新型并联混合型有源电力滤波器关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电能是国民经济和人民生活的命脉,而我国企业电能损失逐年增加。我国高耗能企业众多,随着钢铁、有色、石化等行业飞速发展,能源消耗总量大。随着电力电子技术的飞速发展,各种大功率开关器件得到了广泛应用,非线性负载大量增加。它们造成电网的谐波污染和电能损失;同时冲击性负载及无功补偿不足常引起电网电压跌落和闪变,并导致线路损耗增加。这些问题影响了企业的正常生产和人民的日常生活,给我国电力系统带来了繁重的无功控制和谐波治理问题。使我国的可持续发展面临巨大压力。
     本文深入研究了新型并联混合型有源电力滤波器的相关理论和方法。研究内容涵盖了新型并联混合型有源电力滤波器的工作机理分析、控制策略、补偿性能,及提出了新的控制算法;提出了对应的容错结构,形成了较为完善的容错并联混合型有源电力滤波器的基本研究方法和技术方案,研究重点及取得的成果主要体现在以下几个方面:
     (1)提出了一种新型并联混合型有源电力滤波器的结构,该补偿装置不但可以补偿电网谐波,还能根据现场具体情况补偿无功功率而不发生大量无功过补的情况。分析了该补偿装置的补偿原理;研究了新型并联混合型有源电力滤波器的控制策略,确定了将有源部分控制为谐波电流源;设计了新型并联混合型有源电力滤波器的注入支路,分析了本章所选注入支路的原因;给出了新型并联混合型有源电力滤波器在电网参数发生变化的情况下,该补偿装置的补偿性能。
     (2)提出了并联混合型有源电力滤波器的基于隶属云理论的复合-递推积分PI控制方法。复合控制包括前馈控制、反馈控制和直流侧电压控制。5次无源滤波器滤除最严重的谐波分量,前馈控制负责滤除负载产生的7次谐波分量,反馈控制负责滤除剩余的少量谐波分量,公共点谐波电压控制负责稳定直流侧电压。采用隶属云模型对递推积分PI的比例系数和积分系数进行在线调整。基于隶属云理论的递推积分PI控制算法使系统在电流跟踪偏差较大时比例控制占主导,偏差减小速度较快,在偏差减小到一定范围内时积分控制占主导,实现稳态无差,使得系统的响应速度、鲁棒性和抗干扰能力得到提高。
     (3)提出了新型并联混合型有源电力滤波器的容错结构。首先分析了容错结构原理,给出了故障情况下的几种运行模式和运行原理。研究了基于误差电压的故障诊断方法。基于误差电压的故障诊断方法直接利用逆变器的电压模型,通过逆变器中电压测量值与估计值之间的误差来诊断故障。
     (4)针对新型并联混合型有源电力滤波器的容错结构,提出了基于维隶属云模型的增量式PID控制算法,利用二维隶属云模型对增量式PID控制的比例系数、积分系数和微分系数进行在线调整。对二维隶属云模型的参数调整算法中各个变量的隶属云生成进行了改进,并改进了规则推理器。
     (5)为了进一步提高控制器的性能,提出了直接控制的三维隶属云智能控制。该控制算法参照PID控制算法的思想,但和PID控制算法有本质的不同。三维隶属云智能控制器控制效果良好、鲁棒性强,并且不依赖被控对象的数学模型,而是根据操作经验或专家知识直接进行三维云模型控制器设计。三维隶属云智能控制策略简明,无需冗繁的推理计算,通用性强。能够直接实现定量输入、并行定性推理、定量输出的控制过程,计算量较小,实时性强。
     本文以配电网电能质量控制、提高并联混合型有源电力滤波器运行安全性能为背景,研究了新型并联混合型有源电力滤波器及其关键技术,为推进电力电子系统的实用化进程提供有益的参考和借鉴。图59幅,表10个,参考文献100篇
Abstract:Electrical energy plays an important role in the economic development and people's lives.But the power in the enterprise decreases every year in our country. With the rapid development of steel, non-ferrous metallurgy and petrochemicals, The total energy consumption is large.With the rapid development of power electrical technologies and widely used high power switch devices,non-linear loads in the grid are widely increased, which causes harmonic pollution and energy losses.Meanwhile,voltage fluctuation and voltage flicker caused by the impulsive load and reactive power variation have greatly disturbed the industrial production and people's lives.It also makes the electrical system have problems such as heavy reactive power compensation and harmonic suppression.The sustainable development of our country is facing great pressure.
     The theory and methods of the new hybrid active power filter in parallel are researched in the paper. The working mechanism, mathematical model,control strategy, compensation performance, new control methods and so on are researched in the paper. This paper proposes the structure of fault tolerant parallel active power filter. The basic researching method and technical proposal of fault tolerant APF are formed.The emphasis and achievement of the paper mainly manifests in the following aspects.
     (1)A novel parallel hybrid active power filter is proposed, which can suppress harmonics and compensate reactive power without over compensation according to the spot condition.The compensating principle of the compensation equipment is analyzed.The control strategy of the compensation equipment is researched and the active part is controlled as harmonic current source.The injection branch of the parallel hybrid active power filter is designed. The reason of the selecting injection branch is analyzed. The compensating performance of the compensation equipment is given under the changing of the grid.
     (2)The compound-recursive integral PI control method based on membership cloud theory is proposed for the parallel hybrid active power filter. The compound control includes feedforward control,feedback control and the DC-link voltage control. The5th passive filter filters the most serious harmonic components. The feedforward control suppresses the7th harmonic components. The remainder is filtered by the feedback control. The DC-link voltage is stabilized by controlling the public point harmonic voltage. The parallel and integral coefficients of the recursive integral PI control method are adjusted online by membership model. The parallel control is dominant when the current error is larger and make the error decreases quicklier. The integral control is dominant when the current error is in a small value.Then the stable non-error is obtained and the responding speed,robust and anti-disturb of the system are improved.
     (3)The fault-tolerant structure for the novel parallel hybrid active power filter is proposed.The fault-tolerant structure principle is analyzed. Several running models and corresponding principle are given under faults condition.The fault-diagnose method based on error voltage is researched, which detects faults by the error between the meter value and evaluating value of the inverter through the inverter voltage model.
     (4) A increasing PID control method based on two-dimension membership cloud model is proposed according to the fault-tolerant structure of the novel parallel hybrid active power filter. The parallel, integral,differential coefficients are adjusted online by two-dimension membership cloud model.The creation of different membership clouds and the rule-reasonor are improved.
     (5)A three-dimension membership cloud intelligent control method is proposed in order to improve the performance of the controller. The control method refers to the idea of PID control method but is different from PID control method.The three-dimension membership cloud intelligent control method has good control performance and don't depend on the mathematical model of the controlled object. It is designed according to operating experience or expert's knowledge.The proposed control method has simple control strategy without complicated reasoning and calculating, which can be in common use.The control process can realize the quantify input, quality reasoning, quantify output.
     According to the background of power quality control and the improvement of operating safety for the parallel hybrid active power filter, the parallel hybrid active power filter and corresponding technologies are proposed in the paper. It is beneficial to push on the practical application for the power electrical systems.There are59figures,10tables,100references.
引文
[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].第2版.北京:机械工业出版社,2005
    [2]张一中,宁元中,宋永华,朱光永.电力谐波[M].成都:成都科技大学出版社,1992
    [3]Read J C. The Calculation of Rectifier and Converter Performance Characteristics[J]. Journal IEE,1945,92(2):495-590
    [4]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波[M].北京:水利电力出版社,1994
    [5]Arrilage J Bradly DA Bodger. Power System Harmonics[M]. John Wildy.1983
    [6]肖湘宁,徐永海.电力系统谐波及其综合治理[J].中国电力,1998,31(4):59-61.
    [7]林海雪,孙树勤.电力网中的谐波[M].北京:中国电力出版社,1998
    [8]吴竞昌,孙树勤,宋文南.电力系统谐波[M].北京:水利电力出版社,1988
    [9]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社2006.
    [10]中国国家标准GB/T14549-93:电能质量公用电网谐波[S].北京:中国标准出版社,1994
    [11]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004
    [12]H.Akagi, Y Kanazawa, A Nabae. Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits[J]. IPEC'83-International Power Electronics Conference, Tokyo, Japan,1983,1375-1386
    [13]F Harashima, H Inaba, K Tsuboi. A Closed-loop Control System for the Reduction of Reactive Power Required by Electronic Converters [J]. IEEE Trans. on IECI,1976,23(2):162-166
    [14]Bird B M, Marsh J F, Mclellan P R. Harmonic reduction in multiple converters by triple-frequency current injection[J]. Proc IEE,1969, 116(10):1730-1734
    [15]Bhim Singh, Kamal Al-Haddad, Ambrish Chandra. A review of active filters for power quality improvement [J]. IEEE Trans, on IE,1999,46(5):1-12
    [16]Gyugyi L, Strycula E C. Active ac power filter[J]. Proc of IEEE/IAS Annual Meeting,1976:529-535
    [17]姜齐荣.电力系统并联补偿:结构、原理、控制与应用[M]. 北京:机械工业出版社,2004,5-10
    [18]陈国柱,吕征宇,钱照明.有源电力滤波器的一般原理及应用[J].中国电机工程学报,2000,20(9):17-21
    [19]Hafner J, Areds M, Heumann K. A shunt active power filter applied to high voltage distribution lines[J]. IEEE Trans, on Power Delivery,1997, 12(1):266-272.
    [20]Dirk Detjen, Joep Jacobs, Rik W.De Doncker et al.A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment [J]. IEEE Trans. On power electronics,2001,16(6):821-827.
    [21]肖湘宁,徐永海,刘昊.混合有源电力补偿技术与实验研究[J].电力系统自动化,2002,26(5):39-44.
    [22]唐卓尧,任震.并联型混合滤波器及其滤波特性分析[J].中国电机工程学报,2000,20(5):25-29.
    [23]吴卫民,童立青,钱照明,等.一种高性能串联混合有源电力滤波器拓扑的研究[J].中国电机工程学报,2004,24(3):41-45.
    [24]戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法[J].中国电机工程学报,2002,22(2):99-102
    [25]杨贵杰,孙力,崔乃政,等.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83
    [26]J.A. Barrena, L. Marroyo, M.A.R. Vidal, J.R.T. Apraiz, "Individual Voltage Balancing Strategy for PWM Cascaded H-Bridge Converter-Based STATCOM[J]," IEEE Trans, on Industrial Electronics, vol.55, no.1, pp.21-29, Jan 2008.
    [27]Jin T, Smedley K M. Operation of one-Cycle controlled three-phase active power filter with unbalanced source and load[J]. IEEE Trans, on PE,2006, 21(5):1403-1412
    [28]Ribeiro R L A, Profumo F, Jacobina C B, et al.Two fault tolerant control strategies for shunt active power filter systems[J]. Electrical and Computer Engineering,2002,1(2):792-797
    [29]Taotao Jin, Xiaofan Chen, Smedley K M. A new one-cycle controlled FACTS element with the function of STATCOM and active power filter[J]. IEEE Trans, on PD,2003,3(3):2634-2638
    [30]Chang G W, Chen W C. A new reference compensation voltage strategy for series active power filter control[J]. IEEE Trans, on PD,2006,21(3): 1754-1756
    [31]彭晓涛,程时杰,王少荣,唐跃进.一种新型的电流源型变流器PWM控制策略及其在超导磁储能装置中的应用[J].中国电机工程学报,2006,26(22):60-66.
    [32]涂春鸣,罗安.基于广义积分迭代算法的有源滤波器三重变结构控制[J].电工电能新技术,2004,23(1):34-38.
    [33]曾光,苏彦民,柯敏倩等.用于无功静补系统的模糊-PID控制方法[J].电工技术学报,2006,21(6):40-43.
    [34]Mekri F, Mazari B, Machmoum M. Control and optimization of shunt active power filter parameters by fuzzy logic[J]. Electrical and Computer Engineering,2006,31(3):127-134
    [35]Komurcugil H, Kukrer O. A new control strategy for single-phase shunt active power filters using a Lyapunov function[J]. IEEE Trans, on IE,2005, 53(1):305-312
    [36]Bhende C N, Mishra S, Jain, et al. TS-fuzzy-controlled active power filter for load compensation[J]. IEEE Trans, on PD,2006,21(3):1459-1465
    [37]盘宏斌,罗安,涂春鸣,等.蚁群优化PI控制器在静止无功补偿器电压控制中的应用[J].电网技术,2008,32(18):41-46.
    [38]徐永海,肖湘宁,杨以涵等.基于d-q变换和ANN的电能质量扰动辨识[J].电力系统自动化,2001,25(14):24-28.
    [39]He N, Xu D, Huang L. The Application of Particle Swarm Optimization to Passive and Hybrid Active Power Filter Design[J]. IEEE Transactions on Industrial Electronics,2009,56(8):2841-2851.
    [40]赵伟.高压配电网谐波与无功综合动态治理理论与应用研究[D]:[湖南大学博士学位论文],湖南大学,2010,13-15
    [41]童梅,童杰,蒋静坪.有源滤波器的神经网络控制[J].电工技术学报,2000,15(1):57-60.
    [42]李江,孙海顺,程时杰等.基于灰色系统理论的有源滤波器的预测控制[J].中国电机工程学报,2002,22(2):6-10.
    [43]杨旭,王兆安.一种新的准固定频率滞环PWM电流控制方法[J].电工技术学报,2003,18(3):24-28
    [44]洪峰,单任仲,王慧贞,等.一种变环宽准恒频电流滞环控制方法[J].电工技术学报,2009,24(1):115-119
    [45]曾江,刁勤华,倪以信,等.基于最优电压矢量的有源电力滤波器电流控制新方法[J].电力系统自动化,2000,24(6):25-31
    [46]姜俊峰,刘会金,陈允平,等.有源电力滤波器的电压空间矢量双滞环电流控制新方法[J].中国电机工程学报,2004,24(10):82-86
    [47]Ramchand R, Sivakumar K, Das A, et al. Improved switching frequency variation control of hysteresis controlled voltage source inverter-fed IM drives using current error space vector[J]. IET Power Electronics,2010,3(2): 219-231
    [48]Gopakumar K, Ramchand R, Patel C, et al. Online computation of hysteresis boundary for constant switching frequency current error space vector based hysteresis controller for VSI fed IM drives[J]. IEEE Transactions on Power Electronics,2012,27(3):1521-1529
    [49]付俊,赵军,乔治·迪米罗夫斯基.静态无功补偿器鲁棒控制的一种新自适应逆推方法[J].中国电机工程学报,2006,26(10):7-12.
    [50]Wen Jinyu, Liu Pei, Cheng Shijie. Genetic algorithm and its applications to power systems[J]. Automation of Electric Power Systems,1996,20:56-65.
    [51]巩敦卫,郝国生,周勇等.交互式遗传算法原理及其应用[M].北京:国防工业出版社,2007,35-39.
    [52]刘思锋.灰色系统理论及其应用[M].第一版.北京:科学出版社,2000,32-35.
    [53]He N, Xu D, Huang L. The Application of Particle Swarm Optimization to Passive and Hybrid Active Power Filter Design[J]. IEEE Transactions on Industrial Electronics,2009,56(8):2841-2851.
    [54]Guerrero J M, Matas J, de Vicuna L G, et al. Wireless-control strategy for parallel operation of distributed-generation inverters[J]. IEEE Trans, on Industry Electronics,2006,53(5):1461-1470.
    [55]Guerrero J M, Matas J, de Vicuna L G, et al. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance[J]. IEEE Trans. on Industry Electronics,2007,54(2): 994-1004.
    [56]Guerrero J M, de Vicuna L G, Matas J, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems[J]. IEEE Trans, on Power Electron,2004,9(5):1205-1213.
    [57]Wu T F, WuYE, Hsieh H M, et al. Current weighting distribution control strategy for multi-inverter systems to achieve current sharing[J]. IEEE Trans, on Power Electronics,2007,22(1):160-168
    [58]Luo An, Shuai Zhikang, et al. Combined system for harmonic suppression and reactive power compensation[J]. IEEE Trans Ind Electron,2009, 56(2):418-428
    [59]陈宏志,刘秀翀.四桥臂三相逆变器的解耦控制[J].中国电机工程学报,2007,27(19):74-79
    [60]周丽霞,尹忠东,郑立,等.用Hoo控制的可控电抗器抑制电压波动和闪变[J].高电压技术,2007,33(12):124-129
    [61]周克敏.鲁棒与最优控制[M].北京:国防工业出版社,2002:161-164
    [62]K D Brabandere, B Bolsens, J V Keybus, et al. A voltage and frequency droop control method for parallel inverters [J]. IEEE Transactions on Power Electronics,2007,22(4):1107-1115
    [63]王成山,余旭阳.基于Multi-Agent系统的分布式协调紧急控制[M].电网技术,2004,28(3):1-5
    [64]Hiyama T, Dunding Z, Funabashi T. Multi-agent based automatic generation control of isolated stand alone power system[M]. International Conference on Power System Tecnology, Kunming, China,2002.
    [65]王斌,李兴源,王颢雄,郭贵莲.基于马尔可夫的双随机PWM技术研究[J]. 电工技术学报,2005,20(6):16-19
    [66]Premrudeepreechacharn S, Poapornsawan T. Fuzzy logic control of predictive current control for grid-connected single phase inverter[C]. Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE.2000: 1715-1718
    [67]Nicolas B, Fadel M, Cheron Y. Sliding mode control of DC-to-DC converters with input filter based on the Lyapunov-function approach[C]. Proc Eur Power Electron Conf(EPE).1995:1338-1343
    [68]Shih-Liang J, Ying-Yu T. Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve[C]. Power Electronics, IEEE Transactions on.1996,11(4):567-577
    [69]崔博文,周继华等.PWM逆变器主电路故障诊断研究[J].电工技术杂志,2001,7:5-7.
    [70]Mendes A M S, Marques Cardoso A J. voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park'S vector approach[C]. IEEE International Electric Machines and Drives Conference, 1999:704-706
    [71]Ribeiro R L A, Jacobina C B, Silva E R C D, et al. Fault detection of open-switch damage in voltage fed PWM motor drive systems[J]. IEEE Transactions On Power Electronics,2003,18(2):587-593.
    [72]B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, Fault tolerant three-phase AC motor drive topologies; a comparison of features. costand limitations [J].IEEE Trans. PowerElectron., 1(9):1108-1116, July,2004.
    [73]刘宏超,彭建春.三相四开关并联型有源电力滤波器的指令电流确定方法[J].中国电机工程学报,2009,(16):108-113
    [74]刘宏超,吕胜民,张春晖.三相四开关并联型有源电力滤波器的SVPWM调制算法[J].电工技术学报,2011,26(4):128-134
    [75]Beltrao de Rossiter Correa, Jacobina C B, da Silva E R C, et al. A general PWM strategy for four-switch three-phase inverters [C]. IEEE Transactions on Power Electronics,2006,21(6):1618-1627
    [76]Blaabjerg F, Neacsu D O, Pedersen J K. Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters[C]. IEEE Transactions on Power Electronics,1999,14(4): 743-752
    [77]Haoran Zhang, Annette von Jouanne and Shaoan Dai. A reduced-switch dual-bridge inverter topology for the mitigation of bearing currents, EMI, and DC-link voltage variations[C]. IEEE Trans. on IA,2001,37(5): 1365-1372
    [78]Changliang Xia, Zhiqiang Li and Tingna Si. A control strategy for four-switch three-phase brushless DC motor using single current sensor[C]. IEEE Trans, on IE,2009,56(6):2058-2066
    [79]J. Klima. Analytical investigation of an induction motor fed from four-switch VSI with a new spase vector modulation strategy[C]. IEEE Trans, on EC, 2006,21(4):832-838
    [80]M. Monfared, H. Rastegar and H. M. Kojabadi. Overview of modulation techniques for the four-switch converter topology[C].2nd IEEE International Conference on Power and Energy(PECon 08), December 1-3,2008, Johor Baharu, Malaysia:803-807
    [81]Jaehong Kim, Jinseok Hong and Kwanghee Nam. A Current Distortion Compensation Scheme for Four-Switch Inverters[C]. IEEE Trans, on PE, 2009,24(4):1032-1040
    [82]Rui Wang, Jin Zhao, and Yang Liu. A Comprehensive Investigation of Four-Switch Three-Phase Voltage Source Inverter Based on Double Fourier Integral Analysis[C]. IEEE Trans. on PE,2011,26(10):2774-2787
    [83]Beltrao de Rossiter Correa, Jacobina, da Silva, Lima, A General PWM Strategy for Four-Switch Three-Phase Inverters[C]. IEEE Trans, on PE, 2006,21(6):1618-1627
    [84]安群涛,孙力,赵克,等.四开关SVPWM算法及其与SPWM的关系[J].电力电子技术,2010,44(8):44-46
    [85]王瑞,赵金.四开关逆变器直流母线电容电压均衡控制[J].电力电子技术,2011,45(9):15-17
    [86]李德毅,杜鹢.不确定性人工智能[M].北京:国防工业出版社,2005.
    [87]张飞舟,范跃祖,沈程智等.基于隶属云发生器的智能控制[J].航空学报.1999,20(1):89-92.
    [88]张飞舟,范跃祖,沈程智等.利用云模型实现智能控制倒立摆[J].控制理论与应用.2000,17(4):519-523.
    [89]李众,高键.电液伺服变距系统的二维云模型控制研究[J].系统仿真学报.2004,16(5):1050-1052,1056.
    [90]李众,徐燕娟,张日勋.基于QOS的一维逆云控制器研究[J].科学技术与工程.2009,9(17):297-300.
    [91]高键,李众.一维云模型映射器设计及其应用研究[J].系统仿真学报.2006,18(7):1861-1865.
    [92]李众,杨一栋.一种新的基于二维云模型不确定性推理的智能控制器[J].控制与决策.2005,20(8):866-872,877.
    [93]孙明平,汪晓斌.基于PD+I型云模型的机器人路径跟踪控制研究[J].中国科技信息.2006,23:56-60.
    [94]李众.正态云模型智能控制研究[D].南京:南京航空航天大学,2006.
    [95]D.Li, C.Liu, Y.Du, et al. Artificial Intelligence with Uncertainty[C]. Journal of Software,15(11),1583-1594(2004).
    [96]D.Y.Li, D.W.Cheng, X. M.Shi, et al. Uncertainty reasoning based on cloud models in controllers[J]. Journal of Computer Science and Mathematics with Application. Elsevier Science,1998,35(3):99-123.
    [97]李众,刘艳.一维正态云模型单规则推理映射研究[J].系统仿真学报.2008,20(3):702-705,711.
    [98]吴晓庆,李众,刘艳.基于QOS的二维云模型控制器研究[J].微计算机信息.2007,16:37-38,17.
    [99]杨金牛,基于遗传算法的云模型控制器设计[D].镇江:江苏科技大学,2007.
    [100]M.Y.Chow, Y.Tipsuwan, "Gain adaptation of networked DC motor controllers based on QoS variations[J]", IEEE Trans.Ind.Electron.vol.50,no.5,pp:936-943,Oct.2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700