丛枝菌根在水稻清洁生产中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球水环境问题的加剧,许多国家逐渐意识到面源污染在水体恶化过程中扮演的重要角色。面源污染中对水体危害最大的首推农业面污染源。水稻作为世界上最重要的粮食作物,其产量和种植面积均为各作物之首。随着水稻产量的提高,农药和化肥的施用量不断增加,农业面源污染也随之加剧。同时水稻是湿生作物,这一特性导致了最严重的污染物扩散问题。
     针对以上情况,本文以水稻(Oryza sativa L.)为实验材料,将丛枝菌根(arbuscular mycorrhizal,AM)技术应用到水稻的清洁生产中,研究了丛枝菌根菌剂的低成本制备及水稻—菌根耦合体系的构建方法,并确定了不同侵染程度对水稻及基质的影响,在此基础上探讨了菌根对水稻的影响机理,为菌根技术用于水稻的清洁生产提供指导,并为农业面源污染的源头减量开辟新方向。
     在菌剂制备过程中,利用稻草、稻根、20%强度营养、50%强度营养、80%强度营养五种强化措施,高粱生长的第20天、40天、60天根系AMF的侵染率表明在实际生产中稻草强化优势是经济成本较低而20%强度营养强化则是菌剂质量较高。且此两种基质吸湿水含量及pH值与非强化对照相比变化不明显,保证了菌剂生产的生态安全性。
     在水稻—菌根耦合系统构建过程中,发现播种接菌和移栽接菌两种接种方式下对菌根形成造成的差异不显著。但移栽接种则更适合田间试验,便于模拟实验和生产实践的比较。通过比较五种栽培密度下AMF(arbuscular mycorrhizal fungi,AMF)的侵染率及水稻株高、叶面积、出穗率等相关生长指标,确定1150棵/m2~1650棵/m2的栽培密度为盆栽试验的最佳栽培密度区间。通过分析5种有效接种剂量下AMF和水稻的发育状况及基质理化性质的变化,最终确定130 g/盆的接种剂量为最佳有效接种量。
     在菌根效应验证试验中,人工强化水稻根部AMF的侵染率与自然基质条件相比提高了68%。AMF强化使水稻的株高、总生物量、根系总表面积、产量分别提高了20.6%、30%、36.6%、45.3%。同时AMF强化既提高了水稻叶片光合作用能力又降低了叶片呼吸速率。人工强化接种对水稻基质的吸湿水含量、pH值、细菌及放线菌数量都无显著变化。另外AMF强化使水稻基质有机质、速效氮、速效磷、速效钾含量分别提高了24.9%、13.7%、14.8%、15.1%。
The non-point source pollution has attracted more and more attention in the whole world along with the global water environment problems increasingly serious. Agricultural pollution as one of the most serious non-point pollutant source made a great contribution to water pollution in the northeast of China. As the most important crop in the world, rice has the most yield and planting area of all the crops. The improvement of the rice yield depended on the extensive use of pesticide and fertilizer, which leads to the agricultural non-point source pollution. Rice likes wet, this characteristic gave rise to the most fearful diffusion of pollutant.
     In view of the above situation, rice (Oryza sativa L.) was selected as experimental material, and arbuscular mycorrhizal (AM) inoculation technique was applied to the cleaner production of rice. The methods of cheap preparation for arbuscular mycorrhizal fungi (AMF) inoculum and rice-mycorrhiza coupling system construction were studied. Meanwhile, the influences and possible mechanism of different level of AMF infection to rice and matrix were discussed. AM techniques provided guidance for the cleaner production of rice and new direction for the source reduction of agricultural non-point source pollution.
     Five treatments, including straw, paddy roots, 20%, 50% and 80% intensity of nutrition, were utilized in the preparation of AMF inoculum. AMF infection rate were analyzed on the 20th, 40th and 60th day of sorghum growth. Results showed that in the actual production the straw strength measure had high infection rate and low cost. While, AMF infection rate was much higher than others under the 20% intensity of nutrition. Much more, the difference of wet absorption water content and pH value of substrate within the two treatment were not obvious, which ensured the ecological safety of AMF inoculum.
     In rice-mycorrhiza coupling system construction, the difference of mycorrhizal formation from two types of inoculation was not significant. But transplant inoculation was more suitable for the facilitate simulation and comparison for the production practice. AMF infection rate, stem length, leaf area and the rate of ear were detected in five planting density and the interval 1150 strains of every square meter to 1650 strains of every square meter was the best planting density in pot experiment. Based on the analysis of development status of AMF and rice, the physical and chemical properties of matrix was inoculated 5 effective inoculation doses of inoculum, 130 g of every basin was considered as the best effective dose of inoculum. In mycorrhizal effect validation tests, compared with natural matrix conditions, AMF infection rate was improved 68 % by artificial inoculation. The stem length, total biomass, total surface area of root and yield of rice were increased by 20.6%, 30%, 36.6% and 45.3% respectively. While artificial inoculation not only increased the photosynthet ic capacity but also reduced the blade respiratory rate of rice. The effects of artificial inoculation on moisture absorption water content, pH value, the numbers of bacteria and actinomycete were all not significant. In addition, organic matter, available nitrogen, available phosphorus and available potassium of matrix increased by 24.9%, 13.7%, 14.8% and 15.1%, respectively, by artificial inoculation.
引文
1.侯炳江.黑龙江省面源污染调查与污染物估算.黑龙江水专,2009,36(1):74~78
    2.刘之杰.非点源污染的类型?特征?来源及控制技术.安徽农业通报,2009,15 (5):98~101
    3.宋关玲,侯文华,汪群慧等.菌根真菌在控制湖泊面源污染的应用前景.东北农业大学学报,2005,36(1):124~128
    4.张维理,武淑霞,冀宏杰等.中国农业面源污染形势估计及控制对策: I. 21世纪初期中国农业面源污染的形势估计.中国农业科学, 2004, 37(7): 1008 ~ 1017
    5. Corwi,D.L,K.Loagne and T.R.Ell sworth. Advanced information technologies for assessing nonpoint source Pollution in the vadosezone: Conferenee overview. Environ.Qual,1999,28:357~365
    6. KjonvangB. Diffuse nutrient losses in Demark.water Sci. Technol. (GB.), 1996, 33~81
    7. Boers.P.C.M.Nutrient emissions from agrieulture in the Netherlands,Causes and Remedies.water science and technology (G.B),1996,13:183
    8.闫伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究.水土保持学报, 2001,15(3):129~132
    9.郭慧光,闫自申.滇池富营养化及面源控制问题思考.环境科学研究,1999,12 (5):43~44
    10.张水铭,马杏法.农田排水中磷素对苏南太湖水系的污染.环境科学, 1993, 14 (6):24~29
    11. WangX. Management of agricultural nonpoint source pollution in China: current status and challenges.Water SciTechnol, 2006, 53(2): 1~9
    12. USEPA. National management measures to control nonpoint source pollution from agriculture,2003, 42(3):55~60
    13.周早弘,张敏新.防治农业面源污染的工程技术.环境与可持续发展,2007, 3(6): 55~57
    14.刘明阳,刘建华,张馥等.我国有机氯污染物污染现状及监控对策.环境科学与技术,2004,27(3):108~110
    15. Chinnusam M,Kaushik D,Prasanna R.Growth,nutritionaland yield parametersof wetland rice as influenced by microbial consortia under controlled conditions.Journal of Plant Nutrition,2006,29(5):857~871
    16. Brij G. Natural and constructed wetlands for wastewater treatment: potentials and problems. Wat SciTech, 1999, 40(3):27~35
    17.黄沈发,沈根祥,唐浩.上海郊区稻田氮素流失研究.环境污染与防治,2005, 27 (9):651~654.
    18.许仙菊.上海郊区不同作物及轮作农田氮磷流失风险研究.中国农业科学院:上海.2007
    19.周兵,李良德.试论农业清洁生产.安徽农业科学, 2008, 36(13): 5 553~5555
    20.彭春瑞,罗奇祥,陈先茂等.双季稻丰产栽培的清洁生产技术.杂交水稻,2010,25(1):41~44
    21.黄依文.测土配方施肥技术在水稻上的应用.广西农学报,2010, 25(1):4~6
    22.查贵庭.中国稻米市场需求及整合研究.南京:南京农业大学,2005
    23.程式华.粮食安全与超级稻育种.中国稻米,2005(4):1~3
    24.庾莉萍.解读《国家粮食安全中长期规划纲要》.粮食加工,2009, 34 (1):10~12
    25.刘志伟等.长江中下游地区水稻田溶解态氮流失量的估算—以江苏省靖江市柏木乡为例.中国生态农业学报,2004,(4):119~121
    26.曹志洪.施肥与水体环境质量—论施肥对环境的影响(2).土壤,2003, 35(5): 353~363
    27.江长胜等.稻田甲烷排放影响因素及其研究进展.土壤通报,2004,35(5):663 ~668
    28.石利利等.苏南地区土壤和作物中农药残留监测.农业环境保护,2001,20(3):158~159
    29.唐浩等.农药杀虫单的稻田流失规律研究.上海环境科学,2002,21(11):647 ~650
    30.王书肖,张楚莹.中国秸秆露天焚烧大气污染物排放时空分布.中国科技论文在线,2008,3(5):329~334
    31.张廷光,李正昭,何贞等.平塘县水稻施肥“3414”试验研究初报.耕作与栽培,2009(6):31~32
    32.赵学杏.加强技术集成推广、提升水稻种植水平.宁波农业科技,2010(1):19~21.
    33.马继侠,袁旭音,徐海波.浅谈农田面源污染的生态控制技术.浙江水利科技,2009,(162):1~3
    34.彭春瑞,罗奇祥,陈先茂.双季稻丰产栽培的清洁生产技术.杂交水稻, 2010, 25(1):41~44
    35.王东胜,杜强.水体农业非点源污染危害及其控制.科学技术与工程, 2004, 10 (2):123~126.
    36.何容信,刘长海,李宝刚.水稻种植业中的清洁生产技术.现代农业科技, 2008,23:250~254
    37.林灿铃.刍议农业清洁生产.农业环境与发展,2005,5:1~5
    38.肖同建,杨庆松,冉炜等.接种菌根真菌的旱作水稻—绿豆间作系统养分利用研究.中国农业科学,2010,43(4):753~760
    39.林灿铃.刍议农业清洁生产.农业环境与发展,2005,5:1~5
    40. Larats,Lapointe L,Gutjahr,etal.Carbon portioning in a split~root system of arbuscular mycorrhizal plants is fungal and plant species dependent.New Phytologist,2003,157:589~595
    41. Bomberg M,Jurgens G,Saano A,etal.Noted PCR identification of archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms.FEMS Microbiology Ecologist,2003, 43: 163~171
    42. Kuzyakov Y,Cheng,W.Photosynthesis controls of rhizosphere respiration and organic matter decomposition.Soil Biology and Biochemistry, 2001,33:1915~1925
    43. Leake J R,Johnson D,Donnelly D,et al.Networks of power and influence:the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning.Canadian Journal of Botany,2004,82:1016~1045
    44.石伟琦,夏运生,刘晓蕾.丛枝菌根在草原生态系统碳固持中的重要作用.生态环境,2008,17(2):846~850
    45.冯固,张玉凤,李晓林.丛植菌根真菌的外生菌丝对土壤水稳性团聚体形的影响.水土保持学报,2001,15(4):99~101
    46.彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,2004,41:618~623
    47.唐宏亮,刘龙,王莉等.土地利用方式对球囊霉素土层分布的影响.中国生态农业学报, 2009,17(6):1137~1142
    48.张美月,陶秀娟,樊建民等.磷和丛枝菌根真菌对盐胁迫草莓光合作用的影响.河北农业大学学报,2009,32(4):71~75
    49.徐敏,史庆华,李敏.AM真菌对姜生长和产量的影响.山东农业科学,2002(4):22~23
    50.孟祥霞,李敏,王幼珊等.丛枝菌根真菌对香椿实生苗生长的影响.莱阳农学院学报,2000,17(3):170~172.
    51.贺忠群,贺超兴,张志斌,等.不同丛枝菌根真菌对番茄生长及相关生理因素的影响.沈阳农业大学学报,2006,37(3):308~312
    52.刘润进,陈应龙.菌根学.北京:科学出版社,2007
    53.刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000
    54. Haines B L, Best G R. Glomus mosseae, endomycorrhizal with Liquidambar styraciflua L. seedings retards NO3~,NO2~and NH4+nitrogen loss from a temperate forest soil. Plant Soil, 2006, 45:251~261.
    44 Johansen A, Jakobsen I, Jensen E S. Hyphal transport of 15N~labelled nitrogen by a versicular~arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol, 2004, 122 :281~288
    55. Hawkins H J,Johansen A,George E.Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi.Plant Soil. 2000, 226: 275~285
    56. Hodge A, Campbell C D,Fitter A H.An arbuscular mycorrhiza l fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413:297~299
    57.戴开军,董彦卿,龚宏伟.VA菌根对冬小麦幼苗生长的影响.西安联合大学学报,2002(2):34~36
    58.宋勇春,李晓林,冯固.泡囊丛枝(VA)菌根对玉米根际磷酸酶活性的影响.应用生态学报,2001,(4):593~596
    59.李敏,刘鹏起,刘润进.丛枝菌根真菌对芋组织培养苗生长的影响.园艺学报,2002,29(5):451~453
    60.曾曙才,苏志尧,陈北光等.VA菌根真菌对植物养分吸收与传递的影响.西南林学院学报,2005(1):72~75
    61.李敏,刘润进,李晓林.大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响.植物病理学报,2004,34(5):472~473
    62. Morand D, Gollottea, Camporota P. Influence of anArbuscularMycorrhizal Fungus onthe Interaction of a Binucleate Rhizoctonia Species With Myc+and Myc~pea Roots,Mycorrhiza ,2002 ,12 :97~102
    63.刘鹏.浅谈生态工程在农业面源污染控制中的应用.现代农业科学, 2009, 16 (6):123~126
    64.冯固,张玉凤,李晓林.丛植菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,2001,15(4):99~101
    65. Zhu H H,Yao Q.Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum.Journai Phytopathology,2002,152:537~542.
    66. Kelly C N,Morton J B,Cumming J R.Variation in aluminum resistance among arbuscular mycorrhizal fungi.Mycorrhiza,2005,15:193~201.
    67.左玉萍,贾志宽.土壤含水量对秸秆分解的影响及动态变化.西北农林科技大学学报(自然科学版),2004,32(5):61~63
    68.付丽波,王毅,瞿兴等.在高肥力秸秆和氮肥配合施用对高肥力植烟土壤理化性质的影响.华中农业大学学报,2004,23(3):295~299
    69.李凤博,牛永志,高文玲.耕作方式和秸秆还田对直播稻田土壤理化性质及其产量的影响.土壤通报,2008,39(3):549~552
    70.张大伟,刘建,王波.连续两年秸秆还田与不同耕作方式对直播稻田土壤理化性质的影响.江西农业学报, 2009, 21(8): 53~56
    71.陈万明,谢胜祖,蔡长安.稻草还田与施钾效果研究.土壤肥料,2003:7~10
    72.王幼珊,刘相梅,张美庆等.盆栽基质及营养液对AM真菌接种剂繁殖的影响.华北农学报,2001,16(4):81~86
    73. Meyer,F.H. Distibution of Ectomycorrhizae in Native andMan~Made Forests. Ectomycorrhizae (eds G.c.Marks, and T.T Kozlowski). NewYork: USA: Academic Press, 1973·
    74.王晓琴.丛枝菌根真菌的增殖技术.华侨大学学报(自然科学版),2004, 25 (3):301~302
    75. James A. Entry, Paul T. Rygiewicz, Lidia S. Watrud, et al.Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas.Advances in Environmental Research,2002,(7): 123~138
    76. Saif, S.R. Soil temperature, soil oxygen and growth of mycorrhizaland non~mycorrhizal plants of Eupatorium odoratum L. anddevelopment of Glomus macrocarpus. Botanik, 1983 ,(57): 143~155
    77. Paradis R., Dalpe Y., Charest C. The combined effect of arbuscularmycorrhizas and short~term cold exposure on wheat.NewPhytol. 1995,(129), 637~642
    78. Budi S W, Blal B,Gianinazzi S. Surface~sterilization of Glomus mosseae sporocarps for studying endomycorrihization in vitro Mycorrhiza.Acta Horticulturae, 1999, (92):65~68
    79. Chinnusam M,Kaushik D,Prasanna R.Growth,nutritionaland yield parameters of wetland rice as influenced by microbial consortia under controlledconditions.Journal of Plant Nutrition,2006,29(5):857~871
    80. Helgason T,Merryweatherj W, Denison J et al. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous wood land.J Ecol,2002,90:371-384
    81.陈宁等.宿主植物对AM真菌生长发育的影响.华北农学报, 2006, 21(6): 103~106
    82.陈宁,王幼珊,李晓林等.宿主植物栽培密度对AM真菌生长发育的影响.菌物系统,2003,22(1):88~94
    83.陈宁,王幼珊,杨延杰等.补光光源对AM真菌生长发育的影响.农业工程学报,2006,22(4):162~165
    84. M.A.U.Mridha and P.P.Dhar. Biodiversity of arbuscular mycorrhizal colonization and spore population in different agroforestry trees and crop species growing in Dinajpur,Bangladesh. Journal of Forestry Research, 2007, 18(2):91~96
    85.李振高,络永明,滕应.土壤与环境微生物研究法.北京:科学出版社,2008
    86. Bassman J,Zwier J C.Gas exchange characteristics of Populus trichocarpa,Populus deltoids and Populs trichocarpa×P.deltoids clone.Tree physiology, 1991, 8:145 ~149
    87. BerryJA,DowntonWJS.Environmental regulation of photosynthesis. In: Govind jeeed.Photosynthesis VolⅡ.New York:Academia Press, 1982, 263 ~343
    88.潘超美,郭庆荣,邱桥姐. VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境, 2000. 9(4): 304~306.
    89.赵利梅.水稻强化栽培农艺性状及其生态环境效应的研究.杭州:浙江大学, 2009
    90.张荣萍.不同灌水方式对水稻生育特性和产量及其水分利用率的影响.成都:四川农业大学,2006
    91.殷峻,闻岳,周琪.人工湿地中微生物生态的研究进展.环境科学与术,2007,30(1):2~3
    92.耿春女,李培军,韩桂云,等.生物修复的新方法—菌根根际生物修复.环境污染治理技术与设备,2001,2(5):20~24
    93.武维华.植物生理学(第二版).北京:科学出版社,2008
    94.潘瑞炽.植物生理学(第五版).北京:科学出版社,2004
    95.鲁如坤,谢建章,蔡贵信,等.土壤植物营养学原理和施肥.北京:化学工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700