甜菜NBS-LRR类抗性基因序列分析及其转基因体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物的抗性基因研究一直是各国科学家关注的重点。本文主要研究了(1)甜菜(Beta vulgaris L.)基因组中NBS-LRR类抗性基因序列特征;(2)甜菜再生体系的构建及其影响因子;(3)农杆菌介导转化甜菜体系的构建及优化。主要研究结果如下:
     1.甜菜基因组TIR-Type类抗性基因序列分析
     大部分植物抗性基因蛋白质是由核苷酸绑定位点和亮氨酸富集区(NBS-LRR)构成的。根据保守NBS-LRR残基设计的简并引物,扩增了双子叶植物甜菜TIR-Type类抗性基因序列,共获得12个表达的NBS-LRR类基因序列。序列分析说明,这些序列中的点突变,如核苷酸替代、插入、缺失很可能是甜菜NBS-LRR类基因多样性的主要原因。序列联配和系统发育树结果显示,甜菜NBS-LRR类基因属于无TIR型抗性基因亚族,且克隆获得的其他所有序列均属于该亚族。用TIR型特异性引物获得的PCR产物在超过16,000条甜菜EST序列的搜索中,均未发现典型的TIR型NBS-LRR类基因。该结果表明双子叶植物甜菜基因组中TIR型BNS-LRR类基因可能缺失,这是首次在双子叶植物中发现该现象,此前只在单子叶植物(如水稻)中发现该抗性基因亚族缺失。
     2.甜菜再生体系的构建及其影响因子
     为了建立甜菜的高频再生体系,确定影响再生的主要因子,采用了正交设计方法,通过不同浓度的激素配比、TIBA浓度、蔗糖浓度、预培养时间、外植体的筛选,提出了双八甜菜品种离体培养再生频率较高的培养基配方(MS+NAA0.4mg/L+BAP1.0mg/L+TIBA0.4mg/L+3%蔗糖+0.8%琼脂)、最适宜的外植体(叶柄)和最佳的预培养时间(3周)。本研究建立的高频再生体系再生频率达到76.7%。利用MS+KT0.1mg/L+NAA0.8mg/L和MS+NAA1.0mg/L为生根培养基,生根率达到100%,再生植株移栽的成活率也达到了100%。
     3.甜菜遗传转化体系构建
     为了能有效地杀除共培养后残余的农杆菌和筛选转化体,测定了双八甜菜品种抗生素的敏感性。经实验证明,离体培养叶柄时,Kan的浓度为150mg/L为宜。
    
    种抗生素的敏感性。经实验证明,离体培养叶柄时,Kan的浓度为15Omg/L为宜。
    在所用的梭节青霉素、氨节青霉素和头抱霉素三种抑菌抗生素中,根据它们对芽
    再生的影响,应首选狡节青霉素。为建立农杆菌介导甜菜转化的稳定体系,以gus
    基因在叶片中的表达频率为指标,对影响转化频率的几个重要因子进行了优化。
    通过对菌液浓度、预培养时间、感染时间、共培养时间以及诱导分化温度的梯度
    实验得出,菌液浓度0D60(,二1.0、预培养2天、感染15分钟、共培养3天、诱导分
    化温度为25一30℃时,gus的表达频率最高。
Disease resistance of crops is an important topic in scientific field. In this paper, we (1) analyzed NBS-LRR-type resistance gene analogues in the Sugarbeet (Beta vulgarisL.) Genome; (2) established a tissue culture or regeneration system and (3) an effective transformation system by Agrobacterium for sugar beet. The main results follow as:
    1. The analysis of TIR-type resistance gene analogues in the sugar beet genome
    The majority of known plant resistance genes encode proteins with conserved nucleotide binding sites and leucine-rich repeats (NBS-LRR). Degenerate primers based on conserved NBS-LRR motifs were used to amplify analogues of resistance genes from the dicot sugar beet. Along with a cDNA library screen, the PCR screen identified 12 expressed NBS-LRR RGAs (nlRGAs) sugar beet clones. Sequence analyses suggested that point mutations, such as nucleotide substitutions and insertion/deletions, are probably the primary source of diversity of sugar beet nlRGAs. A phylogenetic and sequence alignment analysis revealed that NBS-LRR type resistance genes of sugar beet belong to non-TIR-type NBS-LRR and all other clones are this subfamily. PCR amplifications based on the primers specific for TIR were researched in EST database of sugar beet that contains 16,000 sequences. The results showed that we could not find the representative TIR NBS-LRR-containing resistance genes. This indicated that TIR NBS-LRR-containing resistanc
    e genes might miss in sugar beet genome. This instance was the fist reported in dicotyledon and only covered in monocotyledon (such as Oryza sative L.).
    2. Establishment of regeneration system of sugar beet
    In order to establish an effective regeneration system of sugarbeet and research key factors, we investigated the concentration of NAA, BAP,
    
    
    
    TIBA and sucrose, the time of pre-culture and the type of explant for
    regeneration of sugar beet. The results showed that the regeneration
    frequency reached 76.7% by medium with MS+
    MS+NAA0. 4mg/L+BAPl. Omg/L+TIBA0. 4mg/L+3%Scurose+0. 8%agar, the best
    explant is petioles, and the most condign time is three weeks. The
    rhizogenesis mediums are MS+KT0.1mg/L+NAAO. 8mg/L and MS+NAA1. Omg/L, and
    the rhizogenesis frequency reached 100% in those mediums. The livability
    of regeneration plantlet is 100%. This formula is fit for other cultivars
    in Beta vulgar is L.
    3 Establishment of an effective transformation system by Agrobacterium
    of sugarbeet variety
    To effective eliminate Agrobactiu/nand screen of transformated cells after co-cultivation, sensitivity of cultivar Shuang-eight of sugar beet cultured in vitro to four antibiotics was tested. Results showed that petiole was sensitive to knamycin and the suitable concentration is 150mg/L. Among carbenicillin, ampicillin and cefotaxime used for elimination of hgrobacterium, carbenicillin should be preferable based on their effects on shoot regeneration.
    In order to establish an effective transformation system of sugarbeet, several key factors (the concentration of Agrobacterium, pre-culture time, infective time, co-culture time and polarization temperature) on in the process of Agrobacten'urn-mediated transformation were optimized based on the frequency of transient expression of gus gene. The highest frequency was observed when explants that had been pre-cultivated two days were immersed in bacterium suspension with OD600 value about 1. 0 for 15 minutes followed by co-cultivated for about three days, and then they were cultured in 25-30T.
引文
方宣钧,王敬强等.我国应县小黑豆对大都孢囊线虫4号生理小种抗性的SSR及ISSR分子标记研究.农业生物技术学报,2002,10(1):81—85
    郭九峰,等.甜菜原生质体培养再生植株的研究[J].中国甜菜,1994(4):6-9
    郭九峰,等.甜菜原生质体研究初报[J].中国甜菜,1993,(1):1-4
    何亚文,贺红,韩美丽等.芥蓝下胚轴离体培养及高频率植株的再生.热带亚热带植物学报,1998,6(2):152-157
    李俊明编译.植物组织培养教程.北京:北京农业大学出版社.1992
    李卫,陈亮,蔡得田等.柑橘基因转化的方法.植物学报,1997,39(8):782-784
    李卫,郭光沁,郑国昌.根癌农杆菌介导遗传转化研究的若干新进展.科学通报,2000,45(8):798-807
    李兴锋,等.甜菜原生质体培养直接产生体细胞胚[J].植物学报,1992,34(5):402-404
    刘巧红,孔凡江,于歆等.基因工程方法抗甜菜丛根病病毒育种的研究.中国甜菜糖业,2000,2:1—5
    马龙彪,等.几丁质酶基因转化甜菜的初步研究[J].中国甜菜,2000,(3):18-20
    邵明文,等.甜菜原生质体培养再生愈伤组织[J].植物学报,1993,(35):727-729
    孙敏,伍春莲,汪洪等.多因子正交试验对长春花离体培养条件的筛选.西南师范大学学报(自然科学版),2002,27(2):202-205
    唐启义,冯明光编著.实用统计分析及其计算机处理平台.北京:农业出版社.1997
    王关林.方宏筠.植物基因工程原理与技术.北京:科学出版社,1998
    王红旗.我国甜菜育种工作回顾与展望[J].中国糖料,2001,(2):32-38
    许宏智,等.植物生物技术[M].上海:上海科学技术出版社,1998
    叶建明,唐克轩,沈大棱.植物转基因方法概述.生命科学,1999,11(2):58-60
    易自力,刘选明,周朴华.植物抗虫基因的研究与应用.高技术通讯,1999,6:53-58
    曾广文,蒋德安主编.植物生理学.成都:成都科技大学出版社.1998
    翟文学,朱立煌.植物抗病基因的克隆与分子育种.生物工程进展,1996,16:17-21
    张荣,等.中国甜菜概论[M].呼和浩特:内蒙古科学技术出版社,2000
    张艳春,等.甜菜转基因研究进展[J].中国糖料,2002,(1):34-36
    赵泓,姚磊,刘凡.大白菜再生体系影响因子的方差分析.华北农学报,2002,17(3):59—63
    Aarts MG, Hekkert B, Holub EB, Bolub EB, Beynon JL, Stiekema WJ, and Pereira. A Identification of R-gene homologous DNA fragments genetifically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact. 1998a, 11:251-258
    Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated sinaalling pathways in Arabidopsis. Proc Nail Acad Sci USA. 1998b,95:10306-10311
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25:3389-3402
    Anne Simon Moffat, Plant genetics. Mapping the sequence of disease resistance.
    
    Science, 1994, 265:1804-1805
    Arumuganathan K, Earle ED Nuclear DNA content of some important plant species. Plant Mol Biol Rep. 1991, 9:208-218
    Atkinson, Howard, John, Lilley Catherine Jane et al. Root Specific Promoters Patent PCT 1997, Wo9720057
    Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP. Signalling in plant-microbe interactions. Science, 1997 276:726-733
    Barthels N, van der Lee FM, Klap J, et al. Regulatory sequences of Arabidopsis drive reporter gene expression in nematode feedings tructures. Plant Cell, 1997, 9(12):2119-2134
    Bau JF, Pennill LA, Ning J, Lee SW, Jegandeesan R, Webb CR, Zhao BY, Sun Q, Nelson JC, Leach JE, Hulber SH. Diversity in nuckeotide binding site-Leucine-rich repeat genes in cereals. Genome Res. 2002, 12:1871-1884
    Bendahmane A, Kanyuka K, Baulcombe DC. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell. 1999, 11:781-792
    Bole HC (1977) The plant kingdom. Prentice-Hall, Englewood Cliffs, NJ
    Bundock P, Den D.R, Beijersbergen A, et al. Trams-kingdom T-DNA transfer from Agrobacterium to Saccharomyces Cerevisiae. EMBO J. 1995, 14(3): 3206-3214
    C H Opperman, Christopher G Taylor, Hark A Conking. Root-Knot Nematode-Directed Expression of a Plant Root-Specific Gene. Science, 1994, 263(14): 221-223
    Cai D, Kleine M, Kifle S, Haeioff HJ. Positional cloning of a gene for nematode resistance in sugar beet. Science, 1997, 275:832-834
    Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Yung ND. Diversity, Distribution, and ancient taxonomiv relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mo; Evol. 2002, 54:548-562
    Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawica BJ. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science, 1997, 278:1963-1965
    Chan M T, Chang H H, Ho S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol Biol., 1993, 22:491-506
    Clark WG, Fitchen J, Nejidat A, et al. Studies of coat protein-mediated resistance to tobacco mosaic virus (TMV). Ⅱ. Challenge by a mutant with altered virion surface does not overcome resistance conferred by TMV coat protein. J Gen Viroi,1995,76(10): 2613-2617
    Clough S J, Bent A F, Dip F. A simplified method for Agrobacterium-mediated transformation of Arabidopsis thallana. Plant J, 1998, 16(6): 735-743
    Cregan PB, T Jarvik, A L Bush et al. An integrated genetic linkage mad of the soybean genome. Crop Sci, 1999, 39:1464-1490
    Dangl JL, Jones JD. Plant pathogens and integrated defense responses to infection. Nature. 2001, 411:826-833
    Dudareaa, et al. Genetika, Ussr, 24. 1988, N. 12, 2164-2171
    Ellis JG, Lawrence GJ, Luck JE, Dodds PN. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene
    
    specificity. Plant cell. 1999, 11: 495-506
    Favery B, Lecomte P, Gil N, Bechtold N, et al. a plant gene involved in early developmental steps of nematode feeding cells, EMBO J., 1998, 17(23): 6799-6811
    Fluhr R. sentinels of disease Plant resistance genes. Plant Physiol. 2001, 127: 1367-1374
    Fullner K J, Lara J C, Nester E W. Pilus axsembly by Agrobacterium T-DNA transfers genes. Science. 1996, 273:1107-1109
    Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL. Structure of the Arabidopsis PRM1 gene enabling dual specificity disease resistance. Science. 1995, 269:843-846
    Griffitts JS, Whitacre JL, Stevens DE, et al. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science. 2001, 293(5531): 860-864
    Gurr Sj, McPherson MJ, Scollan C, et al. Gene expression in nematode-infected plant roots. Mol Gen Genet. 1991, 226(3): 361-366
    Hammond-Kosack KE, Jones JD. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol. 1997, 48:575-607
    Harada, et al. Proceedings of the Sugar Beet Research Association, Japan, 1985, No. 27, 13-19
    Hepher A, Atkinson Howard John, et al. Nematode Control With Proteinase Inhibitors. US Patent 1992, PCT W09215690
    Herrera-Estrella A. Chet I et al. Chitinases in biological control. EXS, 1999, 87: 171-184
    Herwig R, Schulz B, Weisshaar B, Hwnnig S, Steinfath M, Drungowski M, Stahl D, Wruck W, Menze A, O' Brien J, Lehrach H, Radelof U. Construction of a "unqigene" cDNA clone set by oligonuckeotide fingerprinting allows access to 25,000 prtential sugar beet genes. Plant J. 2002, 32:845-857
    Horng T, Barton GM, and Medzhitov R. TIRAP: An adapter molecule in the Toll signaling pathway. Nat Immunol. 2001, 2:835-841
    Hunger S, Di Gaspero G, Mohring S, Bellin D, Schafer-Pregl R, Borvhardt DC, Durel CE, Werber M, Weisshaar B, Salamini F. Schneider K. Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet (Beta vulgaris L.). Genome. 2003, 46:70-82
    Irene Groghegan, Birch Nicholas, Gatehouse Angharad Margaret Ro et al. Nematicidal Proteins US Patent 1999 PCT W09526634
    Jebanathirajah J, Peri S, Pandey A. Toll and interleukin-1 receptor (TIR) domain-containing proteins in plants: A genomic perspective. Trends Plant Sci. 2002, 7:388-391
    Jones DA, Jones JDG. The role of leucine-rich repeats proteins in plant defences. Adv Bot Res. 1997, 24:90-167
    Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, and Schulze-Lefert P. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA. 1998, 95:370-375
    Lim HT, You YS, Park EJ, Song YN. High plant regeneration, genetic stability of regeneration, and genetic transformation of herbicide resistant gene (bar) in
    
    Chinese cabbage (Brassica campestris ssp. Pekinensis). Proceeding of the International Symposium on Brassica. 1997, 199-208
    Lupas A. Coiled coils: New structures and new functions. Trends BiovhrmSci. 1996, 21:375-382
    Matson AL, et al. Evidence of a fourth gene for resistance to the soybean cyst nematode. Crop Sci. 1965, 5:477
    Mayerhofer R, Koacz-Kalman Z, and Nawrath C, et al. T-DNA integration: a model of illegitimate recombiastion in plants. EMBO J. 1991, 10(3): 679-704
    McDowell JM, Dhandayham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL. Intragenic recombination and diversifying selection contribute to the ecolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell. 1998, 10:1881-1874
    Meyers Bc, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND. Plant disease resistance genes edcode members of an ancient and diverse protein family within the nucleotide-binding superfanily. Plant J. 1999, 20:317-332
    Michelmore RW, Meyers BC. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998, 8:1113-1130
    Mikami, T. et al. Current Genetics. 1986, No. 9, 695-700
    Milligan SB, Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell, 1998, 10(8): 1307-1319
    Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, and leucine-rich repeat family of plant genes. Plant Cell. 1998, 10:1307-1319
    Noel L, Moores TL, van Der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JD. Pronounced intraspecific haplotype divergence at the RPP5 coplex disease resistance locus of Arabidopsis. Plant Cell. 1999, 11:2099-2112
    Noir S, Combes MC, Anthony F, Lashermes P. Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Genet Genomics. 2001, 265:654-662
    OHL, Stephan, Andreas, Klap Joke, Goddijin Oscar Johannes Maria et al. Nematode-Inducible Plant Gene Promoter. Patent PCT, 1997, W009746692
    Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R. The 12C family from the wilt disease resistance locus I2 belongs to the mucleotide binding, leucine-richrepeat superfamilyofplant resistance genes. Plant Cell. 1997, 9:521-532
    Packer JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ. Characterization ofedsl, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell. 1996, 8:2033-2046
    Page RD. Tree view: An application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996, 12:357-358
    Pan Q, Liu YS, Budai-Handrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene
    
    homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics.2000b, 155:309-322
    Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicotand cereal genomes. J Mol Evol. 200On, 50:203-213
    Park J, Karplus K, Barrett C, Hughey R, Haussler D, Hubbard T, Chothia C. Sequence comparisons using multiple sequences detect three times as many remote homologues an pairwise methods. J Mol Biol. 1998, 284:1201-1210
    Pun. E. C, Mehra A, Nagy F et al. Transgenic Plant growth of Brassica napus L. Biotechnology, 1987, 5:815-817
    Rivkin MI, Vallejos CE, McClean PE. Disease-resistance related sequences in common bean. Genome. 1999, 42:41-47
    Rogers SO, Bendich AJ. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol. 1985, 5:69-?6
    Ronald PC. Resistance gene evolution. Curr Opin Plant Biol. 1998, 1: 294-298
    Rosso MN, et al. Expression and functional characterization of a single chain Fv antibody directed against secretions involved in plant nematode infection process. Biochem Biophy Res Commun. 1996, 220(2): 255-263
    Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol Biol Evol. 1987, 4:406-425
    Salmeron JM, Oldroyd GE, Rommens CM, Sco. eld SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ. Tomato Prf is a member of the leucine-rich repeats class of plant disease resistance genes and lies embedded within the Pro kinase gene cluster. Cell. 1996, 86:123-133
    Sanford, John, Van Eck Joyce, Blowers Alan D et al. Transgenic Plants Using The Tdc Gene For Crop Improvement Patent. PCT, 1999, W09906581
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977, 74: 5463-5467
    Seah S Sivasithamparam K, Karakousis A, et al. Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet. 1998, 97: 937-945
    Seah S, Spielmeyer W, Jahier J, et al. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant Microbe Intreact. 2000, 13(3):334-341
    Shao Ming-wen, D. L. Doney and L. Sehrabelranch, Isolation, culture Sugarbeet Research and Extension Reports, 1986 17:175-180
    Shen KA, Meyers BC, Islam-Paridi MN, Chin DB, Stelly DM, Michelmore RW. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact. 1998, 11:815-823
    Shen S, Li Q, Be SY, et al. Conversion of compatible plant-pathogen interactions into incompatible interactions by expression of the Pseudomonas syringae pv. Syringae 61 hrmA gene in transgenic tobacco plants. Plant J. 2000, 23(9) 205-213
    Speulman E, Bouchez D, Holub EB, Beynon JL. Disease resistance gene homologous
    
    correlate with disease resistance loci of Arabidopsis thaliana. Plant J. 1998,14:467-474
    Stabl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. Dynamics of disease resistance polymorphism at the Rpml locus of Arabidopsis. Nature. 1999, 400: 667-671
    Sundberg CD, Rean W. The Agrobacterium tumefaciens chaperone-like protein, ViirEl, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol. 1999, 181(21): 6850-6855
    Sundberg C, Meek L. Carroll K, et al. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol. 1996,178(4): 1207-1212
    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22:4673-4680
    Timmerman-Vaughan GM, Frew TJ, Weeden N. Characterization and linkage mapping of R-gene analogous DNA sequences in pea (Pisum sativum L.). Theor hppl Genet. 2000, 101:241-247
    Traut TW. The functions and consensus motifs of nine types of peptide segments that form di. erent types of nucleotidebinding sites. Eur J Biochem. 1994, 222:9-19
    Urwin PE, Lilley CJ, McPherson MJ, et al. Resistance to both cyst and root-knot nematodes conferred by transgenic hrabidopsis expressing a modified plant cystatin. Plant J. 1997, 12(2): 455-461
    Vain P, Worland B, Clarke M C, et al. Expression for an engineered custeine proteinase inhibitor for nematode resistance in transgenic rice plants. Int RiceRes Notes. 1998, 23:266-271
    van der Biezen EA, Jones JD. The NB-ARC domain: A novel-signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curt Biol. 1998, 8:226-227
    van der Biezen EA, Sun J, Coleman MJ, Bibb MJ, Jones JD. Arabidopsis RelA/SpoT homologs implicate (p) ppGpp in plant signalling. Proc Natl Acad Sci USA. 2000,97:3747-3752
    van der Vossen EA, van der Voort JN, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM. Homologues of a single resistance gene cluster in potato confer resistance to distinct pathogens:A virus and a nematode. Plant J. 2000, 23:567-576
    Vlanimir Kannzin, Marek LF, Shoemaker RC. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA. 1996, 93:11746-11750
    Vos P, Simons G, Jesse T, et al. The tomato Mi-lgene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol. 1998, 16(13): 1365—1369
    Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucinerich repeat class of plant disease resistance genes. Plant J. 1999, 19: 55-64
    
    
    Wenck A, Coako M, Kanevski I, et al. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobactrium-mediated transformation. Plant Mol Biol., 1997, 34:913-922
    Williamson VM. Plant nematode resistance genes. Annu. Rev. Phytopathol. 1998, 36:277-293
    Wong GK, Wang J, Tap L, Tan J, Zhang J, Passey DA, Yu J. Compositional gradients in Gramineae genes. Genome Res. 2002, 12:851-856
    Yanyan Tian, Longjiang Fan, Tim Thurau Cristian Jung and Daguang Cal. Isolation and analysis of NBS-LRR containing resistance gene analogs (RGAs) from sugar beet (Beta vulgaris L.) suggesting the absence ofTIR-resustabce gebe subfamily in sugar beet genome Journal Molecular Evolution. 2004, 58:40-53
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 2002, 296:79-92
    Zambryski P C. Chroaicles from the Agrobacterium-plant cell DNA transfer story. Aanu Rev Plant Mol Biol. 1992, 43:465-490
    Zupan J R, Zambryski P C. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 1995, 107:1041-1047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700