植物病原真菌及重寄生菌的分离鉴定与侵染性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由白粉菌(Erysiphauceae)导致的白粉病和核盘菌(Sclerotinia sclerotiorum)导致的菌核病是两种危害农作物较为严重的真菌病害。
     白粉菌危害严重,且防治困难。白粉寄生孢(Ampelomyces quisqualis)作为白粉菌上较为重要的重寄生菌,能够在大多数白粉菌上寄生,并对用来防治白粉菌的化学药物具有抗药性,因此白粉寄生孢具有防治植物白粉病的作用。但由于来源不同的白粉寄生孢菌株间存在一定的遗传差异,所以在利用白粉寄生孢防治白粉病时具有一定局限性,所以明确白粉寄生孢的资源状况,筛选新的有潜力的生防菌株就显得及其重要。
     由核盘菌侵染引起的菌核病是一种严重病害,核盘菌是一种放线状子囊真菌,其寄主范围和地理分布十分广泛,尤其在南方油菜产区发病严重,该病害在发病严重年份病株率可达50-80%,严重制约油菜品质和产量,造成经济上的损失,是危害油菜最严重的病害之一。
     本文对周口地区凤仙花白粉菌和分离自凤仙花白粉病上的白粉寄生孢以及感染了菌核病油菜上的核盘菌进行了显微观察、生物学特性、分子生物学以及致病性等研究,并取得了以下主要结果:
     1.对周口地区检出的凤仙花白粉菌进行了显微形态分析、核糖体DNA转录间隔区ITS(inter transcribed spacer)进行PCR扩增及进化分析。结果表明:在扫描电子显微镜下病菌分生孢子呈圆柱形或椭圆形,无支链,ITS序列与来自日本番茄上的O.neolycopersici(AB094991)和来自美国番茄上的O.neolycopersici(AB163915)同源性最高聚为一支,序列同源性达到100%,分析结果表明,来自周口地区的番茄白粉菌为Oidiumneo lycopersici。
     2.从河南省周口市采集感染白粉病的凤仙花植株,采用单孢分离法分离得到白粉寄生孢,对该菌进行菌落和显微形态分析,初步证明该菌株为A.quisqualis。利用真菌通用引物ITS1和ITS4对所分离的菌株内转录间隔区进行PCR扩增,得到578bp大小的片段,经过克隆测序和在GenBank中进行BLASTn分析,发现与德国和美国白粉寄生孢ITS序列的同源性达到100%,进一步证明该分离菌株为A.quisqualis。并将白粉寄生孢接种在患有白粉病的大叶黄杨叶面上,经一周时间检查发现,白粉菌菌体由无色渐变成浅黄色或浅褐色,并渐渐萎缩至白粉层消失,说明从周口地区凤仙花白粉病病株上分离得到的白粉寄生孢具有防治白粉病的效果。
     3.通过探究白粉寄生孢最适的生长环境研究发现,其温度生长范围较广:10-30℃,菌株生长和产孢的最适温度为20℃。白粉寄生孢在pH5-10时均可生长及产孢,其中pH值为7时最适宜其产孢。最适合生长的理想C源为葡萄糖,最适合的N源为蛋白胨,持续光照对菌株的生长及产孢具有明显的促进作用。
     4.从河南省周口市采集感染菌核病的油菜,对核盘菌进行分离和鉴定。采用单孢分离法分离得到该菌系,对该菌系进行了菌落和显微形态分析,初步证明该菌株为S.sclerotiorum。利用真菌通用引物ITS1和ITS4对所分离的单菌系ITS序列进行PCR扩增,得到640bp大小的片段,经过克隆测序和在GenBank中进行BLASTn分析,发现与已知核盘菌属菌核病菌ITS序列的同源性达到100%,进一步证明该分离菌株为S.sclerotiorum。
     5.通过研究不同温度、pH值、C源和N源、光照、培养基对核盘菌的最适合生长环境的研究表明,核盘菌温度生长范围较广:15-35℃,其中25℃是菌株生长及产孢的最适温度。核盘菌在pH5-10时均可生长及产孢,其中pH值为8时最适宜其产孢。菌落生长较为理想的C源和N源为蔗糖和酵母浸膏,持续光照对菌株的生长及产孢影响不显著。
     6.将菌悬液分别接种在耐菌核病型油菜和易感菌核病型油菜上,4天后用台盼兰染色观察,发现耐病型和易感型均可被感染,菌丝侵入的方式两个基因型也没有差别,但菌丝长度不同。用菌核病侵染番茄和拟南芥植物时发现这两种植物也均可被核盘菌侵染。下一步的工作,将研究白粉寄生孢能否对核盘菌具有生物防治作用。
Powdery mildew and Sclerotinia sclerotiorum are two kinds of the most important plant diseases inChina. Ampelomyces quisqualis is an important mycoparasite of powdery mildew fungus with resistanceagainst most used chemical fungicides, which has potential to control powdery mildew. Because differentaccessions of A.quisqualis could show genetic differences, and the potential application of A.quisqualis isaccession dependent. Therefore, screening A.quisqualis resources to obtain potential new accessionssuitable for local application on fungal disease prevention is important. S.sclerotiorum is a filamentousAscomycete fungus with a wide host range, which causes server losses of the rapeseed production,especially in the southern areas. The disease at the year of serious outbreak can infect to50-80%of plants,which is one of the most important disease of rapeseed causing serious damage to rapeseed production bothon yield and on quality.
     In this paper, characteristics of A.quisquals in Zhoukou and interaction between the A.quisquals andpowdery mildew fungi were investigated. Characteristics of S. sclerotiorum in Zhoukou and it’s interactionwith the susceptible and tolerant genotypes of rapeseed were studied.
     The results are as following:
     1. Powdery mildew appearing in colonies of white patches prevalently on leaves of tomato was foundin Zhoukou of Henan Province. The microscopic morphology and molecular identification of the pathogensthat Cause this disease were studied in terms of internal transcribed spacer (ITS) sequence and phylogenetictrees. The conidia which were borne singly, cylindrical, or ellipsoid-cylindrical without branch wereobserved under the scanning electron micriscipy (SEM). The ITS sequence is highly homologous to ITSsequences from O.neolycopersici(AB163916、AB094991), It draws a conclusion that the pathogen oftomato powdery mildew in Zhoukou belongs to O.neolycopersici.
     2. An strain of A.quisqualis was isolated from powdery mildew infected rose balsam (Impatiensbalsamina L.) in Zhoukou city of Henan province with the method of single-spore isolation. Themorphology and microscopic analysis indicated that the isolated stain was A.quisqualis. Universal primersITS1and ITS4for fungi were used to amplify the internal transcribed spacer (ITS) region of the isolated strain, which resulted in a578bp band. The PCR product was sequenced and analyzed by using BLAST,which showed100%homology to AQ in Germany and USA. It further proved that the isolated strain was A.quisqualis. A.quisqualis was inoculated on powdery mildew of Euonymus japonicus, after one-weekinoculation, it showed that the powdery mildew gradually become yellow or shallow brown, and thepowdery mildew gradually disappear, indicating that the A. quisqualis isolate of powdery mildew on RoseBlasam from Zhoukou area can be used for the prevention of powdery mildew.
     3. The result showed that A.quisqualis can grow at temperatyre of10-30℃and the optimaltemperature was20℃. The pH value of5-10, the optimal pH value for its growth and sporulation were at7.The optimal C source was lactose, and the optimal N source was peptone. Light could effectively stimulateAQ growth and sporulation.
     4. A strain of S. sclerotiorum was isolated from rapeseed in Zhoukou city of Henan province with themethod of single-spore isolation. The morphology and microscopic analyses indicated that the isolatedstain was S. sclerotiorum. Universal primers ITS1and ITS4for fungi were used to amplify the ITS regionof the isolated strain, which resulted in a640bp band. The PCR product was sequenced and analyzed byusing BLASTn, which showed100%homology to found S.sclerotiorum. It further proved that the isolatedstrain was S.sclerotiorum.
     5. The result showed that S.sclerotiorum can grow at temperatyre of15-35℃and the optimaltemperature was25℃. The pH value of5-10, the optimal pH value for its growth and sporulation were at8.The optimal C source was sugar, and the optimal N source was yeast extract. Light could effectivelystimulate S.sclerotiorum growth and sporulation.
     6. Fungal suspension of S. sclerotiorum was used to inoculate susceptible and tolerant phenotypes ofrapeseed. Four days after inoculation, the infected leaves were stained with trypan blue to study themechanism difference of responses to S. sclerotiorum by different rapeseed genotypes. It indicated that noobvious difference between two genotypes, except that the length of hypha on tolerant genotype wereshorter than those on susceptible genotype of rapeseed. The infection processes of S. sclerotiorum ontomato and Arabidopsis leaves were also investigated. It indicated that S. sclerotiorum can infect tomatoand Arabidopsis. Further study will be carried out to test whether AQ can prevent the growth of S.sclerotiorum.
引文
[1]高立强.秦岭地区白粉菌寄生孢研究[D].2004.
    [2] Barnett HL, Binder FL. The fungal host parasite relationship[J]. Annu. Rev. Phylopatho1,1973,11:273-292.
    [3]李光云,杨家荣,俞征.两株白粉寄生孢的生物学特性比较[J].西北农业学报,2009,18(5):123-126.
    [4]袁巧丽,杨家荣,高立强.凤仙花白粉寄生孢的生物学特性[J].中国生物防治,2006,22(3):230-233.
    [5] Li CW, Pei DL, Wang WJ, et a1. First report of powdery mildew caused by Oidium neolycopersici ontomato in China[J]. Plant Disease,2008,92(9):1370-1370.
    [6]迟文娟,东北小麦白粉菌群体遗传结构与分子检测技术研究[D].2009.
    [7] Falk SP, Gadourg DM, Pearson RC, et a1. Paratial control of trape powery mildew by the mycoparasiteAmpelomyces quisqualis[J]. Phytopathology,1995,85:794-800.
    [8]孙君明.不同菌核病分离物的形态学、致病性和遗传多样性研究[D].2005.
    [9]冉毅.油菜菌核病菌不同菌株生物学特性比较及抗病性鉴定方法研究[D].2008.
    [10]姜伟丽,李伟,张爱香,等.活性氧在油菜与核盘菌互作中的作用[J].中国油料作物学报.2008,30(3):331-336.
    [11]Harsh Garg, Hua Li, Krishnapillai Sivasithamparam, et a1. The infection processes of Sclerotiniasclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus[J]. Annalsof Botany.2010,106:897-908.
    [12]Hawksworth DL, Kirk PM, Sutton BC, et al. Ainsworth&Bisby s' Dictionary of the Fungi[M].8th ed,Cam bridge: Cambridge University Press,1995:1-616.
    [13]Braun U, Takam atsu S. Phy logeny of Ery siphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaero theca (Cysto theceae) inferred from rDNA ITS sequences some taxonom ic consequences[J]. Schlechtendalia,2000,4:1-33.
    [14]Braun U. Some critica l notes on the classification and generic concept of the E rysiphaceae[J]. Schlechtendalia,1999,3:48-54.
    [15]刘铁志,朱月.中国白粉菌科的四个新记录种[J].菌物系统,1998,17(4):297-300.
    [16]刘淑艳,高松.白粉菌属级分类系统的讨论[J].菌物学报,2006,25(1):152-159.
    [17]Spencer DM, The powdery mildews[M]. New York: Academic Press,1978:359-379.
    [18]王世喜,赵博虎,金辉,等.番茄白粉病的发生与防治[J].植物保护,1993,19(5):50.
    [19]Jones H, Whipps JM, Gurr SJ. The tomato powdery mildew fungus Oidium neolycopersici[J].Molecular Plant Pathology,2001,2(6):303-309.
    [20]王媛媛,陈立杰,段玉玺,等.沈阳地区温室番茄发生白粉病[J].植物保护,2004,30(5):91.
    [21]Cesati V, Ampelomyces quisqualis Ces. Botanische Zeitung.1852,10:301-302.
    [22]De Bary A, Eurotium, Erysiphe, Cicirnobdus, nebst bemerkungen uber die Geschlechtsory are derAscomyceten In: De Bary A, Woronin M. Beitrage zur Morphologies und Physiologies der Pilze.Frankfurt, Germany: Verlag VonC.winter,1870,1:95.
    [23]Rogers DP. On Cicinnobolus[J]. Mycological.1959,51:96-98.
    [24]Kiss L, Nakasone K. Ribosmal DNA internal transcribed spacer sequences do not support the speciesstatus of Ampelomyces quisqualis, a hyparasite of powdery mildew fungi[J]. Current Genetics,1998,33,362-367.
    [25]Kiss L, Genetic diversity in Ampelomyces isolates, hyperparasites of powdery mildew fungi, inferredfrom RFLP analysis of the RDNAITS region[J]. MYCOL. Res,1997,101(9):1073-1080.
    [26]梁晨.白粉寄生孢种群多样性、生物学特性及生防潜力研究[J].植物病理学报,2005,35(6):205-206.
    [27]袁巧丽.白粉寄生孢生物学及其寄生特性研究[D].2006.
    [28]赵云福.白粉寄生孢的发生、致病力研究及ISSR分子指纹分析[D].2007.
    [29]李光云.秦岭地区白粉寄生孢生物学特性及其rDNA-ITS分析[D].2009.
    [30]Cesati V, Ampelomyces quisqualis Ces. Botanische Zeitung.1852,10,301-302.
    [31]Branislav Rankovic, et al, Hyperparasites of the genus Ampelomyces on powdery mildew fungi inSerbia[J]. Mycopathologia,1997,139:157-164.
    [32]Emmons CW, Cicinnobolus Cesatii, a study in host-parasite relationships[J]. Bull Torrey. Club,1930,57:421-441.
    [33]Yarwood, CE, Ampelomyces quisqualis on clover mildew. Phytopathology,1932,22:31.
    [34]A. sztejnberg, S. Galper, Shlomit Mazar, N. Lisker, Ampelomyces quisqualis for boological andintegrated control of powdery mildews in Israel[J]. Phytopathology,1989,124:285-295.
    [35]高立强,杨家荣,高鸿生等秦岭地区白粉寄生孢的自然分布和生物学特性[J].植物保护学报,2007,34(2):161-166.
    [36]赵云福,梁晨,罗丽.国内11省区白粉寄生孢的自然发生调查研究[J].植物保护,2008,22:102-105.
    [37]梁晨.重寄生菌白粉寄生孢的研究进展[J].莱阳农学院学报(自然科学版),2006,23(4):317-322.
    [38]Falk SP, Gadour DM, et al. Parasitism of Uncinula necator cleistothecia by the mycoparasiteAmpelomyces quisqualis[J]. Phytopathology,1995,85:794-800.
    [39]Kiss L. Graminicolous powdery mildew fungi as new natural hosts of Ampelomyces quisqualis Ces mycoparasites[J]. Can. J. Bot,1997,75:680-683.
    [40]Yarwood CE. An overwintering pycnidial stsge of Cicinnobolus[J]. Mycologia,1939,31:420-422.
    [41]Cross JV, Poloncnko DR. Can J. Plant Pathol[J].1996,18:446-454.
    [41]Shishkoffn, McGrath MT. AQ10Biofungicide Combined with Chemical Fungicides or Add SprayAdjuvant for Control of Cucubit Powdery Mildew in Detached Leaf Culture[J]. Plant Disease,2002,86(8):915-918.
    [43]McGrath MT, Shishkoffn. Evaluation of Biocompatible products for managing cucurbit powerymidew[J]. Crop Protection,1999,18(7):471-478.
    [44]Sirca MA. AQ-10a unique bio-fungicide based on Ampelomyces quisqualis against various pathogens.In proceedings of the5thSlovenian Conference on Plant Protection[R]. CATEZOB Savi, Slovenia,6-8March,2001.
    [45]Hofstein R, Daoust RA, Aeschliman JP. Constraints to the development of biofungicides the exampleof AQ10, A newproduct for controlling powdery mildews[J]. Entomophaga.1996,41:455-460.
    [46]Lee SY. Biological control of cucumber powdery mildew using a hyperparasite, Ampelomycesquisqualis PhD thesis[D]. Chungnam National University, Taejon, Korea.[In Korean],1999.
    [47]Lee SY, Lee SB, Kim, CH. Biological control of powdery mildew by Q-fect WP(Ampelomycesquisqualis94013) in various crops[J]. IOBC wprs Bulletin,2004,27:329-331.
    [48]McGrath MT, Shishkoffn. Evaluation of Biocompatible products for managing cucurbit powerymidew[J]. Crop Protection,1999,18(7):471-478.
    [49]王吉霞,张舒容,王生荣.白粉菌寄生菌鉴定及形态学观察[J].甘肃农业大学学报,2005,40(4):498-500.
    [50]陈桂华,油菜病害的发生与防治[J].农药,1996,35(9):21-23.
    [51]丁笑生,段宏英,卢龙斗.植物几丁质酶及其在油菜抗真菌病害中的作用[J].河南农业科学,2005,2:25-26.
    [52]史建荣,王裕中,陈怀谷.油菜菌核病菌的生物学特性研究[J].植物保护,1999,1:15-18.
    [53]林琦,罗红蓉.菌核病不同发病时期对绵油12产量及品质的影响[J].山地农业生物学报,2007.
    [54]谢妤.核盘菌多聚半乳糖醛酸酶基因的克隆及hpRNAi载体的构建[J].宜春学院学报,2008.
    [55]胡能兵,张晓红,张从宇.莴笋菌核病菌生物学特性研究[J].安徽农业科学,2003,3:23-25.
    [56]Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology.Trends in Ecology and Evolution[J].1998,4:6-11.
    [57]Louws FJ, Rademaker JLW, Bruijn FJ. The three Ds of PCR-based genomic analysis ofphytobacteria[J]. Diversity Detection, and Disease diagnosis. Annual Review of Phytopathology,2000,37:81-125.
    [58]Baldwin BG. Phylogenetic utility of the internal transcribed spacer of nuclear ribosomal DNA inplants[J]. an example from the Compositate. Molecular Phylogenetics and Evolution,1992,1:3-16.
    [59]刘冬梅,丁锦平,陈静.商丘地区棉花黄萎菌的分离与鉴定[J].江西农业学报,2009.
    [60]窦学娥.桑树内生真菌的分离鉴定及产油菌Macrophomina phaseolina MOD-1的研究[D].2008.
    [61]Kim KJ, Jansen RK. Comparisons of phylogenetic hypothesis among different data sets in dwarf dandelions(Krigia): additional information from internal transcribed spacer of nuclear ribosomal[J]. DNAPant Systematics and Evolution,1994,190:157-185.
    [62]Wendel JF, Schnabel A, Seeland T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium)[J]. PNAS,1995,92:280-284.
    [63]Cullings KW, Vogler DR. A5.8S nuclear ribosomal RNA gene sequence database: applications toecology and evolution. Molecular Ecology,1998,7:919-923.
    [64]王文静,裴冬丽,马原松,王芳,李成伟.商丘地区番茄白粉菌的鉴定[J].河南大学学报(自然科学版),2009,39(5):505-508.
    [65]刘冬梅,丁锦平,陈静,李成伟,李付广.商丘地区棉花黄萎菌的分离与鉴定[J].江西农业学报,2009,21(8):116-120.
    [66]赵国柱,张天宇,张猛.核糖体基因簇在真菌系统学研究中的意义[J].生命的化学,2002.
    [67]赵国柱.中国砖格丝孢菌20属的分类及5个相似属代表性种的分子系统学研究[D].2003.
    [68]陈凤毛.真菌ITS区序列结构及其应用[J].林业科技开发,2007,21(2).
    [69]Horton TR, Bruns TD. The molecular revolution in ectomycorrhizal ecology[J]. Peeking into theblack-box. Molecular Ecology,2001,10:1855-1871.
    [70]候丽冰,贺伟,刘小勇.我国几种松干锈菌亲缘关系的ITS序列分析[J].北京林业大学学报,2011,4:93-95.
    [71]张薇,魏海雷,张力群,等.紫花苜菌核病病原鉴定及主要生物学特性[J].草叶学报,2005,14(2):69-75.
    [72]杨佩文,杨勤忠.十字花科蔬菜跟肿病菌的PCR检测[J].云南农业大学学报,2002,2:17.
    [73]张竞宇,张正光,王源超.小麦印度腥黑橞病菌的分子检测[J].高技术通讯,2004(1):31-36.
    [74]Shin HD, Isolation and identification of hyperparasites against powdery mildew fungi in Korea KoreanJournal of Mycology.1994,22:355-365.
    [75]Branislav Rankovic, et al. Hyperparasites of the genus Ampelomyces on powdery mildew fungi inSerbia[J]. Mycopathologia,1997,139:157-164.
    [76]Kiss L. Natural on currence of Ampelomyces intracellular mycoparasites in mycelia of powdery mildewfungi[J]. New Phytol,1998,140:709-714.
    [77]Richard T, Hanlin, Omar Tortolero. Brasiliomyces a new host for Ampelemyces[J]. New phytol.1998,140:709-714.
    [78]Kiss L. The role of Hyperparasites in Host plant-parasitic Fungi Relationships[J]. Hyperparasites inPlnat. Fungi RelationshiPs,2001,227-236.
    [79]Martin RR, James D, Levesque CA. Impact of molecular diagnostic technologies on plant diseasemanagement[J]. Annual Review of Phytopathology,2000,38:207-239.
    [80]Horton TR, Bruns TD. The molecular revolution in ectomycorrhizal ecology: peeking into theblack-box[J]. Molecular Ecology,2001,10:1855-1871.
    [81]戴富明.拟南芥与核盘菌互作及与核盘菌、水稻白叶枯病菌相关的拟南芥突变体筛选[D].2005.
    [82]张中义,冷怀琼.植物病原真菌学[D].四川科学出版社,1988.
    [83]Li CW. Tomato defense to the powdery mildew fungus: diferences in expression of genes insusceptible, monogenic-and polygenic resistance responses are mainly in timing[J].2006,62:127-142.
    [84]王文静,李成伟.番茄白粉菌的PCR分子检测[J].河南农业科学,2010,5:72-75.
    [85]赵云福,梁晨,李宝笃.适于ISSR分析的白粉寄生孢基因组DNA快速提取[J].青岛农业大学学报(自然科学版),2007.
    [86]刘秀波,张俊华,崔崇士.南瓜白粉病病原菌鉴定及抗性鉴定方法研究[J].中国瓜菜,2006,5:6-10.
    [87]梁巧兰,徐秉良,颜惠霞.南瓜白粉病病原菌鉴定及寄主范围测定[J].菌物学报,2010.5
    [88]咸丰,张勇,马建祥.陕西关中地区瓜类白粉病菌生理小种的鉴定[J].西北农林科技大学学报(自然科学版),2006,1:26-29.
    [89]王娟,宫国义,郭绍贵,北京地区瓜类蔬菜白粉病菌生理小种分化的初步鉴定[J].中国蔬菜,2006,8:7-9.
    [90]屈振淙,长春地区黄瓜白粉病菌的鉴定[J].吉林农业大学学报,1981,2:18-22.
    [91]顾海峰,张旭,张文芳.上海地区西甜瓜白粉病菌生理小种的鉴定[J].上海农业学报,2010,4:25-28.
    [92]魏尊苗,高鹏,王学征.黑龙江省葫芦科白粉病菌RAPD分析[J].菌物学报,2011,30(4):587-597.
    [93]徐志豪,寿伟林,黄凯美,等.白粉病菌的生理小种及其对不同基因型甜瓜的致病性[J].浙江农业学报,1999(5):245-248.
    [94]包海清,许勇,杜永臣,等.海南三亚地区葫芦科作物白粉病菌生理小种分化的鉴定[J].长江蔬菜,2008(1):49-51.
    [95]裴冬丽.凤仙白粉病的病原菌鉴定[J].河南师范大学学报(自然科学版),2011,2(39):115-118.
    [96]Vakalounakis D, Klironomou E, Papadakis A, Species,spectrum, host range and distribution ofpowdery mildews on Cucurbitaceae in Crete[J]. Plant Pathology,1994(43):813-818.
    [97]Lamb C, Dixon RA. The oxidative burst in plant disease resistance[J]. Annu Rev plant Mol Biol.1997,48:251-275.
    [98]袁巧丽,吕桂军,杨家荣.白粉寄生孢寄生黄瓜白粉菌的特性研究[J].植物保护,2009,35(1):70-73.
    [99]Martin RR, James D and Levesque CA. Impact of molecular diagnostic technologies on plant diseasemanagement[J]. Annual Review of Phytopathology,2004,110:473-479.
    [100]Cullings KW, Vogler DR. A5.8S nuclear ribosomal RNA gene sequence database: applications toecology and evolution. Molecular Ecology,1998,7:919-923.
    [101]赵云福,梁晨,李宝笃.适于ISSR分析的白粉寄生孢基因组DNA快速提取[J].青岛农业大学学报(自然科学版),2007.
    [102]Sutton BC. The Coelomycetes[M]. Kew, England: CMI,1980.
    [103]Yarwood CE, An over wintering pycnidial stage of Cicinnbolous[J]. Mycology,1939(2):38-41.
    [104]蔡竹固,童伯开.瓜类白粉病菌的生理与品种致病性[J].嘉义农专学报,1999:21.
    [105]张中义,冷怀琼等.植物病原真菌学[C].四川科学出版社,1988.
    [106]Kurtzman CP, RobnettCJ. Identification and phylogeny of ascomycetous yeasts from analysis ofnuclear large subunit(26S)nbosomal DNA partial sequences. Antonie van Leeuwenhoek,1998,73:331-371.
    [107]赵晖,李国庆,郭坚.雪腐核盘菌的ITS序列分析[J].化学与生物工程,2005,12:23-25.
    [108]李国庆,王道本,姜道宏.神农架莴苣上产菌核病原真菌的初步研究[J].植物病理学报,1998,3:32-35.
    [109]Harsh Garg, Hua Li, Krish napillai. The infection processes of Sclerotinia sclerotiorum in cotyledontissue of a resistant and a susceptible genotype of Brassica napus[J]. Annals of Botany.2010,106:897-908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700