容错并联型有源电力滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电能是国民经济和人民生活的命脉,随着电力电子技术的飞速发展,各种大功率开关器件得到了广泛应用,非线性负载大量增加。它们造成电网的谐波污染和电能损失;同时冲击性负载及无功补偿不足常引起电网电压跌落和闪变,并导致线路损耗增加。这些问题影响了企业的正常生产和人民的日常生活,给我国电力系统带来了繁重的无功控制和谐波治理问题。有源电力滤波器(active power filter, APF)对电网无功控制和谐波治理等的作用已经得到公认。但是目前APF还存在很多问题有待于进一步研究和完善,因此对APF的研究仍然是电力电子应用技术中的一个重大课题。例如,如何在非理想工况下保证APF的有效运行;当APF的逆变器出现故障,如何能使APF快速正常运行等工程性质问题。
     本文从有源电力滤波器的容错运行方面,提出了容错并联型APF的结构,深入研究了容错并联型APF的相关理论和方法。研究内容涵盖了容错并联型APF的工作机理分析、数学建模、指令电流提取算法、控制算法、以及脉宽调制算法等方面,形成了较为完善的容错并联型APF的基本研究方法和技术方案,研究重点及取得的成果主要体现在以下几个方面:
     (1)根据逆变器故障的特点,主要提出了一种容错并联型APF结构。首先给出了逆变器可能发生的故障类型。分析了容错并联型APF结构原理,给出了故障情况下的几种运行模式和运行原理。
     (2)分析了三相四开关逆变器的输出电压和输出电流的规律,并分析了三相四开关逆变器直流侧电压波动时产生的影响,即使三相四开关逆变器输出的电压空间矢量产生偏置。将该结构和无故障时的三相六开关结构进行了比较,为这种结构的参数设计提供了理论依据。
     (3)提出了容错并联型有源电力滤波器的指令电流获取方法,在负载不平衡情况下该方法提取负载电流中的正序基波有功电流。将该方法进行了仿真验证,表明其在多种不利情况下能较好的获得指令电流。
     (4)结合容错并联型有源电力滤波器的结构特点,说明了直流侧电容电压的控制目标,针对性地提出了直流侧电容总电压稳定方法和直流侧电流检测方法,提出了一套完整的控制策略。仿真结果表明,采用上述控制方法的容错并联型有源电力滤波器能有效抑制负载谐波电流,在逆变器故障时,能使APF正常工作,并且电容总电压保持恒定、两电容电压均衡。
     (5)提出了容错并联型APF的SVPWM调制算法。首先给出了三相四开关逆变器的传统SVPWM算法,该算法涉及大量无理数和三角函数运算,将耗费大量运算时间,并且不可避免地引入计算误差。另一方面由于电压空间矢量与αβ标系存在角度差,扇区判断方法复杂。本文改进了三相四开关逆变器的SVPWM算法,利用新的坐标变换矩阵,使电压空间矢量的作用时间的计算和扇区的判断大大简化,无需无理数和三角函数运算。但是该算法是在直流侧电压平衡的状态下的算法。
     (6)提出了在直流侧电压不平衡的状态下的SVPWM算法。针对直流侧电压不平衡时电压空间矢量发生偏置,提出了合成零电压空间矢量的方法。并且给出了电压空间矢量作用时间和扇区判断的方法。将该方法应用到容错并联型APF中,直流侧电压不平衡的现象得到极大改善。
     本文以配电网电能质量控制、提高有源电力滤波器运行安全性能为背景,提出了容错并联型APF。工程应用的容错方案设计思路可推广到其它电能质量控制电力电子系统的设计和应用中,为推进电力电子系统的实用化进程提供有益的参考和借鉴。图66幅,表8个,参考文献108篇
Abstract:Electrical energy plays an important role in the economic development and people's lives. With the rapid development of power electrical technologies and widely used high power switch devices, non-linear loads in the grid are widely increased, which causes harmonic pollution and energy losses. Meanwhile, voltage fluctuation and voltage flicker caused by the impulsive load and reactive power variation have greatly disturbed the industrial production and people's lives. It also makes the electrical system have problems such as heavy reactive power compensation and harmonic suppression. Active power filter has good well-known performance on reactive power compensation and harmonic suppression. But there are many problems for APF to be researched and improved. It is still an important task for APF on the field of power electrical applying technology. For example, it is under non-ideal operation condition how to keep APF running effectively, even when the inverter in APF has fault.
     This paper proposes the structure of fault tolerant parallel active power filter, named APF operating with fault tolerant, to improve the safe performance for APF. The relative theories and methods of fault tolerant APF are researched. The working mechanism, mathematical model, instructing current extracting method, control method, pulse modulating method and so on are researched in the paper. The basic researching method and technical proposal of fault tolerant APF are formed. The emphasis and achievement of the paper mainly manifests in the following aspects.
     (1) According to the characteristic of inverter fault, a structure of fault tolerant parallel APF is proposed. The possible fault types of inverter are given first. The structure of fault tolerant parallel APF is analyzed. Several operating models and corresponding primaries under fault condition are discussed.
     (2) The regular pattern outputting voltages and currents of three-phase four-switch inverter is analyzed. The influence caused by the DC-linked voltage fluctuation of three-phase four-switch inverter is also analyzed. That is the offset of the output voltage space vector of three-phase four-switch inverter. Comparing the structure with the three-phase six-switch structure without fault, the theory evidence of parameter design is provided.
     (3) The instructing current extracting method for fault tolerant parallel APF is proposed. The positive order fundamental active current can be obtained by the method even under unbalance load condition. The method is test and verified with simulation. The instructing current can be gotten under different bad condition.
     (4) Combining the structure characteristic of fault tolerant parallel APF, the controlling aim of DC-link capacitor voltage is illustrated. The method to stabilize the DC-link total voltage and the method to detect the DC-link current are proposed. The corresponding controlling strategy is put forward. The simulation is done. Simulating results show that the fault tolerant parallel APF can suppress the harmonic currents effectively. APF can work normally when the inverter is fault. The DC-link total voltage is kept stable and two capacitor voltages are kept balance.
     (5) The modulating method of SVPWM for fault tolerant APF is proposed. The traditional SVPWM method is given first, which needs a great deal of irrational number and trigonometric function operations. A lot of operating time is cost. The computing error is unavoidably is led into at the same time. On the other hand, due to the angle difference between the voltage space vector and the αβ coordinate system, it is complicate to judge sector. An improved SVPWM method for three-phase four-switch inverter is proposed in the paper. Using new coordinate transformation matrix, the computation of space voltage vector working time and the judgement of sector are simplified, which need not the irrational number and trigonometric function operations. However, the method works under the condition of DC-link voltage balance.
     (6) A SVPWM method with DC-link voltage unbalance is proposed. A method composing zero voltage space vectors is put forward with the DC-link voltage unbalance. The methods of computing the working time of voltage space vector and the judgment of sector are provided. The DC-link voltage unbalance is greatly restrained by the proposed SVPWM method.
     According to the background of power quality control and the improvement of operating safety for APF, the fault tolerant parallel APF is proposed in the paper. The fault schematic design for engineering application can be popularized to the other design and application in the field of power electrical systems. It is beneficial to push on the practical application for the power electrical systems.
引文
[1]王兆安,杨君,刘进军.谐波抑制与无功补偿[M].北京:机械工业出版社,1998.
    [2]张一中,宁元中,宋永华,朱光永.电力谐波[M].成都:成都科技大学出版社,1992.
    [3]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波[M].北京:水利电力出版社,1994.
    [4]林海雪,孙树勤.电力网中的谐波[M].北京:中国电力出版社,1998
    [5]阿里拉加J,布莱德勒D A,伯德格尔P S.电力系统谐波[M].唐统一译.徐州:中国矿业大学出版社,1991.
    [6]阿里拉加J,布莱德勒D A,伯德格尔P S.电力系统谐波[M].容健纲,张文亮译.武汉:华中理工大学出版社,1994.
    [7]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社,2006.
    [8]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004.
    [9]许遐.公用电网谐波的评估和调控[M].北京:中国电力出版社,2008.
    [10]姜华.高耗能用户电能质量测试分析与治理措施研究[D],北京:华北电力大学,2005.
    [11]IEEE Standards Coordinating Committee 22 on Power Quality. IEEE Std 1159-1995 IEEE Recommended Practice for Monitoring Electric Power Quality, ISBN-1-55937-549-3,1995.
    [12]谢小荣,崔文进,陈远华,等.多机电力系统中STATCOM与发电机励磁的协调控制[J].电力系统自动化,2002,26(01):14-17.
    [13]吴国红,贺家李,余贻鑫,等.FACTS装置最佳设置点的选择指标[J].电力系统自动化,1998,22(09):57-60.
    [14]夏岩峰.100Mvar SVC在220kV系统中的应用研究[D].北京:华北电力大学,2006.
    [15]R.Mohan Mathur, Rajiv K. Varma.基于晶闸管的柔性交流输电控制装置[M].徐政译.北京:机械工业出版社,2005.
    [16]姜齐荣.电力系统并联补偿:结构、原理、控制与应用[M].北京:机械工业出版社,2004,5-10.
    [17]何宗元.永磁同步电机直接转矩控制系统逆变器故障下的容错运行研究[D].浙江:浙江大学,2007.
    [18]王波.基于三相四开关逆变器供电永磁同步电机直接转矩控制容错运行研究[D].浙江:浙江大学,2010.
    [19]蒋志坚,徐殿国,朱香娟.感应电动机四开关低成本逆变器的磁链轨迹改进控制研究[J].中国电机工程学报,2003,23(11):74-79.
    [20]Welchko B A, Lipo T A, Jahns TM et al. Fault tolerant three-phase AC motor drive topologies; a comparison of features, cost, and limitations[J]. IEEE Transactions on Power Electronics,2004,19(4):1108-1116.
    [21]张兰红,胡育文,黄文新.容错型四开关三相变换器异步发电系统的直接转矩控制研究[J].中国电机工程学报.2005,25(18):140-145.
    [22]王群,姚为正,刘进军.谐波源与有源电力滤波器的补偿特性[J].中国电机工程学报,2001,21(2):16-20.
    [23]陈国柱,吕征宇,钱照明.有源电力滤波器的一般原理及应用[J].中国电机工程学报,2000,20(9):17-21.
    [24]Fujita H. A hybrid active filter for damping of harmonic resonance in industrial power systems[J]. IEEE-TPE,2000,15(2):215-222.
    [25]Hafner J, Areds M, Heumann K. A shunt active power filter applied to high voltage distribution lines[J]. IEEE Trans. on Power Delivery,1997,12(1): 266-272.
    [26]Reza Keypour, Hossein Seifi, Ali Yazdian-Varjani. Genetic based algorithm for active power filter allocation and sizing[J]. Electric Power Systems Research,2004,:41-49.
    [27]Senini S, Wolfs P J. Analysis and Design of a Multiple-loop Control System for a Hybrid Active Filter [J]. IEEE Trans on Industrial Electronics,2002: 1283-1292.
    [28]Dirk Detjen, Joep Jacobs, Rik W.De Doncker et al.A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment [J]. IEEE Trans. On power electronics,2001,16(6):821-827.
    [29]肖湘宁,徐永海,刘昊.混合有源电力补偿技术与实验研究[J].电力系统自动化,2002,26(5):39-44.
    [30]唐卓尧,任震.并联型混合滤波器及其滤波特性分析[J].中国电机工程学报,2000,20(5):25-29.
    [31]吴卫民,童立青,钱照明,等.一种高性能串联混合有源电力滤波器拓扑的研究[J].中国电机工程学报,2004,24(3):41-45.
    [32]范瑞祥.混合型有源滤波装置设计与应用研究[D].长沙:湖南大学,2005.
    [33]L. Gyugyi, E. C. Strycula, Active ac power filters[C]. In Proc. IEEE, Ind. Appl. Soc. Annual Meeting,1976:529-535.
    [34]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-power circuits[C]. IPEC'83-Int. Power Electronics Conf., Tokyo, Japan,1983:1375-1386.
    [35]Zhaoan Wang, Qun Wang, Weizheng Yao, Jinjun Liu. A Series Active Power Filter Adopting Hybrid Control Approach[J]. IEEE transactions on power electronics,2001,16(3):301-310.
    [36]Z Lu, T Green. Neural network based predictive control strategy of active power filter for electric drives[J]. IEE PEVD,2002,7(456):287-291.
    [37]Nunez-Zuniga T E, Pomilio J A. Shunt active power filter synthesizing resistive loads[J]. Power Electronics,2002,17 (2):273-278.
    [38]王广柱.并联型有源电力滤波器电流控制的等效原理[J].中国电机工程学报,2006,26(15):40-45.
    [39]Mattavelli P, Marafao F P. Repetitive-based control for selective harmonic compensation in active power filters[J]. IEEE Transactions on Industrial Electronics,2004,51(5):1018-1024.
    [40]Hirofumi Akagi. Control Strategy and Site Selection of a Shunt Active Power Filter Damping of Harmonic Propagation in Power Distribution Systems[J]. IEEE Transactions on Power Delivery,1997,12(1):354-363.
    [41]叶忠明.几种混合有源电力滤波器分析[J].电工电能新技术,1998,17(2):23-28
    [42]Sangsun Kim, Prasad N. Enjeti. A New Hybrid Active Power Filter (APF) Topology[J]. IEEE Transactions on Power Electronics,2002,17(1):48-54.
    [43]Akagi H, A.Nabae, S.Atoh. Control strategy of active power filters using multiple voltage-source PWM converters[J]. IEEE IA 1986,22(3):460-465.
    [44]JOOS G., HUANG X., OOI B.T. Direct-coupled multi-level cascaded series Var compensators[C]. IEEE IAS Annual meeting,1997:1608-1615.
    [45]M.Rastogi, N.Mohan, A.A.Edris. Hybrid-active filtering of harmonic currents in power systems[J], IEEE Trans. P.D.,1995,10(10):1994-2000.
    [46]H.-L.Jou, J.-C.Wu, K.-D.Wu. Paralled operation of passive power filter and hybrid power filter for harmonic suppression[J]. IEE Proc-Gener, Transom Distrib,2001,148(1):8-14
    [47]An Luo; Zhikang Shuai; Wenji Zhu; Shen, Z.J. Combined System for Harmonic Suppression and Reactive Power Compensation[J], IEEE Trans. Ind. Electron.,2009,56(2):418-428.
    [48]范瑞祥,罗安,李欣然.并联混合型有源电力滤波器的系统参数设计及应用研究[J].中国电机工程学报,2006,23(2):106-111.
    [49]CHOE G., PARK M. Analysis and control of active power filter with optimized injection[J]. IEEE Trans. P.E.,1989,4(4):427-433.
    [50]谭甜源,罗安,唐欣,涂春鸣.大功率并联混合型有源电力滤波器的研制[J].中国电机工程学报,2004,24(3):17-21.
    [51]A. Nakajinma et al. Development of Active Filter with Series Resonant Circuit[J]. IEEE PESC,1988,1168-1173.
    [52]Fujita H, Akagi H. A Practical Approach to Harmonic Compensation in Power Systems-Series Connection of Passive and Active Filters[C]. In:IEEE IAS Annual Meeting Conference Record,1990:1107-1112.
    [53]马大铭,朱东起,姜新建.新型综合电力滤波系统的研究[J].清华大学学报,1997,37(S1):48-52.
    [54]唐卓尧,任震.并联型混合滤波器及其滤波特性分析[J].中国电机工程学报,2000,50(5):25-29.
    [55]王莉娜,付青,罗安.工厂供电系统谐波谐振的抑制[J].电力系统自动化,2001.20(10):41-44.
    [56]涂春明.新型谐振阻抗型混合有源滤波器RITHAF研究[D].长沙:中南大学博士学位论文,2003.
    [57]邓占锋,朱东起,姜新建.降低有源部分容量的混合电力滤波器[J].清华大学学报(自然科学版),2003,32(3):293-295.
    [58]段勇,王跃,符志平,等.新型单相并联混合电力滤波器的研究[J],电工电能新技术.2004,23(1):51-54.
    [59]PENG F. Z., AKAGI H., and NABAE A. Compensation characteristics of the combined system of shunt passive and series active filters[J], IEEE Trans. I. A., 1992,29(1):144-152.
    [60]S.Bhattacharya and D.M.Divan. Hybrid series active/parallel passive power lie conditioner with controlled harmonic injection[P]. U.S.Patent 5465203, Nov. 1995.
    [61]李丽,改善电压稳定性的SVC非线性控制策略[J],中国测试技术,2005,31(2):21-23.
    [62]Jing Zhang; Wen, J.Y.; Cheng, S.J.; Jia Ma, A Novel SVC Allocation Method for Power System Voltage Stability Enhancement by Normal Forms of Diffeomorphism[J], IEEE Transactions on Power Systems,2007,22(4):819-825.
    [63]何斌,张秀彬.基于结构保持模型的多SVC协调控制[J],中国电机工程学报,2007,27(28):35-39.
    [64]刘隽,李兴源,汤广福.SVC电压控制与阻尼调节间的相互作用机理[J],中国电机工程学报,2008,28(1):12-17.
    [65]彭建春,黄纯,王耀南,静止无功补偿器的智能自适应PID控制器设计[J],湖南大学学报,1999,26(5):51-55.
    [66]康忠健,勾松波,孟繁玉,刘宝.SVC与发电机励磁的非线性变结构协调控制[J],高电压技术,2008,34(5):995-1000.
    [67]Chong Han; Zhanoning Yang; Bin Chen; Huang, A.Q.; Bin Zhang; Ingram, M.R.; Edris, A.-A.; Evaluation of Cascade-Multilevel-Converter-Based STATCOM for Arc Furnace Flicker Mitigation[J], IEEE Trans. on Industrial Applications,2008,43(2):378-385.
    [68]Bina, M.T.; Bhat, A.K.S. Averaging Technique for the Modeling of STATCOM and Active Filters[J], IEEE Transactions on Power Electronics, 2008,23(2):723-734.
    [69]Khan, M.S., Iravani, M.R. supervisory hybrid control of a micro grid system[C], Electrical Power Conference,2007:20-24.
    [70]丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用[J].中国电机工程学报.2000,20(6):17-20,52.
    [71]何湘宁,B.W.Willianms.钱照明.高功率逆变桥开通缓冲电路能量回馈研究[J].中国电机工程学报,1997,17(3):157-161.
    [72]Bhim Singh, Jitendra Solanki, Vishal Verma. Neural network based control of reduced rating DSTATCOM[C]. In:IEEE indicon conference. Chennai, 2005,516-520.
    [73]马晓军,姜齐荣,陈建业,等.不对称系统的设计参数对STATCOM性能的影响[J].清华大学学报(自然科学版),2000,40(7):23-26.
    [74]Woei-Luen Chen, Yuan-Yih Hsu. Direct output voltage control of a static synchronous compensator using current sensorless d-q vector-based power balancing scheme[C]. In:IEEE PES Transmission and distribution conference and exposition.2003,2:545-549.
    [75]Su Chen, Ceza Joos. Direct power control of DSTATCOMs for voltage flicker mitigation[C]. In:36th IAS annual meeting industry application conference. 2001,4:2683-2690.
    [76]P.W.Lehn, M.R.Iravani. Experimental evaluation of STATCOM closed loop dynamics[J]. IEEE Trans. On Power Delivery,1998,13(4):1378-1384.
    [77]Pranesh Rao, M.L.Crow, Zhiping Yang. STATCOM control for power system voltage control applications[J]. IEEE Trans. On Power Delivery,2000,15(4): 1311-1317.
    [78]S.Mishra, B.K.Panigrahi, M.Tripathy. A hybrid adaptive-bacterial-foraging and feedback linearization scheme based D-STATCOM[C]. In:International conference on power system technology. Singapore,2004:275-280.
    [79]S.Mariethoz, A.C.Rufer. Open loop and closed loop spectral frequency active filtering[J]. IEEE Trans. on P. E.,2002,17(4):564-573.
    [80]J.Sebastian Tepper, Juan W.Dixon, Gustavo Venegas, etal. A simple frequency-independent method for calculating the reactive and harmonic curren in a nonlinear load[J]. IEEE Trans. on I.E.,1990,43(6):647-654.
    [81]张波,黄朝凯,王昊等.基波电流和任意次数谐波电流检测新方法[J].华南理工大学学报,2000,28(1):70-75.
    [82]F.Z.Peng, J.S.Lai. Generalized instantaneous reactive power theory for three-phase power system[J]. IEEE Trans I.M.,1996,45(2):293-297.
    [83]李庚银,陈志业,丁巧林等.dq0坐标系下广义瞬时无功功率定义及其补偿[J].中国电机工程学报,1996,16(3):176-179.
    [84]刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及其应用[J].电工技术学报,1999,14(2):49-54.
    [85]杨君,王兆安,丘关源.单相电路谐波及无功电流的一种检测方法[J],电工技术学报,1996,11(6):42-47.
    [86]VAN HARMELEN G.L., ENSLIN J.. Real time dynamic control of dynamic power filters in supplies with high contamination[J]. IEEE Trans. P.E.,1993, 8(3):301-308.
    [87]CHICHARO, J. F., and WANG, H. Power system harmonic signal estimation and retrieval for active power filter applications[J], IEEE Trans. P. E.,1994,9 (6):580-586.
    [88]L.Benchaita, S.Saagate, A.Salem nia. A comparison of voltage source and current source shunt active filter by simulation and experimentation[J]. IEEE Trans. Power System,1999,14(2):642-647.
    [89]王群吴宁苏向丰.有源电力滤波器谐波电流检测的一种新方法[J].电工技术学报,1997,12(1):1-5.
    [90]Pan C T, Chang TY An Improved Hysteresis Current Controller for Reducing Switching Frequency[J]. IEEE Tram. on PE,1994,9(1):97-104.
    [91]Malesani L, Tenti P. A Novel Hysteresis Control Method for Current-controlled Voltage-source PWM Inverters with Constant Modulation Frequency[J]. IEEE Trans. on IA,1990,26(1):88-92.
    [92]Saetieo S, et al. The Design and Implementation of A Three Phase Active Power Filter Based on Sliding Mode Control[J]. IEEE Tram. On IA,1995, 31(5):993-1000.
    [93]邓占锋,朱东起,姜新建.基于滑模控制的混合型电力滤波装置[J].电工技术学报,2002,17(2):92-96.
    [94]李玉梅,马伟明.无差拍控制在串联电力有源滤波器中的应用[J].电力系统自动化,2001,25(8):28-30.
    [95]李江,孙海顺,程时杰等.基于灰色系统理论的有源滤波器的预测控制[J].中国电机工程学报,2002,22(2):6-10.
    [96]K. K. Shyu, M. J. Yang, and Y. M. Chen, et al. Model reference adaptive control design for a shunt active-power-filter system[J]. IEEE Trans. Ind. Electron.,2008,55(1):97-106.
    [97]Sachine Hirve, Kishore Chatterjee, B G Fernandes, et al. PLL-Less Active Power Filter Based on One-Cycle Control for Compensating Unbalanced Loads in Three-Phase Four-Wire System [J]. IEEE Transactions on Power Delivery (S0885-8977),2007,22(4):2457-2465.
    [98]Yuan X, Merk W, Stemmler H, ct al. Stationary-frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-state Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions[J]. IEEE Tram. On IA,2002,38(2):523-532.
    [99]童梅,童杰,蒋静坪.有源滤波器的神经网络控制[J].电工技术学报,2000,15(1):57-60.
    [100]钱挺,吕征宇.基于单周控制的有源滤波器双环控制策略[J].中国电机工程学报,2003,23(1):34-37.
    [101]周林,蒋建文,周雒维等.基于单周控制的三相四线制有源电力滤波器[J].中国电机工程学报,2003,23(3):85-90.
    [102]何卫东,王长永,张仲超等.相移正弦脉宽调制技术在电网有源滤波和无功补偿中的应用.电网技术,1999,23(6):5-7.
    [103]崔博文,周继华等.PWM逆变器主电路故障诊断研究[J].电工技术杂志,2001,7:5-7.
    [104]Mendes AMS, Marques Cardoso A J. voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park'S vector approach[C]. IEEE International Electric Machines and Drives Conference, 1999:704-706.
    [105]Ribeiro R L A, Jacobina C B, Silva E R C D, et al. Fault detection of open-switch damage in voltage fed PWM motor drive systems[J]. IEEE Transactions On Power Electronics,2003,18(2):587-593.
    [106]Jaehong Kim, Jinseok Hong and Kwanghee Nam. A Current Distortion Compensation Scheme for Four-Switch Inverters[J]. IEEE Trans. on PE,2009, 24(4):1032-1040.
    [107]Rui Wang, Jin Zhao, and Yang Liu. A Comprehensive Investigation of Four-Switch Three-Phase Voltage Source Inverter Based on Double Fourier Integral Analysis[J]. IEEE Trans. on PE,2011,26(10):2774-2787.
    [108]M. Rastogi, R. Naik, N. Mohan, A comparative evaluation of Harmonic Reduction Techniques in Three-phase Utility Interface of Power Electronic Loads[J], IEEE Trans, on Ind. Appl.,30(5):1149-1155,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700