCC39723[J]. J. Bacteriol.,2002,184(17):4672-4680
    [134] Kobayashi T, Murai Y, Tatsumi K. et al. Biodegradation of polycyclic aromatichydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter frommanure compost[J]. Sci. Total Environ.,2009,407(22):5805-5810
    [135]盖忠辉,鞘氨醇单胞菌代谢硫氮氧杂环化合物机理研究[D].济南:山东大学,2008
    [136] Yang M Y, Li W M, Guo X X. et al. Isolation and identification of a carbazoledegradation gene cluster from Sphingomonas sp. JS1[J]. World J. Microbiol. Biotechnol.,2009,25(9):1625-1631
    [137] Habash M, Chu B C H, Trevors J T. et al. Mutational study of the role of N-terminalamino acid residues in tetrachlorohydroquinone reductive dehalogenase fromSphingomonas sp. UG30[J]. Res. Microbiol.,2009,160(8):553-559
    [138] Yamamoto S, Otsuka S, Murakami Y. et al. Genetic diversity ofgamma-hexachlorocyclohexane-degrading sphingomonads isolated from a singleexperimental field[J]. Lett. Appl. Microbiol.,2009,49(4):472-477
    [139] Tsuyoshi S, Tadayoshi K, Hirotaka F. Isolation and identification of an iron-oxidizingbacterium which can grow on tetrathionate medium and the properties of atetrathionate-decomposing enzyme isolated from the Bacterium[J]. Journal of fermentationand bioengineering,1996,82(3):233-238.
    [140] Roy R V, Das M. Banerjee R. et al. Comparative studies on rubber biodegradationthrough solid-state and submerged fermentation[J]. Process Biochem.,2006,41(1):181-186
    [141] Pandey R A, Raman V K, Bodkhe S Y. Microbial desulphurization of coal containingpyritic sulphur in a continuously operated bench scale coal slurry reactor[J]. Fuel,2005,84:81–87
    [142] Acharya C, Kar R N. Bacterial removal of sulphur from three different coals[J]. Fuel,2001,80:2207-2216
    [143]张翠茹,废橡胶的微生物再生研究[D].北京:北京化工大学生命科学与技术学院,2009
    [144] Vidal-Escales E, Borrós S. New methodology to follow the evolution of squaleneby-products during model compound vulcanization studies[J]. Talanta,2004,62:539–547.
    [145] Tobolsky A V. Properties and Structure of Polymers[M]. New York, Journal of theelectrochemical society,1960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700