控释肥高分子残膜的降解动态及对土壤生物学效应的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控释肥料可以显著提高肥料的利用率、减少养分的挥发和淋溶损失、减轻施肥对环境的污染、改善作物的生长发育状况、提高作物的产量和品质,因而受到了人们的广泛关注。生产和施用控释肥料已经成为目前化肥工业发展的主要趋势之一,也是发展现代农业、实施可持续发展战略的必然要求。控释肥料施用后,其表面的高分子膜会残留在土壤中。随着包膜控释肥料的发展和应用范围的扩大,对高分子膜壳的降解动态以及控释肥残膜对土壤环境(植物、动物、微生物)的生物学效应进行研究,可以为高分子树脂包膜控释肥的应用和推广提供理论依据。
     本研究采用傅里叶变换红外光谱(FTIR)、示差扫描量热(DSC)、粘度法和气相色谱-质谱联用(GC-MS)等方法,研究了控释肥高分子残膜的降解性能、产物结构及降解机理。采用油菜、玉米的盆栽试验,以及与化学分析相结合的方法,系统研究了控释肥残膜对土壤环境和油菜、玉米的生物学效应的影响。同时,采用蚯蚓试验,从生物化学方面评价了控释肥残膜对蚯蚓的生物学效应的影响。主要研究结果如下:
     1.控释肥高分子残膜具有光降解性。控释肥高分子残膜在紫外光照射下,发生光氧化分解,促进PE碳链氧化断裂,逐渐生成有机类羧酸。随着残膜的光降解程度增大,羰基指数和残膜中聚乙烯的结晶度升高,而熔点和相对分子质量下降。其光降解产物中含有低分子量的烷烃、酮、醛、酯、一元羧酸和二元羧酸等。在紫外光照射条件下,含淀粉控释肥聚乙烯残膜较不含淀粉控释肥聚乙烯残膜更易降解。因此,淀粉作为添加剂明显地提高了控释肥高分子残膜的降解速率。
     2.控释肥高分子残膜在自然曝露光照射下,随着光照时间的增加,红外光谱表现的结果是羰基峰的强度增加。主要原因是,淀粉存在的条件下,光照后产生自由基,这些自由基作用于聚乙烯的主链上,使长链发生断裂,产生新的更多的自由基,聚乙烯链进一步发生光降解。在此反应的同时,空气中的氧气能够进入到共混物的空隙中,氧气和聚乙烯链段发生反应,产生过氧化自由基,这些过氧化自由基发生光裂解后生成羰基、乙烯基等基团。经研究发现,淀粉含量越高,对聚乙烯的促降解作用越大,因此可以说明淀粉的存在一方面也是导致混合物空隙增大,氧气更容易进入混合物当中,从而产生过氧化自由基相应的增加,因此随着光照时间的增加,红外光谱表现的结果是羰基峰的强度增加。
     3.不同控释肥残膜用量处理的盆栽油菜试验表明,施加控释肥残膜可以降低土壤的容重,增加土壤的孔隙度,改善通气状况,能使土壤疏松,增加土壤的通气透水性。在一定范围内,随着控释肥残膜施入量的增加,植株的生长势、叶片数、株高、叶绿素以及植株的鲜重都相应增加。施加控释肥残膜后,对植株的全氮、全磷含量没有显著影响;植株全钾含量有所增加。控释肥残膜的施入对油菜土壤的过氧化氢酶、脲酶、蔗糖酶、磷酸酶活性没有显著影响。
     4.不同控释肥残膜处理的盆栽玉米试验表明,在一定范围内,随着控释肥残膜施入量的增加,玉米的生长势、株高、叶绿素以及玉米的产量都相应增加。施加控释肥残膜处理的玉米的产量高于空白及只施加肥料的处理。在玉米的穗行数、行粒数没有明显增加的情况下,其千粒重有显著的增加,说明控释肥残膜处理在玉米生长的后期,即灌浆期能够提供充足的养分,以保证玉米灌浆的需要,从而提高产量。控释肥残膜的施入对玉米土壤中的过氧化氢酶、脲酶、蔗糖酶、磷酸酶活性没有显著影响。
     5.不同控释肥残膜处理的蚯蚓土壤试验表明,在本试验周期内,不同施用量的控释肥残膜处理后的土壤,对蚯蚓体内纤维素酶、过氧化氢酶及超氧化物歧化酶均没有显著影响。
     6.土壤培养条件下控释肥高分子残膜降解特性试验研究表明,控释肥高分子残膜具有降解性,在土壤培养条件下,含淀粉控释肥聚乙烯残膜较不含淀粉控释肥聚乙烯残膜更易降解。随着残膜的降解程度增大,羰基指数和残膜中聚乙烯的结晶度升高,而熔点和相对分子质量下降。
     7.通过对控释肥高分子残膜光照、土壤培养条件下降解产物和机理的探讨,及对土壤环境中的植物、动物、酶的生物学效应的研究,表明控释肥残膜没有对土壤环境产生显著影响。
The efficiency of fertilizer have been improved evidently, loss and volatilization of nutrition elements have been reduced, waste of resources have been lightened, product quality and crop output have been enhanced markedly by applied controlled-release fertilizers, so many experts think highly of them. The production and use of controlled-release fertilizers are one of the main trends for the development of chemical fertilizers at present, and are necessary need for the development of modern agriculture and sustainable development strategies. Controlled-release fertilizers application , polymer coating residual of controlled release fertilizer will be left in the soil .With the development and application of controlled-release fertilizers, polymer coating residual of the degradation studies and biological effects in the soil environment (plants, animals, microorganisms) should be regarded. The objective of this study was to offer advice and theory proof for controlled-release fertilizers research and using.
     Degradabilities, product and degradation mechanism of polymer coating residual of controlled release fertilizer were investigated by using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), viscosimetry and gas chromatography-mass spectroscopy (GC-MS). Cole and maize potted experiment and together with method of chemical analysis have been used in the paper. The purpose of this paper was to study effects of polymer coating residual of controlled release fertilizer on soil physical, chemical and biological property and biological effects on cole and maize. Meanwhile, the use of earthworm test, evaluated on the biological effects of polymer coating residual of controlled release fertilizer of earthworms from the biochemical aspects. The main results were summarized as follows:
     1. Controlled release fertilizer coating residual was photodegradable. Controlled release fertilizer coating residual under UV irradiation, photo-oxidative decomposition, promote oxidation of the carbon chain fracture PE gradually generate organic acids. With increasing the degree of degradation, the carbonyl index and crystallinity of polyethylene in Coating increased, but the melting point and relative molecular weight of polyethylene in Coating decreased. Some low molecular weight products, such as alkyl hydrocarbon, ketone, aldehyde, ester, carboxylic acid and binary carboxylic acid were detected in the degraded Coating. The coating residual containing starch was degraded much more rapid than non-starch coating residual under UV irradiation. Therefore, the starch as an additive can significantly improve the degradation rate of controlled release fertilizer coating residual.
     2. Controlled release fertilizer coating residual in the natural exposure illumination, with the increase of irradiation time, the results of infrared spectra showed the carbonyl peak intensity increased. The main reason was the existence free radicals after exposure under of starch .The role of these free radicals in the polyethylene main chain to long chain was broken, and the occurrence of new and more free radical further light polyethylene chain degradation. In this reaction, while oxygen in the air can enter into the gap in the blends, oxygen and reaction of polyethylene chains to produce free radicals, these free radicals generated after photo-decomposition of carbonyl, vinyl, etc. group. The study found that the higher starch content, the degradation of polyethylene in promoting the greater, it illustrates the presence of starch mixture while also contributed to the gap increases, the oxygen into the mixture which is easier, resulting in a corresponding increase in free radicals.Therefore, with the illumination time increases, the performance results of IR carbonyl peak intensity was increased.
     3. The results of potted cole experiment showed that controlled release fertilizer coating residual could reduce soil bulk density, increased soil total porosity. So aerated status of soil has been improved and loose soil increased the aerated and dank character of soil. The contents of chlorophyll , height of cole, number of leaves, fresh mass and growth potential of the cole had been increased by controlled release fertilizers coating residual. The result that the total N and total P of the cole were not changed obviously indicated that the absorption of N and P had not produced adverse effects. The total K of the cole had been increased by controlled release fertilizers residual coating. Controlled release fertilizer coating residual applied to the soil on catalase, urease, invertase, phosphatase activity was not significantly affected.
     4. The results of potted maize experiment showed that within a certain range, controlled release fertilizers coating residual was applied to increase the amount of corn growth potential, plant height, chlorophyll and yield of maize have increased. Controlled release fertilizers coating residual was better than the yield of corn processing blank and only the fertilizer treatment. Number of rows in the corn ear, kernels per row no apparent increase in cases, the grain weight had increased significantly, indicating controlled release fertilizers coating residual late in the growth of maize, namely, filling to provide sufficient nutrients to ensure corn filling the need to increase production. Controlled release fertilizers coating residual applied to the soil of the maize catalase, urease, invertase, phosphatase activity was not significantly affected.
     5. Controlled release fertilizers coating residual earthworm soil tests showed that in the period of this experiment, different amounts of controlled release fertilizers coating residual treated soil, the earthworm enzyme, catalase and superoxide dismutase were no significant impact.
     6. The degradation experiment of thermoplastic coating residual of controlled release fertilizer under soil incubation environment indicated that controlled release fertilizer coating residual was degradable. The coating residual containing starch was degraded much more rapid than non-starch polyethylene coating under soil incubation environment. With increasing the degree of degradation, the carbonyl index and crystallinity of polyethylene in coating residual increased, but the melting point and relative molecular weight of polyethylene in coating decreased.
     7. The degradation experiment of thermoplastic coating residual of controlled release fertilizer under irradiation and soil incubation environment indicated that degradation mechanism of controlled release fertilizers coating residual was free radicals mechanism. Potted plants experiment showed that biological effects on soil environment such as plant, animal and soil enzyme was safe. Overall, controlled release fertilizers residual coating was no significant impact on soil environment.
引文
1.李庆逵,朱兆良,于天仁主编.中国农业持续发展中的肥料问题.江西科学技术出版社,1998.1~5
    2.谷洁,高华.提高化肥利用率技术创新展望.农业工程学报,2000,16(2):17-20
    3.张民,史衍玺,杨守祥,杨越超.控释和缓释肥的研究现状和进展.化肥工业,2001,28(5):27~30
    4.何绪生,李素霞,李旭辉,吕殿青.控效肥料的研究进展.植物营养与肥料学报,1998,4(2):97~106
    5.赵秉强,张福锁,廖宗文等.我国新型肥料发展的战略研究[J].植物营养与肥料学报,2004,10(5)
    6.张玉凤,曹一平,陈凯.膜材料及其构成对调节控释肥养分释放特性的影响[J].植物营养与肥料学报,2003,9(2):170-173
    7.张民,杨越超,宋付朋,史衍玺.包膜控释肥料研究与产业化开发.化肥工业,2005,32(2):7~13
    8 .杨玉涛,廖明义.含铁络合物类光敏剂降解塑料性能的研究,塑料科技,2002,147(l):7-10.
    9.张华集,陈庆华等.含羧酸铈光敏剂及其配合体系的LDPE地膜的应用合成树脂及塑料.1997,14(1):36-38.
    10.喻发全,姚树人.一种新的光降解剂硬脂酸饰(Ⅳ)引发LDPE膜的光降解,高分子材料科学与工程,2003,19(5):120-126.
    11.喻发全,姚树人.新的光降解剂硬脂酸钟(Ⅳ)的合成研究,武汉化工学院学报,2001,23(4):5-7
    12.张银生.光降解性聚乙烯薄膜降解过程的表征,分析测试学报,1994,13(3):14-18.
    13.于九皋,王晓东,对淀粉/聚乙烯共混物促降解的研究,高分子学报,2001,(l):99-104
    14.梁兴泉,王继虎.堆肥环境下聚乙烯生物降解特性研究明,广西大学学报(自然科学版) 2003,28(l):69- 70
    15.曾宪坤,中国化肥工业的现状与展望[J].土壤通报,1995,32(2):117-125.
    16.林宜超.红外光谱法研究含CeSt3的LDPE膜紫外光氧降解[J].分析测试学报,1996,15(4): 38-41
    17.黎汉生,于九皋.聚烯烃(聚乙烯)低温热氧化与降解[J].高分子通报, ,1998,(2): 88-92
    18.鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    19.方惠群,于俊生,史坚.仪器分析[M].北京:科学出版社. 2002
    20.张兴英,李齐方.高分子科学实验[M].北京:化学工业出版社. 2007
    21.陈剑慧,曹一平,许涵,等.有机高聚物包膜控释肥氮素释放特性的测定与农业评价[J].植物营养与肥料学报,2002,8(1):44-47
    22.陈剑慧.有机高聚物包膜控释肥氮释放特性的测定与农业评价[J].植物营养与肥料学报,2002,8(1):44-47
    23.陈强,吕伟娇,张文清,等.温度对壳聚糖包膜尿素氮素释放特性的影响[J].植物营养与肥料学报,2006,12(5):727-731
    24.李生秀.植物营养与肥料学科的现状与展望[J] .植物营养与肥料学报,1999,5(3):193-205
    25.李燕,吴然然,于佰华.红外光谱在中药定性定量分析中的应用[J] .光谱学与光谱分析. 2005,26(10):1846-1849
    26.陆建刚.国内外新型肥料的开发[J].化肥工业. 1994,21(3):8-16
    27.王新民,介晓磊,侯彦林.中国控释肥料的研究现状与发展前景[J].土壤通报. 2003,34(6):572-575
    28.谢瑞芝,董书亭,胡昌浩.植物硫素营养研究进展[J].中国农学通报,2002,18(2):65-68
    29.熊又升,陈明亮,等.包膜控释肥料的研究进展[J] .湖北农业科学,2000,5:40-42
    30.熊又升,陈明亮,等.包膜控释肥料养分释放速率测定方法的研究[J].华中农业大学学报,2000,19(50:442-445
    31.杨越超,耿毓清,张民,等.膜特性对包膜控释肥养分控释性能的影响[J].农业工程学报,2007,23(11):23-30
    32.杨越超,张民,陈剑秋,等.聚合物硫包尿素的养分释放特征[J].化肥工业,2006,33(1):26-30
    33.俞巧钢,朱本岳,叶雪珠.控释肥在柑桔上的应用研究[J].浙江农业学报,2001,13(40):210-213
    34.翟军海,高亚军,周建斌.控释和缓释肥的研究现状与进展[J].化肥工业,2001,28(5):27-30
    35.张宝林.新型缓释性复合肥料-包裹型复合肥[J].化肥工业.1995,22(6):329-336
    36.张春伦,朱兴明,胡思农.缓释尿素的肥效及氮素利用率研究[J].土壤肥料,1998,6:17-20
    37.张海军,武志杰,陈利军,梁文举.聚合物包膜尿素溶出动力学特征及其与包膜层通透性的关系[J].中国农业科学,2003,36(10):1177-1183
    38.张玉凤,曹一平,陈凯,张福锁.高聚物包膜尿素的氮素释放特征及其评价方法[J].中国农业大学学报,2003,8(50):83-87
    39.张玉凤,曹一平,陈凯.膜材料及其构成对调节控释肥养分释放特性的影响[J].植物营养与肥料学报,2003b,9(2):170-173
    40.张玉凤,曹一平,等.高聚物包膜尿素的氮素释放特征及其评价方法[J].中国农业大学学报,2003a,8(5):83-87
    41.赵国钧.一种新型缓释长效性氮肥的制备[J] .化肥设计,2000,38:48-49
    42.赵世民,唐辉,等.包膜型缓释/控释肥料的研究现状和发展前景[J] .化工科技,2003,11(5):50-54
    43.赵秀芬,房增国,赵钢.温度对几种有机高聚物包膜控释肥磷素释放特性的影响[J].仲恺农业技术学院学报,2007,20(1):29-32
    44.朱本岳,俞巧钢,郑永平等.控释肥在苗木生产中的应用[J].浙江大学学报(农业与生命科学版),2000,26(3):274-276
    45.朱兆良,文启孝.中国土壤氮素——农田生态系统中的化肥氮的去向和氮素管理[M].江苏科技出版社.1992, 213
    46.朱兆良.我国氮肥的使用现状、问题和对策[A].中国农业持续发展中问题[C].南昌:江西出版社
    47.李亚东等.施硫对土壤pH值及越桔树体生长营养的影响.吉林农业大学学报,1995,17(2):49-53.
    48.徐和昌,柯以侃,等.几种缓释包膜的性质和分析方法.中国农业科学,1995,28(4):72-79
    49.张春歌,徐飞,等.聚乙烯可降解薄膜研究进展.塑料制造,2006,6:63-66
    50.林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997(2):1-23
    51.陈靖宇.控制释放肥料的生产技术及其研究方向[J].化肥工业,2005,32(2):1-6
    52.颜冬云,张民,蒋新.控释复合肥对盆栽一串红生长发育与品质的影响[J].园艺学报,2004,31(6):773~777.
    53.颜冬云,张民.控释复合肥对番茄生长效应的影响研究[J].植物营养与肥料学报,2005,11(1):110~115.
    54.杨丽,周丽君.控释肥料的研究动态与展望[J].垦殖与稻作,2006,(2):47~50.
    55.赵世杰,刘华山,董新纯.植物生理学试验指导[M].北京:中国农业科学技术出版社,1998.
    56.赵先贵,肖玲.控释肥料的研究进展[J].中国生态农业学报,2002,10(3):95-97.
    57.高岩,骆永明.蚯蚓对土壤污染的指示作用及其强化修复的潜力.土壤学报,2005,42(1)
    58.顾继光,周启星等.土壤重金属污染的治理途径及其研究进展f(J).应用基础与工程科学学报,2003,11(2): 143-151
    59.刘向辉,戈锋,等.亚硒酸钠对蚯蚓的毒性及蚓体富硒作用的研究[J].应用与环境生物学报,2001,7(5):457-460
    60.李银生,曾振灵等.洛克沙胂对蚯蚓的急性毒性试验.上海交通大学学报(农业科学版),2004,22(2):115-119
    61.李典友,潘根兴等.土壤中蚯蚓资源的开发应用研究及展望. Chinese Agricultural Science Bulletin. Vo1.2 1 No.1 0 2005 October
    62.李辉信,胡锋等.接种蚯蚓对秸秆还田土壤C,N动态和作物产量的影响.应用生态学报, 2002, 13(12): 1637-1641
    63.钱芸,刘广良等.土壤生态毒理风险评价中的陆生无脊椎生物标志物.土壤与环境,2002, 11(1): 70-74
    64.宋玉芳,周启星等.土壤重金属污染对蚯蚓的急性毒性效应研究.应用生态学报,2002,13(2):187-190
    65.王丹丹,李辉信等.蚯蚓-秸秆及其交互作用对黑麦草修复Cu污染土壤的影响.生态学报.第27卷第4期2007年4月
    66.王振中,郭永灿等.土壤重金属污染对蚯蚓(opisthopora)影响的研究.环境科学学报,1994,14(2):236-24 3.
    67.王振中,张友梅,等.土壤重金属污染对蚯蚓影响的研究[J].环境科学学报1994,14(2):236-243
    68.俞协治,成杰民.蚯蚓对土壤中铜、镉生物有效性的影响[J].生态学报,2003,23(5):922-928
    69.黎汉生,于九皋,聚烯烃(聚乙烯)低温湿热氧化与降解闭,高分子通报,1998, (2):88-92
    70.李云政,李真,淀粉树脂热氧化降解的研究明,塑料,1995,4(27):21-25
    71.全世普,吴立丽,红外光谱法在淀粉/聚乙烯共混体系降解研究中的应用,轻工标准与质量田,2003,(2):43-45
    72.周艺峰,聂王焰,降解性聚乙烯地膜降解过程中力学性能和化学结构的变化闭,高分子材料科学与工程,2000,16(4):79
    73.于九皋,王晓东,红外光谱法在淀粉/聚乙烯低温热氧降解研究中的应用闭,应用化学,2001,18(l):48- 51
    74.王琳霞.生物降解高分子材料.塑料科技,2002(1):37-41
    75.侯庆普,周春阳.生物降解高分子材料的研究新进展.现代化工,2000,20 (12):20-23
    76.王兴云,王雨民.可光降解聚乙烯薄膜的研究.中国纺织大学学报,1998(24): 34-36
    77.郭金山,贺建梅,吴靖嘉.聚乙烯薄膜光降解研究过程及其降解物特性的研究.中国塑料,1995(9):64-71
    78.殷敬华,莫志深.现代高分子物理学.北京:北京科学出版社,2001,382-407
    79.陈裕哲,于九皋堆肥条件下多价态金属有机化合物对聚乙烯促降解规律的研究.中国塑料2000,14(4):86- 91
    80.李社青光降解聚乙烯薄膜的研究.兰化科技1995,13(2):128- 132
    81.唐福培,陈天俊,许庄令等几种光敏降解聚乙烯薄膜的户外降解特性.中国塑料1992,6(3):40- 47
    82.邹新伟,杨淑英,陈立班等可降解乙烯聚合物的研究进展.石油化工1998,27(6):449~452
    83.高建平,王为淀粉基生物降解塑料材料高分子材料科学与工程1998, 14(4):16~20
    84.李凤珍,郑鸿元,刘增柱等可控光降解聚乙烯薄膜的微生物降解.环境科学1989,11(l):6~11
    85.陶靖,王玉忠,郑长义等光降解剂体系对降解薄膜光降解行为的影响.高技术通讯1998,8(11):40- 44
    86.周艺峰,聂王焰,沙鸿飞降解性聚乙烯地膜的研制及降解过程.塑料工程1998,26(4):116- 118
    87.韩昌泰,尔英,胡海川等非淀粉型可控光、生物降解地膜研究与应用.塑料科技1997(2):10- 15
    88.王身国可生物降解的高分子类型、合成和应用.化学通报1997(2): 45~47
    89.陈裕哲,于九皋填充型降解塑料的研究进展.化学工业与工程1998,15(3):44- 49
    90.于九皋,高建平,林通淀粉细化改性及其与聚乙烯增容性的研究.化工进展1997(3):25- 29
    91.于九皋,李新蕊淀粉接枝丙烯酸乙醋及其增容性.应用化学1997,14 (3):13~15
    92.吴方元可降解淀粉一聚乙烯农用地膜的研究.武汉工业大学学报1994,16(2):150~152
    94. Spalding R F, Exer M E. Occurrence of nitrate in groundwater—A review [J]. Environ. Qual., 1993, 22: 392-402.
    95. Shavir A,Mikkelsen R L.Controlled-release fertilizers to efficiency of nutrient use and minimize environmental degradation-A review[J]. Fertilizer Research,1993,35:1-12.
    96. Karlsson S,HakkarainenM,Albertsson A C.Dicarboxylic Acids and Ketoacids Formed in Degradable Polyethylenes by Zip Depolymerization through a Cyclic Transition State[J].Macromolecules.1997,30(25): 7721–7728
    97. Greizerstein H B,Syracuse J A,Kostyniak P J. Degradation of starch modified polyethylene bags in a compost field study[J]. Polym Degr Stab,1993,39:251-259
    98. Albertsson A C, Barenstedt C, Karlsson S. Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation[J].Polym Degr Stab,1992,37:163-171
    99. Weiland M,David C. Thermal oxidation of polyethylene in compost environment[J]. Polym Degr Stab,1994,45:371-377
    100. Shah P B,Bandopadhyay S,Bellare J R. Environmentally degradable starch filled low density polyethylene[J]. Polym Degr Stab,1995,47:165-173
    101. Trenkel M E. Controlled Release and Stabilized Fertilizers in Agriculture. IFA, Paris UK Stratospheric Ozone Review Group, 1987. Stratospheric Ozone. HMSO,London.1997
    102. Powell R. Controlled release fertilizers[J].Noyes Development Corporation,Park Ridge,New Jersey,1968
    103. Oertli J J and Lunt O R.Controlled release of fertilizer minerals by incapsulating membranes:I.Factorsinfluencingthe rate of release[J].Soil Sci.Soc.Am.Pron.,1962,26:579-583.
    104. Zhang Min, Gong Zitong and A.D. Karathanasis. Effect of Perched Water Tables on Aluminosilicate Stability and Soil Genesis. Pedosphere, 2000,10 (3): 247-256.
    105. Y.C. Li, A. K.Alva, D.V. Calvert and M. Zhang. Chemical composition of throughfall and stemflow from citrus canopies. J. of Plant Nutri. 1997. 20(10):1351-1360.
    106. M.Zhang, A.K. Alva, Y.C. Li and D.V. Calvert.Root distribution of grapefruit trees under broadcast of dry fertilizer vs fertigation method. Plant and Soil,1996,183:79-84.
    107. Zhang, M., A.K. Alva, Y.C. Li and D.V. Calvert. Fertilizer rates change root distribution of grapefruit trees on a poorly drained soil. Journal of Plant Nutrition,1998,21(1):1-11.
    108. Ignacy Jakubowicz. Evaluation of degradability of biodegradable polyethylene (PE). Polymer Degradation and Stability, 2003, 80(1):39-43
    109. Fan LT and Singh S K. Controlled Release-Aquantitative Treatment. Springer-Verlag, Berlin,1990
    110. Prasad M. The Release of Nitrogen from SCU as Affected by Soil Moisture, Coating Weight, and Method of Placement. Soil Sci Sco Am J,1976,(40):134~136
    111. Tlustos P and Blackmer A M.Release of Nitrogen from Urea-form Fractions as Influenced by Soil pH.Soil Sci Sco Am J,1992,(56): 1807~1810
    112. Landels S P. Controlled Release Fertilizers: Supply and Demand Trends in US NonfarmMarkets. Proc ACS National Meeting:Division of Fertilizers and Soil Chemistry.August,1994
    113. Jarrell WM and Boresma L. Model for the Release of Urea by Granules of Sulfur-Coated Urea Applied to Soil. Soil Sci Soc Am J,1979, (43):1044~1050
    114. Goertz HM. Technology Development in Coated Fertilizers. In:Hagin J et al [eds.] Proc Dahlia GreidingerMemorial Int Workshop onControlled/Slow Release Fertilizers March 1993,Technion Haifa.Israel.1995
    115. Allen S E,Hunt CMandTerman GL. Nitrogen Release fromSulfur CoatedUrea, as Affected by Coating Weight, Placement and Temperature Agron J. 1971,(63):529~533
    116. Allen S E.Slow-Release Nitrogen Fertilizers. In: Hauck R D(ed) Nitrogen in CropProduction,195~206. Madison,WI,1984
    117. Hauck R D.Slow Release and Bio-Inhibitor-Amended Nitrogen Fertilizers.In:Engelstad O P(ed) Fertilizer Technology and Use,293~322.3 rd ed. SSSAMadison, WI.198
    118. G. Sanjay Kumar, V. Ravi Kumar, Giridhar Madras. Continuous distribution kinetics for the thermal degradation of LDPE in solution . Journal of Applied Polymer Science,2002,84 (4):681-690
    119. L. Contat-Rodrigo, A. Ribes Greus. Biodegradation studies of LDPE filled with biodegradable additives: Morphological changes. I. Journal of Applied Polymer Science,2002,83 (8):1683-1691
    120. F. Khabbaz, A. C. Albertsson. Rapid test methods for analyzing degradable polyolefins with a pro-oxidant system [J]. Journal of Applied Polymer Science, 2001,79 (12):2309-2316
    121. Yichao Lin. Study of ultraviolet photooxidative degradation of LDPE film containing cerium carboxylate photosensitizer [J]. Journal of Applied Polymer Science, 1997, 63 (6):811-818
    123. P. K. Roy, P. Surekha, C. Rajagopal, R. Raman, V. Choudhary. Study on the degradation of low-density polyethylene in the presence of cobalt stearate and benzil [J]. Journal of Applied Polymer Science,2006,99 (1):236-243
    124. Bouwman H,Reinecke AJ.Effects of carbofuran on the earthworm, Eisenia fetida using a defined medium[J].Bull Environ ContamToxicol,1987,38(2):171~178.
    125. Bustos Obregon E,Goicochea RI.Pesticide soil contamination mainlyaffected earthworm male reproductive parameters[J].Asian Journal ofAndrology,2002,4(3):195~199.
    126. Capowiez Y,Rault M,Mazzia C,et al.Earthworm behaviour as abiomarker-a case study using imidacloprid[J].Pedobiologia,2004,47 (5):542~547.
    127.Fred Heibach.Corrlation between data from laboratory and field tests for investigating the toxicity of pesticides to earthworm[J].Soil Biolgy and Biochemisty,1992,24(12):1749~1753.
    128. Stringer A,Wright MA.The toxicity of benomyl and some related 2-substituted benzimidazoles to earthworm Lumbricus terrestris[J]. Pesticide Science,1976,7(5):459~464.
    129. Neuhauser E F,Loehr R Cet al.Toxicity of metals to the earthworms Eisenia feLida.Biol FerL Soils,1985,(1):52-149
    130. A.J.A. Vinten,Prediction Nitrogen Leaching from Drained Arable Soils Derived from Glacial Till,Environ. Qual. 1999,28 :988-996
    131. Al-Zahrani S M. Controlled-release of fertilizers :modeling and simulation [J] . International Journal of Engineering Science ,1999 ,37 :1299-1307
    132. Bernard T. Nolan,Nitrate Behavior in Ground Waters of the Southeastern USA , Environ. Qual. 1999 ,28 :1518-1527
    133. Blouin M. Sulfur-coated fertilizers from controlled release:pilot plant production [J]. J Agric Food Chem ,1971 ,19 :801-809
    134. Bouwweester RJB, Vlek PLG and Stumpe JM, Effects of environment factors on ammonia volatilization from a urea fertilized soil,Soil Sci. Am. J.,1985,49:376-381
    135. Oertli J.J. Controlled-release fertilizers [J]. Fertilizer Research, 1980, 9(1):103-123
    136. Paramasivam S, Alva A K. Leaching of nitrogen forms from controlled-release nitrogen fertilizers [J]. Comm. Soil Sci. Plan Anal., 1997b, 28:1663-1674
    137. Paramasivam S, Alva A K. Nitrogen recovery from controlled-release nitrogen fertilizers during four months soil incubation [J]. Soil Sci., 1997a, 162:447-453
    138. Patel A J, Sharma G C.Nitrogen release characteristics of controlled-release nitrogen fertilizers [J]. Comm. Soil Sci. Plan Anal., 1997b, 28:1663-1674
    139. Perrin.T.S., Boettinger J.L., Drost D.T.,et al. Decreasing Nitrogen Leaching from Sandy Soil with Ammonium-Loaded Clinoptilolite [J]. Environ. Qual. ,1998,27:656-663
    140. Rashid M, Bajwa M Z, Hussain R. Rice response to sulphur in Pakistan .Sulphur in Agricuture,1992,16:3-5
    141. Salman O A. Polymer coating on ureu pills to reduce dissolution rate [J]. J. Agric. Food Anal., 1988, 13:793-802
    142. Sanvant NK. A technique for predicting urea release from coated urea in wetland soil. Communications in Soil Science and Plant Analysis, 1982, 13: 793-802
    143. Shaviv A, Ranban S, Zaidel E. Modeling controlled nutrient release from a population of polymer coated fertilizers: statistically based model for diffusion release [J].Environment Science Technology, 2003, 37(10):2257-2261
    144. Shaviv A. Plant response and environment aspects as affected by rate and pattern of nitrogen release from controlled release N fertilizers [J].van Clempt.ed.Progress in Nitrogen Cycling Studies.Kluwer Academ.,the Netherlands,1996.285-291
    145. Shaviv, A., S. Raban, E. Zaidel. Statistically based model for diffusion release from a population of polymer coated controlled release fertilizers [J]. Envir. Sci. & Tech., 2003, 37:2257-2261
    146. Shoji S, Gandeza A T, Kimum K. Simulation of response to polyolefin-coated urea:Ⅱ. Nitrogen uptake by corn. [J]. Soil Sci. Soc. Am. J., 1991, 55:1468-1473
    147. Shoji S, Kanno H. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions [J]. Fert. Res., 1994, 39:147-152
    148. Shouichiy O S, Hidsand M.R.Chaudhry. Sulfur nutrition of rice Soil Sci.Plant Nutr.,1979, 25(1):121-134
    149. Tlustos P. and A. M. Blackmer. Release of nitrogen from ureaform fractions as in fluenced by soil pH [J]. Soil Science Society of America Journal, 1992, 56(6): 1807-1810
    150. Lunt O. R. Modified sulphur coated granular urea for controlled nutrient release. Trans Ni nth Int Congr Soil Sci., 1968, 3:337-383
    151. Mahler R L, Ensiqn R D. Evaluation of N, P. Sand B fertilization of Kentucky Blue grass seed in north-ernIdaho [J]. Commun. SoilSci. PlantAnal.,1989, 20(9&10):989-1009
    152. Mahler R.J., Maples R L. Effect of sulfur additions on soil and the nutrition of wheat. Commun.SoilSci.PlantAnal.,1987,18(6):653-673
    153. Mahler.R.J., R.L.Maples. Response of wheat to sulfur fertilization.Commun.Soil Sci. Plant Anal.,1986, 17(9):975-988
    154. McClellan G. H. and R. M. Scheib. Texture of sulfur coatings on urea [J]. Adv. Chem Ser., 1975, 140:18-32
    155. Mikkelsen R L, and Wan H F.The effect of selenium on sulfur uptake by barley and rice. Plant and Soil,1990,121:151-153
    156. Albertsson A C, Barenstedt C, Karlsson S. Degradation product pattern and morphologychanges as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer, 1995,36(16) :3075-3083
    157. Hakkarainen M, Albertsson A C, Karlsson S. Solid-phase extraction and subsequent gas chromatography-mass spectrometry analysis for identification of complex mixtures of degradation products in starch-based polymers. Journal of Chromatography A, 1996,741(2) : 251-263
    158. Albertsson A C, Albertsson A C, Karlsson S. Solid-phase extraction and gas chromatographic-mass spectrometric identification of degradation products from enhanced environmentally degradable polyethylene. Journal of Chromatography A, 1995,690(2) : 207-217
    159. Mailhot B, Gardette J C. Mechanism of poly(styrene-co-acrylonitrile) photooxidation. Polymer Degradation and Stability, 1994,44(2) : 237-247
    160. Mailhot B, Gardette J C. Fourier transform infrared and Fourier transform Raman analysis of styrenic polymers. Vibrational Spectroscopy, 1996,2(1) : 69-78
    161. Gardette J C, Mailhot B, Lemaire J. Photooxidation mechanisms of styrenic polymers. Polymer Degradation and Stability, 1995,48(3) : 457-470
    162. Mailhot B, Gardette J C. Mechanism of thermolysis, thermooxidation and photooxidation of polyacrylonitrile. Polymer Degradation and Stability, 1994,44(2) : 223-235
    163. Czégény Z, JakabE. Thermal decomposition of photooxidized isotactic polypropylene. Journal of Analytical and Applied Pyrolysis, 2000,56(2) : 229-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700