智能计算方法在城市交通中的应用与交通流建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以城市交通为研究对象,包含两个部分的研究内容:一是智能计算在城市交通中的应用研究,内容涉及基于智能计算的城市交通流控制与短期城市交通流预测模型;二是交通流建模研究,内容涉及基于气体动力学的交通流模型研究。
     交通流运动具有随机性、离散性及较强的非线性。模糊控制、神经网络等现代人工智能技术,可以使人们在不表达交通系统精确模型的情况下,通过对问题的归纳与并行处理,为交通控制和交通管理提供依据。与此同时,由于计算机科学,尤其是计算机模拟技术的发展,可以使人们克服复杂数学推导的困难,从而使传统的数学与物理方法建立可靠交通流模型的研究与应用成为可能。
     本论文在广泛查阅各类文献的基础上,分别从上述两方面开展工作,符合当前交通流理论的研究方向,是交通流理论当前研究的热点与难点。论文的主要内容与创新点包括:
     1、以城市中心地带主干道典型的交叉路口为研究对象,提出了一种基于模糊逻辑的城市交叉口信号灯控制器,该控制器的设计思想基于误差闭环控制理论,在交通流中引入误差变化率概念,从而更为真实的反应了交警的人工智能活动。提出的控制策略具有很强的鲁棒性与抗系统时变性特点,可有效的提高交叉口相关区域内的道路使用率。
     2、将基于误差闭环控制的城市道路交叉口模糊控制器以神经网络的方法实现。设计研究的模糊神经网络控制器把神经网络的学习和计算功能带到模糊系统中,也可把模糊系统的思维规则和推理嵌入到神经网络中,引入模拟退火算法训练网络,使模糊控制器能够自行调整隶属度函数,弥补了模糊控制的不足,同时提高了网络的性能。
     3、进行了城市主干道多交叉口神经模糊控制器的研究与仿真,提出了一种基于模糊神经网络的新型城市道路多路口协调控制系统。该控制系统提取了“绿波带”的知识方法,并用模糊神经网络的方法实现,可以在设定的时段内自动对交通流各类信息进行汇总与统计,实时输出优化的城市干线交通控制协调控制配时方案。仿真研究表明,该控制系统可以充分利用交叉口空闲时空,使交通流以理想的饱和度值整体通过交叉路口,说明了模糊神经网络方法是解决城市交通大
Focusing on urban traffic, the paper includes two parts of research contents. The first is application research of intelligent computing on urban traffic, which deals with the control of urban traffic flow and the forecasting model of urban short-term traffic flow; The second is the research of traffic flow modeling, which deals with the traffic modeling based on gas -kinetic.
    Traffic flow has characteristic of randomicity, dispersion and stronger nonlinearity. Thanks to modern artificial intelligence technology such as fuzzy control, neural network, etc, now we can deal with traffic system via concluding and parallelly processing without expressing its exact model. At the same time , as a result of computer science, especially the development of computer simulation, the difficulty of complex maths derivation is overcame, makes it is possible to establish credible traffic flow model with traditional maths and physics methods.
    Referring to correlative literatures widely, two aspects of work above mentioned is carried out in the paper, which accords with current research direction of traffic flow theory and is the hotspot and the difficult spot in the field. The main contents and innovation points include:
    1, Aiming at urban arterial roads typical intersection, an intersection traffic signal controller based on fuzzy logic is presented. The design thought of this controller is based on error closed-loop control theory, the concept of error variety rate being introduced here. Then the artificial intelligence activities of the traffic police is reflected more factually. The presented control strategy has very strong robustness and anti-time-variety, can effectively improve the using rate of roads around the intersection.
    2, The fuzzy logic controller of urban intersection based on error close-loop control is carried out by the method of artificial neural networks. A Fuzzy Neural Network (FNN) controller is designed and researched in the paper, bringing the learning and calculating function into fuzzy system, as well as embedding the thinking and reasoning method of fuzzy system into neural network. The simulated annealing
引文
[1] 黄中祥,贺国光,马寿峰.对交通系统不确定性的思考[J].长沙交通学院学报,2002,18(1):77-81.
    [2] 张国伍.智能交通系统工程导论[M].北京:电子工业出版社,2003.9.
    [3] Bennett K. Combining support vector and mathematical programming methods for induction[M]. Advances in Kernel methods - SV Learning, Cambridge, MA, MIT Press, 1999:307-326.
    [4] Dasgupta D. Artificial immune systems and their application[M]. Spring-Verlag, 1999.
    [5] 黄忠华,刘振凯.智能混合系统研究综述[J].信息与控制.2000,29(1):59-64.
    [6] 史忠科,黄辉先,曲仕茹,陈小峰.交通控制系统导论[M].北京,科学出版社.2003.6
    [7] Zadeh L. A. Roles of soft computing and fuzzy logic in the conception, design and deployment of information/intelligent systems[J]. Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, 1998:1-9.
    [8] Furuhashi T. Development of if-then rules with the use of DNA coding. Fuzzy Evolutionary Computation[M], Kluwer Academic Publishers, 1997.
    [9] Hoffmann F. Soft computing techniques for the design of mobile robot behaviors[J]. Journal of Information Sciences, 2000,122(2-4):241-258.
    [10] Nauck D., Klawonn F. and Kruse R. Foundations of Neuro-Fuzzy Systems[M]. Wiley, 1997.
    [11] Nauck D. and Kruse R. New learning strategies for NEFCLASS[A]. Proceedings of Seventh International Fuzzy systems Association World Congress[C], Vol. Ⅳ, 1997:129-139.
    [12] Tano S., Oyama T. and Arnould T. Deep combination of fuzzy inference and neural network in fuzzy inference [J]. Fuzzy Sets and Systems, 1996,28(2): 151-160.
    [13] Juang C. F. and Lin C. T. An online self constructing neural fuzzy inference network and its applications[J]. IEEE Trans. on Fuzzy Systems, 1998,6(1): 12-32.
    [14] Greenwood G. W. Training partially recurrent neural networks using evolutionary strategies[A]. IEEE Trans. on Speech Audio Processing[C]. 1997, 5(1): 192-194.
    [15] Kasabov N. and Qun S. Dynamic evolving fuzzy neural networks with 'm-out-of-n' active nodes for online adaptive systems. Technical Report Tr99/04,Department of information science,University of Otago,1999.
    [16] Dasgupta D. Artificial immune systems and their applications[M].Spring-Verlag,1999.
    [17] Tazawa I., Koakutsu S. and Hirata H. An evolutionary optimization based on the immune system and its application to the vlsi floor-plan problem. Trans of the Institute of Electrical Engineers of Japan(Series C and in Japanese), 1997, 117(7):821-828.
    [18] Tazawa I., Koakutsu S. and Hirata H. An optimization method based on the immune system[A]. Proceedings of World Congress on Neural Networks, International Neural Network Society 1996 Annual Meeting[C], San Diego.CA,USA,1996: 1045-1049.
    
    [19]王磊,潘进,焦李成,基于免疫策略的进货算法[J]。自然科学进展, 2000, 10(5): 451-455.
    [20] Pippis C P, Mandani E H. A fuzzy logic controller for a traffic junction[J]. IEEE Trans on SMC. 1977, 7(10): 707-717.
    [21] Kelsey.R., K.Bisset, M.Jamshidi. A simulation environment for fuzzy control of traffic systems[A]. Proceedings of the Twelfth World Congress of IFAC[C], Sydney: Pergamon Press, 1993.553-556.
    [22] Nakatsuyama,M., H.Nagahashi, M.Nishizura. Fuzzy logic phase controller for traffic junctions in the one-way arterial road[A]. Proceedings of the Ninth Triennial World Congress of IFAC[C]. Oxford : Pergamon Press,1985,2865-2870.
    [23] Chiu, S and Chand, S. Adaptive traffic signal control using fuzzy logic[A]. Proceedings of the Intelligent Vehicles Symposium[C], Detroit, Michigan, USA, 1992,98-107.
    [24] J.Favilla, A.Machion, F.Gomide. Fuzzy traffic control: adaptive strategies[A]. Second IEEE International Conference on Fuzzy Systems[C]. San Francisco:IEEE Inc.,1993,(1):506-511.
    [25] R. Hoyer, U. Jumar. An advanced fuzzy controller for traffic lights[A]. Proceedings of the 1994 IFAC Artificial Intelligence in Real Time Control[C]. New York: Pergamon Press Inc., 1994,(19):67-72.
    [26] Mohamed B. Trabia, Mohamed S. Kaseko, Murali Ande. A two-stage fuzzy logic controller for traffic signals[J]. Transportation Research Part C 7 (1999): 353-367.
    [27] Niittymaki Jarkko, Riku Nevala. Fuzzy adaptive traffic signal control-principles and results[A], IFSA World Congress and 20th NAFIPS International Conference[C], 2001,5:2870-2875.
    [28] Niittymaki Jarkko. Installation and experiences of field testing a fuzzy signal controller[J], European Journal of Operational Research, 2001,131(2)273-281.
    [29] Niittymaki Jarkko, Tero Kosonen, Riku Nevala. Fuzzy Traffic signal control in Major Arterials[A], Proceedings 2001 IEEE Conference Intelligent Transportation Systems[C], Oakland, 2001,346-351.
    [30] 徐冬玲,方建安,邵世煌.交通系统的模糊控制及其神经网络实现[J],信息与控制,1992,21(2):74-79.
    [31] 陈洪,陈森发.单路口交通实时模糊控制的一种方法[J],信息与控制,1997,26(3):227-233.
    [32] 温慧英,尹宏宾,徐建闽.一种信号交叉口模糊交通控制方法[J],华南理工大学学报,2001,29(12):22-25.
    [33] 徐建闽,舒宁,尹宏宾.新型模糊控制算法在交叉口信号控制中的应用[J],华南理工大学学报[J],2000,28(6):1-5.
    [34] 刘智勇.单交叉口的多相位模糊控制[J],信息与控制,1999,28(6):453-458.
    [35] 洪伟,牟轩沁,王勇,秦中元,张立浩.交叉路网交通灯的协调模糊控制方法[J],系统仿真学报,2001,13(5):551-553.
    [36] M. Patel, N. Ranganathan. IDUTC: An intelligent decision making system for urban traffic control applications[J], IEEE Trans. on Vehicular Technology, 2002,50(3):816-829.
    [37] Ella Bingham. Reinforcement learning in neuron-fuzzy traffic signal control[J]. European Journal of Operational Research, 2001, 131(2):232-241.
    [38] J. W. Kim, B. M. Kim, J. Y. Kim. Genetic algorithm simulation approach deciding the membership functions of fuzzy traffic control[J]. Electronic Letters, 1998,34(20): 1982-1983.
    [39] T. H. Heung, T. K. Ko, Hierarchical fuzzy logic traffic control at a junction using genetic algorithm[A]. Proceedings of the 1998 IEEE International Conference on Fuzzy Systems[C], 1998,2:1170-1175.
    [40] Wu Wei, Mingjun Wang. Traffic signal control using fuzzy and neural network[A], IEEE International Conference on Systems, Man, and Cybernetics[C], 2001,2:1335-1340.
    [41] 杨立才,贾磊,赵建玉,钟麦英.基于粗集理论的交通控制系统研究[J].中国公路学报,2005,18(2):79-83.
    [42] 张立东,贾磊,赵建玉.混沌模糊交通控制器的设计[J].南京理工大学学报(自然科学版),2005,29(5A):203—205.
    [43] Vythoulkas P C. Alternative approaches to short term traffic forecasting for use in driver information[A]. University of Oxford. 12th International Symposium on the Theory of Traffic flow and Transportation: Transportation and Traffic theory[C]. Amsterdam: Elsevier Science, 1993: 485-506.
    [44] Hua J, Faghri A. Application of artificial neural networks to intelligent vehicle highway systems[A]. Transportation Research Records[C]. Washington D C: National Academy Press, 1994: 83-90.
    [45] Doughertty M S, Cobbett M R. Short-term inter-urban traffic forecasting using neural networks[J]. International Journal of forecasting, 1997,13:2-31.
    [46] Park B, Messer C J, Urbanik T. Short term freeway traffic volume forecasting using radial basis function neural networks [A]. Transportation Research Records [C]. Washington D C: National Academy Press, 1998: 39-47.
    [47] Cheu R-L. Freeway traffic prediction using neural networks[A]. Fifth International Conference on Applications of Advanced Technologies in Transportation Engineering[C]. Reston: ASCE Publications, 1998: 247-254.
    [48] Park D, Rilett L R, Han G.. Forecasting multiple period freeway link travel times using neural networks with expanded input nodes[A]. Fifth International Conference on Applications of Advanced Technologies in Transportation Engineering[C]. Reston: ASCE Publications. 1998: 325-332.
    [49] Park D, Rilett L. Forecasting multiple period freeway link travel times using modular neural networks[A]. Transportation Research Records[C]. Washington D C, National Academy Press, 1998: 163-170.
    [50] Rilett L R, Park D. Direct forecasting of freeway corridor travel times using spectral basis neural networks[A]. Transportation Research Records [C]. Washington D C: National Academy Press, 2001: 140-147.
    [51] Chen Haibo, Grant-Muller, Susan. Use of sequential learning for short term traffic flow forecasting[J]. Transportation Research Part C,2001,9(5):319-336.
    [52] Abdulhai B, Porwal H, Recker, W W. Short term freeway traffic flow prediction using genetically optimized time delay-based neural networks[R]. Irvine: University of California, Irvine, 1998.
    [53] Abdulhai B, Porwal H, Recker, W W. Short-term traffic flow prediction using neural genetic algorithms[J]. ITS Journal, 2002, 7(1):3-41.
    [54] Matsui H, Fujita M. Travel time prediction for freeway traffic information by neural network driven fuzzy reasoning[J]. Neural Networks in Transport Applications C. Brookfield: Ashgate Publishing Company, 1998, 355-364.
    [55] Yuan Zhenzhong, Li Weiyi, Liu Haidong. The forecast of dynamic traffic flow[A]. Proceedings of 2nd International Conference on Traffic and Transportation Studies[C]. Beijing: Northern Jiaotong University, 2000:507-512.
    [56] Yin H, Wong S C, Xu J, et al. Urban traffic flow prediction using a fuzzy-neural approach[J]. Transportation Research Part C,2002, 10(2):85-98.
    [57] Chang S C, Kim R S, Kim S J, et al. Traffic flow forecasting using a 3-Stage models[A]. Proceedings of the IEEE Intelligent Vehicles Symposiums[C]. New Jersey: IEEE Service Center, 2000: 451-456.
    [58] 赵建玉,贾磊,朱文兴,杨立才.干道交叉口交通信号的模糊控制设计[J].山东大学学报,2006,36(1):46-50.
    [59] 赵建玉,贾磊,李春梅.城市交通信号的模糊控制研究[J].济南大学学报,2005,19(2):120-123.
    [60] 李兆福.模糊神经网络及其应用[D],南京理工大学硕士论文,2003.
    [61] 李映.混合智能计算方法及其应用[D],西安电子科技大学博士论文,2002.
    [62] 向阳.龚新高.推广模拟退火方法及其应用[J].物理学进展,2000,20(3):319-334.
    [63] Kirkpatri S, Gelatt G D Jr, and Vecchi M P. Sciense, 1983,220:671.
    [64] Szu H, Hartley R. Phys. Lett., 1987,A122:157.
    [65] 赵建玉,贾磊,王旭东.城市主干道交叉口交通流的模糊控制[J].计算机工程与应用,2004,40(29):9-11.
    [66] 任福田、刘小明等译,美国交通研究委会员,《道路通行能力手册》(2000年版)[M].北京:人民交通出版社,2004年.
    [67] 乐寿长.道路交通控制[M].长沙:湖南科学技术出版社,1994
    [68] 刘智勇.智能交通控制理论及其应用[M].北京:科学出版社,2003
    [69] 刘智勇等,城市交通信号控制的进展.公路交通科技[J],2003,20(6):121-125.
    [70] 全永燊.城市交通控制[M].北京:人民交通出版社,1989.
    [71] 赵建玉,贾磊,杨立才,朱文兴.基于粒子群优化的RBF神经网络交通流预测.公路交通科技.2006,7:(清样).
    [72] 高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003.8
    [73] Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proceedings of IEEE International Conference on Neutral Networks[C], Perth, Australia, 1995. 1942-1948.
    [74] Shi Y H, Eberhart R C. A modified particle swarm optimizer[A]. IEEE International Conference on Evolutionary computation[C], Anchorage, Alaska, 1998, 69-73.
    [75] 刘钊,康立山,蒋良孝,杨林权.用粒子群优化改进算法求解混合整数非线性规划问题[J].小型微型计算机系统,2005,26(6):991-993.
    [76] 柯晶.钱积新,乔谊正.求解连续Minimax问题的粒子群优化方法[J].仪器仪表学报,2005,26(3):267-271.
    [77] 熊勇,路文初,刘继忠,胡上序.旋转曲面变换PSO算法解非线性最优控制问题[J].控制与决策,2005,20(4):474-477.
    [78] 赵波.曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):1-6.
    [79] Yoshida H, Kawata K, Yoshikazu F. A Particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. IEEE Transactionon Power System, 2000,15(4): 1232-1239.
    [80] Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments[A]. Proceedings of International Conference on Artificial Intelligence[C].USA:IEEE,2000.11-15.
    [81] ZHAO Jian-yu, JIA Lei, WANG Xu-dong. The Forecasting Model of Urban Traffic Flow Based on Parallel RBF Neural Network[A]. 2005 International Symposium on Intelligence Computation[C],Wuhan, 2005 :515-520.
    [82] S. Omatu, Marzuki Khalid, Rubiyah Yusof. Neuro-Control and its Applications [M]. Springer Publisher, 1996.
    [83] X. Li, W. Yu. Dynamic system identification via recurrent multilayer perceptions[J]. Information Science , 2002,147: 45-63.
    [84] J.-H. Horng. Neural adaptive tracking control of a DC motor [J]. Information Sciences, 1999,118:1-13.
    [85] H. Kirschner, R. Hillebr. Neural networks for HREM image analysis [J]. Information Sciences,2000,129 :31-44.
    [86] A.F. Sheta, K.D. Jong. Time-series forecasting using GA-tuned radial basis functions[J]. Information Science ,2001,133:221-228.
    [87]Esther L, et al. Statistical approach to learning and generalization in layered neural networks [A]. Proceedings of IEEE[C], 1990, 78(10): 1568-1574.
    [88] S.E. Fahlman, Christian Lebiere. The cascade-correlation learning architecture [A]. Advances in Neural Information Processing Systems 2[C] ,1990, 524-532.
    [89] J.-P. Nadal. Study of a growth algorithm for a feedforward network [J]. International Journal of Neural Systems 1989,1:55-59.
    [90] R. Setiono, L.C.K. Hui. Use of a quasi-Newton method in a feedforward neural network construction algorithm [J]. IEEE Transactions on Neural Networks 1995, 6 :272-277.
    [91] P.J. Angeline, Gregory M. Saunders, Jordan B. Pollack. An evolutionary algorithm that constructs recurrent neural networks [J]. IEEE Transactions on Neural Networks 1994,5 :54-65.
    [92] X. Yao, Y. Liu. A new evolutionary system for evolving artificial neural networks[J]. IEEE Transactions on Neural Networks 1997,8:694-713.
    [93] X. Yao. Evolving artificial neural networks [A], Proceedings of the IEEE 87[C] 1999,1423-1447.
    [94] X. Yao, Y. Liu, G. Lin. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation 1999,3:82-102.
    [95] Kenneth O. Stanley, Risto Miikkulainen. Evolving neural networks through augmenting topologies[J], Evolutionary Computation 2002,10: 99-127.
    [96] B.T. Zhang, P. Ohm, H. Muhlenbein.Evolutionary induction of sparse neural trees[J].Evolutionary Computation,1997, 5: 213-236.
    [97]Yuehui Chen, Shuyan Jiang, Ajith Abraham. Face recognition using DCT and hybrid Flexible tree [A], Proc. of International Conference on Neural Networks and Brain (ICNN&B) [C], 2005,1459-1463.
    [98]Yuehui Chen, Bo Yang, Jiwen Dong and Ajith Abraham. Time-series forecasting using flexible neural tree model[J]. Information Science, 2005,174:.219-235.
    [99]Yuehui Chen, Ju Yang, Yong Zhang and Jiwen Dong. Evolving additive tree models for system identification[J]. International Journal of Computational Cognition, 2005,3(2):19-26.
    [100]Yuehui Chen, Ajith Abraham, Bo Yang. Hybrid flexible neural tree based intrusion detection systems [J]. International Journal of Intelligent Systems,2004, 3(4):25-31.
    [101]Yuehui Chen, Bo Yang and Jiwen Dong. Evolving flexible neural networks using ant programming and PSO algorithm[J].International Symposium on Neural Networks (ISNN'04), 2004,LNCS 3173:211-216.
    
    [102] K. Balakrishnan et al.. Evolutionary design of neural architectures[R]., Tech. Rep. No. CS-TR-95-01; Ames, IA: Iowa State University; Department of Computer Science; Artificial Intelligence Laboratory (1995).
    [103] R. K. Belew et al.. Evolving networks: using genetic algorithms with connectionist learning[J]. in Artificial Life II, SFI Studies in the Science of Complexity, eds. C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen 10 (1991).
    [104] H. Kitano. Designing neural networks using genetic algorithms with graph generation system[J]. Complex Cybernetics ,1990,4 : 461-476.
    [105] F. Gruau. Genetic synthesis of modular neural networks[A]. Proc. 5th Int. Conf. on Genetic Algorithms[C]., eds. S. Forrest, 1993, 318-325.
    [106] R.P. Salustowicz, J. Schmidhuber. Probabilistic incremental program evolution[J]. Evolutionary Computation ,1997,2 (5) : 123—141.
    
    [107] Y. Chen, S. Kawaji.System identification and control using probabilistic incremental program evolution algorithm[J]. Journal of Robotics and Machatronics 2000,12:675-681.
    [108] S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning, Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, 1994.
    [109] C. Ferreira. Genetic representation and genetic neutrality in gene expression programming[J]. Advances in Complex Systems, 2002,5 :389-408.
    [110] 王殿海等。对交通流理论的再认识[J].交通运输工程学报,2001, Vol.l:55-59.
    [111] H.Lenz,C.K.Wagner,and R.Sollacher. Multi-anticipative car-following model[J]. Eur.Phys.J.B ,1999,7:331-335.
    [112] Reusche L A. Vehicle movements in a platoon[J]. Oesterreichishes ing-Arch.,1950 ,4:193-215.
    
    [113] Pipes L A. Proposed dynamic analogy of traffic[J]. AP. Phys. ,1953 ,24:274-282.
    [114]Chander R E,Herman R,Montroll E W. Traffic Dynamics: Study in car following. Opns. Res. 1958,6:165-184.
    [115]Herman R E.Montroll E W,Potts R B,et al. Traffic dynamics: analysis of stability in car following. Opns. Res. 1959,7: 86-1 0.
    [116]Lighthill, M. J. and Whitham, G. B. On kinematic waves: II. A theory of traffic on long crowded roads[A]. Proceedings of the Royal Society A[C] , 1955,229:317-345.
    [117] Richards P L. Shock waves on the highway[J]. Opns Res. ,1 956, 4(1 ) :42-51.
    [118] Pipes L A. Hydrodynamic approaches-Part I. P3-5. In P. I. Gerlough and D. G. Capelle(ed), An Introduction to Traffic Flow Theory, Special Report 79, Highway Research Board, Washington D. C., 1964.
    [119] Pipes L A. Topics in the hydrodynamic theory of traffic flow[J]. Trans. Res., 1968,2(2):143-149.
    [120] Pipes L A. Vehicle accelerations in the hydrodynamic theory of traffic flow[J]. 1969,3(2):229-234.
    [121] Cleveland D E, Capelle D G. Queuing theory approaches: An introduction to traffic flow theory[R]. Special Report79, Highway Research Board, Washington D. C., 1964,49-98.
    [122] Serge P. Hoogendoorn, Piet H. L. Bovy. Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow[J]. Transportation Research Part B, 2001,35,: 317-336.
    [123] Gazis D G. Car-following theory of steady state traffic flow[J]. Opus. Res., 1959(7): 449-505.
    [124] Ross P. Trafficdynamics[J]. Transp. Res., 1988,22B(6):421-435.
    [125] 丹尼尔L.鸠洛夫,马休J.休伯.交通流理论[M].蒋璜译.北京:人民交通出版社.1983.
    [126] Rathi A K, Lieberman E B, Yedlin M. Enhanced FREFLO program: simulation of congested environments[J]. TRR. 1987,1112: 67-71.
    [127] Ross P. Traffic dynamics[J]. Trans. Res. B, 1988,22:421-435.
    [128] Payne, H. J. Models of freeway traffic and control[J]. Mathematical Models of Public Systems, 1971, Vol. 1, ed. G. A. Bekey, pp, 51-61. Simulation Council, La Jolla, CA..
    [129] Castillo I M D, Pintado P, Benitcz FG. The reaction time of drivers and the stability of traffic flow [J]. Transp. Res.,1994,28B:35~60.
    [130] 吴正.交通流的动力学模拟与测量方法[J].复旦大学学报(自然科学),1991(30):111-117.
    [131] 吴正.低速混合型城市交通的流体力学模型[J].力学学报,1994(26):149-157.
    [132] Prigogine I, Herman R. Kinetic Theory of Vehicular Traffic[M]. Elsevier, New York, 1971.
    [133] Paveri-Fontana, S.L.. On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis[J]. Transportation Research B 1975,9, 225-235.
    [134] D. Helbing. Improved fluid-dynamic model for vehicular traffic[J]. Phys. Rev. E 1995,51(4): 3164-3169.
    [135] D. Helbing and M. Treiber. Enskog equations for traffic flow evaluated up to Navier-Stokes order[J]. Granular Matter 1: 1998, 21-31.
    [136] D. Helbing . Gas-kinetic derivation of Navier-Stokes-like traffic equations[J]. Phys. Rev. E,1996,53: 2366-2381.
    [137]Dirk Helbing. Modeling multi-lane traffic flow with queuing effects[J]. Physical A 1997,242: 175-194.
    [138] Dirk Helbing and Benno Tilch. Generalized force model of traffic dynamics[J]. Physical Review E 1998,58(1): 133-138.
    [139] Dirk Helbing. Structure and instability of high-density equations for traffic flow[J]. Physical Review E 1998,57(5): 6176-6179.
    [140] B. S. Kerner and H. Rehborn. Experimental properties of phase transitions in traffic flow[J]. Phys. Rev. Lett. 1997,79:4030-4033.
    [141] B. S.Kerner and P. Konhauser . Cluster effect in initially homogeneous traffic flow[J]. Physical Review E 1993,48 (Phys. Rev. E 48): R2335-R2338.
    [142] B. S. Kerner and H. Rehborn. Experimental properties of complexity in traffic flow[J]. Physical Review E 1996,53(5): R4275-R4278.
    [143] B.S.Kerner, P.Konhauser. Structure and parameters of clusters in traffic flow[J]. Physical review E 1994,50(1): 54-86
    [144] Hoogendoorn, S.P., Bovy, P.H.L.. Multiclass macroscopic traffic flow modeling: A multilane generalization using gas-kinetic theory[A]. Proceedings of the 14th International Symposium on Transportation and Traffic Theory[C], 1999,27-50.
    [145] Hoogendoorn, S.P.. Multiclass continuum modelling of multilane traffic flow[D]. Ph.D. Thesis, Delft University of Technology, Delft University Press, 1999.
    
    [146]Cremer M. Ludwin J. A fast simulation model for traffic flow on the basis of Boolean operations[J]. Mathematics and Computers in Simulation, 1986, 28: 297-303.
    [147] Nagel K, Schreckenbern M. A cellular automaton model for freeway traffic [J]. Journal of Physics I Prance, 1992, 2: 2221-2229.
    [148] Barlovic R, Santen L, Schadschneider A, et al. Metastable states in cellular automata[J]. European Physical Journal h, 1998, 5(3):793-800.
    [149] Knospe W, Santen L, Schadschneider A, et al. Towards a realistic microscopic description of highway traffic[J]. Journal of Physics A, 2000,33:477-485.
    [150] Rickert M, Navel K, Schreckenberg M, et al. Two lane traffic simulations using cellular automata[J]. Physica A, 1996, 31(4):534-550.
    [151] Wagner P, Navel K, Wolf D E. Realistic multi-lane traffic rules for cellular automata[J]. Phvsica A,1997, 234: 687-698.
    [152] Knospe W, Santen L, Schadschneider A, et al. A realistic two-lane traffic model for highway traffic[J]. Journal of Physics A,2002,35:3369-3388.
    [153] Biham O, Middleton A A, Levine D. Self-organization and a dynamical transition in traffic flow models[J]. Physical Review A, 1992, 46:6124-6127.
    [154] Nagatani T. Anisotropic effect on jamming transition in traffic-flow model[J]. Journal of Physics Society Japan, 1993,62(August):2656-2663.
    [155] Martines P C, Cuesta J A, Molera J M, et al. Random versus deterministic two-dimensional traffic flow models[J]. Physical Review E, 1995,51(2):R835-R838.
    [156] Freund J, Poschel T. A statistical approach to vehicular traffic[J]. Physica A, 1995, 219(1~2): 95-113.
    [157] Torok J, Kertesz J. The preen wave model of two-dimensional traffic: transitions in the flow properties and in the geometry of the traffic jam[J]. Phvsica A, 1996,231(4):515-533.
    [158] 谭惠丽.黄丘花,李华兵等.交通灯控制下主干道交通流研究[J].物理学报,2003,52(5):1127-1131.
    [159] 白克钊,谭惠丽等.一种改进Nagel-Schreckenberg模型在开放边界条件下交通流的研究[J].物理学报,2003,52(10):2421-2426.
    [160] 汪秉宏,王雷等.高速车随机延迟逐步加速交通流元胞自动机模[J].物理学报,2000,49(10):1926-1932.
    [161] 薛郁,董力耘等.考虑车辆相对运动速度的交通流演化过程的数值模拟[J].物理学报,2002,51(3):492-496.
    [162] 雷丽,薛郁等.交通流的一维元胞自动机敏感驾驶模型[J].物理学报,2003,52(9)2121-2126.
    [163] Harmen J. Bussemaker, Andreas Deutsch, and Edith Geigant. Mean-Field Analysis of a Dynamical Phase Transition in a Cellular Automaton Model for Collective Motion[J]. Physical Review Letters, 1997,78(26): 5018-5021.
    [164] M. Treiber and A. Hennecke. Derivation, properties, and simulation of a gas-kinetic-based[J], nonlocal traffic model. Phys. Rev. E 1998, 59: 239-253.
    [165] D. Helbing 1996 Physica A 233,253.
    [166] D. Helbing and A. Hennecke 2001 Transp. Res., Part B: Methodol. 35B, 183.
    [167] Dirk Helbing. Theoretical foundation of macroscopic traffic models[J]. Phasica A 1995,210:375-390.
    [168] J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes[M]. Springer, New York, 1987.
    [169] J. H. Ferziger, H. G. Kaper. Mathematical theory of transport processes in gases[M]. North-Holland Publishing Company-Amsterdam. London, 1972.
    [170] Sydeny Chapman, T. G. Cowling. The mathematical theory of non-uniform gases[M]. Cambridge at the university press, 1970.
    [171] Helbing, D., Treiber, M.. Numerical simulation of macroscopic traffic equations[J]. Computing in Science and Engineering, 19996,5: 89-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700