基于Logvinovich原理的通气超空泡理论及其数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超空化是空化发展的极端状态,即空泡把整个内体包裹起来。一方面,由于内体的沾湿面积十分有限,即仅仅头部和尾部与水接触,巨大的减阻潜力为发展水下高速航行体提供了依据;另一方面,在流体力学领域超空泡涉及气(汽)液相变、湍流、回射流、气液压缩性等诸多流动难题,是一种有待认识的物理现象。正因如此,超空泡吸引着来自世界范围内的学者和工程技术人员的广泛关注。尽管到现在为止关于超空泡流的研究已经取得了很大发展,但是还有许多机理性和技术性的问题制约着对这个物理现象的理解和在工程上的应用,例如非定常通气超空泡的泄气机理及稳定性、水洞通气超空泡的堵塞效应、无界流域通气超空泡及其航行体的机动运动和超空泡的形态控制等。
     正是基于这样的考虑,本文从试验、理论和数值模拟三个方面对通气超空泡流展开了研究。具体研究内容如下:
     (1)基于前支撑模型,对通气超空泡流展开了试验研究。研究了水洞堵塞比对通气超空泡形态及空化数的影响;比较分析了在相同空化数下的水洞通气超空泡和无界流域通气超空泡的形态差异;研究了通气量对超空泡形态、尾部闭合机制及空泡流动的影响和所产生的延迟效应;研究了重力对通气超空泡形态及空化数的影响。
     (2)提出了一个非定常通气超空泡的泄气模型,基于由Logvinovich原理推导的空泡截面方程,采用数值—解析的方法,获得了一个非定常通气超空泡的泄气率计算公式,并得到了实验的证实;基于势流理论,建立了水洞通气超空泡的尾部双涡管闭合模型,并推导了在水平均匀来流下重力和攻角对通气超空泡影响的数学模型;在此基础上,建立了一个非定常通气超空泡模型,即在给定通气率的情况下,将本文中建立的空泡影响模型、尾部闭合模型、泄气模型联立空泡截面模型构成了一个可用来描述非定常通气超空泡的封闭的方程组;针对水洞超空泡流的堵塞现象,基于势流理论,提出了一个最小空化数的数学模型。
     (3)基于建立的非定常通气超空泡模型,发展了能数值模拟非定常通气超空泡的空化数耦合系数修正算法,对水洞通气超空泡流动特征进行了数值分析。建立了一个水洞通气超空泡的最小空化数模型,采用数值—解析的方法,获得了最小空化数的计算公式,并通过实验证实了该公式的有效性;数值分析了水洞壁面和重力对超空泡形态、阻力和空化数的影响以及最小空化数与堵塞空化数之间的关系。
     (4)基于势流理论,分别推导了在无界流域中的垂向平面内和水平面内,攻角、重力和惯性力对通气超空泡曲线运动的影响模型;基于建立的非定常通气超空泡模型,采用空化数耦合系数修正算法,数值模拟了在平面内做任意曲线运动的通气超空泡,并分析了惯性力对超空泡形态的影响以及由空泡控制量的改变而产生的空泡变形和脱落。
     (5)基于建立的非定常通气超空泡模型,采用空化数耦合系数修正算法,数值分析了各种空泡控制量扰动对通气超空泡稳定性的影响,包括速度扰动、空化器偏转角扰动、通气率扰动和通气射流扰动;数值研究了有攻角的非定常通气超空泡的稳定性,并基于数值结果,采用FFT(快速傅立叶变换)方法,分析了空泡脉动特性,最后采用数值—解析的方法得到了有攻角的非定常通气超空泡的稳定性判断准则;数值模拟了在速度扰动下的不同攻角的通气超空泡的脱落,并分析了空泡脱落频率和空泡内气体动力学参数及攻角之间的关系。
     (6)基于建立的非定常通气超空泡模型,提出了一个适用于做任意运动的通气超空泡的形态控制算法;也提出了一个通气和运动速度联合控制算法,可以实现在垂向平面内做变深运动的通气超空泡的形态控制,并基于这个控制算法,对保持定常形态做垂向运动的通气超空泡进行了控制仿真。
     (7)基于刚体动力学理论,对超空泡航行体进行了动力学建模,并结合建立的非定常通气超空泡模型,发展了一个能模拟在纵向平面内做曲线运动的超空泡航行体的数值算法;基于这个算法对做下潜运动的超空泡航行体进行了数值模拟,并计算了滑行力。通过与经验模型的计算结果相比较,在一定程度上证实了文中建立的非定常通气超空泡模型及其航行体动力学模型的有效性。
Supercavitation that envelops its vehicle fully is the extreme state of cavitation.On the one hand, it provides the evidence for developing the high-speed underwatervehicle to get great potential of drag reduction because of very limited wetted area.In this case only the head and tail of the vehicle contact water. A betterunderstanding of it requires a deeper research of the academic circles as a physicalphenomenon in the field of fluid mechanics on the other hand, which invloves somechallenges such as phase change between gas and liquid, turbulence, re-entrant jets,gas and liquid compressibility and so on. As much supercavitating flows haveattracted widespread attention from researchers and engineers around the world.Although research on supercavitating flows has made great advances so far, somemechanism and technical questions still restrict its understanding and application,such as the gas-leakage mechanism, the stability of the unsteady ventilatedsupercavity, the blockage effect of the ventialted supercavity in water tunnel, themaneuvering motion and shape control of the ventilated supercavity and its mobilevehicle in unbounded flows, etc.
     From this view, this thesis is devoted to ventilated supercavitating flows fromexperiment, theory and numerical simulation. The concrete research contents are asfollows:
     (1) Research on the ventilated supercavity is done by experiment based on theforward facing model. The effects of blockage ratio on the dimensions of theventilated supercavity and its cavitation number in water tunnel are discussed; Thedimension differences of the ventilated supercavity in between water tunnel andunbounded flows are analyzed comparatively at the same cavitation number; Someexperiments are carried out to research the effects of ventilation on supercavitydimensions, its closure mechanism and the flows and its delayed effects; Gravityeffects on the dimensions of the ventilated supercavity and its cavitation number arealso discussed.
     (2) The gas-leakage rate of the unsteady ventilated supercavity is modeled, andis formulated based on the equation of cavity section from Logvinovich’s principleusing the numerical-analytical method. The obtained formula is validated byexperiment; The closure model of the two vortex tubes of the ventilated supercavity is derived in water tunnel based on the potential theory, and effect models of gravityand angle of attack (AOA) on it are established respectively in uniform flows; Onthis basis, the mathematical model of the unsteady ventilated supercavity isestablished, which consists of the established effect models, the closure model of itstail, and its gas-leakage model combined with the cavity section model for the givenventilation rate; For the choking flows in water tunnel, the mathematical model ofthe minimum cavitation number is also proposed based on the potential theory.
     (3) The cavitation number embedded coefficient algorithm is developed tosimulate the ventilated supercavity in water tunnel and analyze its characteristicsbased on the established unsteady ventilated supercavity model; The model of theminimum cavitation number of the ventilated supercavity in water tunnel ispresented, and its formula is obtained using the numerical-analytical method andvalidated by experiments; Ventilated supercavity is simulated to analyze the effectsof walls and gravity on its shape, drag and cavitation number in water tunnel, andthen the relation between the minimum cavitation number and the blockagecavitation number is discussed.
     (4) Effect models of AOA, gravity and inertial force on the ventilatedsupercavity in the curvilinear motion of the vertical and horizontal plane areestablished respectively based on the potential theory; The ventilated supercavity issimulated in the arbitrary curvilinear motion of the plane using the cavitationnumber embedded coefficient algorithm based on the established unsteadysupercavity model, and the effects of inertial force on the shape and its deformationand shedding caused by the change of control variables of supercavity are alsoanalyzed.
     (5) The effects of the disturbances of various control variables of ventilatedsupercavity from velocity, deflection angle of cavitator, ventilation rate and jets onthe supercavity stability are analyzed numerically using the cavitation numberembedded coefficient algorithm based on the established unsteady supercavitymodel; The stability of the unsteady ventilated supercavity with AOA is researchednumerically, and its pulsation characteristics are analyzed based on the numericalresults using FFT (Fast Fourier Transform Algorithm). Then the stability criterion ofthe supercavity with AOA is obtained using the numerical-analytical method; Theshedding of the ventilated supercavity with velocity disturbance is simulated tomake an analysis of the relation between its stability and the dynamics parameter ofthe gas in supercavity, AOA.
     (6) The shape control algorithm is developed based on the established unsteadyventilated supercavity model for the ventilated supercavity in the arbitrary motion;Another control algorithm combining the ventilation and the motion velocity is alsopresented to control supercavity dimensions in the vertical plane, and thesupercavity control with constant shape in the vertical motion is simulated.
     (7) Supercavitating vehicle is modeled, and based on the model in combinationwith the established supercavity model, the algorithm is developed to simulate thevehicle in the curvilinear motion of its longitudinal plane; Uing this algorithm, thevehicle making a diving movement is simulated and its planing forces are alsocomputed. The model is validated by comparing the results with the empericalmodel’s results to some extent.
引文
[1]颜开,褚学森,许晟,等.超空泡流体动力学研究进展.船舶力学.2006,10(4):148~155.
    [2] C. E. Brennen. Cavitation and Bubble Dynamics. Oxford University Press.1995:15~17.
    [3] R. T. Knapp, J. W. Daily, F. G. Hammit. Cavitation. McGraw-Hill.1970.
    [4] R. W. Kermeen, J. T. McGraw, B. R. Parkin. Mechanism of CaviationInception and the Related Scale-Effects Problem. Trans. ASME.1955,77:533~541.
    [5] H. Higuchi, R. E. A. Arndt, M. F. Roger. Characteristics of Tip CavitationNoise. J. of Fluids Eng.1986,111:495~501.
    [6] H. Reichardt. The Laws of Cavitation Bubbles as Axially Symmetrical Bodiesin a Flow. Ministry of Aircraft Productuin(Great Britian), Reports andTranslations.1946,766:322~326.
    [7] W. M. Swanson, J. P. O’Neill. The Stability of an Air-Maintained Cavitybehind a Stationary Object in Flowing Water. Memorandum Report.1951, No.M-24.3.
    [8] T. Kiceniuk. An Experimental Study of the Hydrodynamic Forces Acting on aFamily of Cavity-Producing Conical Bodies of Revolution Inclined to the Flow.Technical Report.1954, No. E-12.17.
    [9] E. Silberman. Experimental Studies of Supercavitating Flow about SimpleTwo-Dimensional Bodies in a Jet. J. Fluid Mech.1959,5(3):337~354.
    [10] E. Silberman, C. S. Song. Instability of Ventilated Cavities. Technical Paper.1959, No.29, Series B.
    [11] E. Silberman, C. S. Song. Instability of Ventilated Cavities. J. of Ship Res.1961,5(1):13~33.
    [12] C. S. Song. Pulsation of Ventilated Cavities. J. of Ship Res.1962,5(4):8~19.
    [13] J. M. Michel. Some Features of Water Flows with Ventilated Cavities. J. FluidsEng.1984,106(3):319~326.
    [14] J. M. Michel. Oscillations of Ventilated Cavities Experimental Aspects. RTOAVT Lecture Series on “Supercavitating Flows”, Brussels,2001: EN-010-02.
    [15] R. Oba, T. Ikohagi and S. Yasu. Supercavitating Cavity Observations by Meansof Laser Velocimeter. J. Fluids Eng.1986,102:433~438.
    [16]何友声,刘桦,赵岗.二维空泡流的脉动性态研究.力学学报.1997,29(1):1~7.
    [17] D. R. Stinebring, M. L. Billet, J. W. Lindau, et al. DevelopedCavitation-Cavity Dynamics. RTO AVT Lecture Series on “SupercavitatingFlows”, Brussels,2001: EN-010-05.
    [18] Y. N. Savchenko. Experiment Investigation of Supercavitating Motion ofBodies. RTO AVT Lecture Series on “Supercavitating Flows”, Brussels,2001:EN-010-04.
    [19] K. Sato, M. Tanada, S. Monden. Observations of Oscillating Cavitation on aFlat Plate Hydrofoil. JSME Int J., Ser. B.2002,45(3):646~654.
    [20] X. M. Feng, C. J. Lu and T. Q. Hu. Experimental Research on aSupercavitating Slender Body of Revolution with Ventilation. J. Hydrodyn. Ser.B.2002,2:17~23.
    [21] M. Wosnik, T. J. Schauer and R. E. A. Arndt. Experimental Study of aVentilated Supercavitating Vehicle. Proceedings of the Fifth InternationalSymposium on Cavitation, Osaka, Japan,2003: Cav03-OS-7-008.
    [22] I. I. Kozlov, Prokofev. The Mechanism and Regularity of Gas Loss fromVentilated Cavity with Negative Cavitation Number. Proceedings of the FifthInternational Symposium on Cavitation, Osaka, Japan,2003:Cav03-OS-7-010.
    [23]蒋洁明,鲁传敬,胡天群等.轴对称体通气空泡的水动力试验研究.力学季刊.2004,25(4):450~456.
    [24]顾建农,张志宏,高永琪等.充气头型对超空泡轴对称体阻力特性影响的试验研究.兵工学报.2004,25(6):766~769.
    [25]陈伟政,张宇文,袁绪龙等.重力场对轴对称体稳定空泡形态影响的实验研究.西北工业大学学报.2004,22(3):274~278.
    [26]李宏伟,张宇文,殷崇一等.航行体超空泡水洞试验中的自动充气系统及应用.舰船科学技术.2004,26(5):11~13.
    [27]邓飞,张宇文,袁绪龙等.水下超空泡航行体流体动力设计原理研究.西北工业大学学报.2004,22(6):806~810.
    [28]袁绪龙,张宇文,王育才等.水下航行体通气超空泡非对称性研究.力学学报.2004,36(2):146~150.
    [29]张宇文,王育才,党建军等.细长体空泡流型试验研究.水动力学研究与进展.2004,19(3):394~400.
    [30] T Ota, I. Tsubura and H. Yoshikawa. Unsteady Cavitating Flow around anInclined Rectangular Cylinder. ASME2004Heat Transfer/Fluids EngineeringSummer Conference, Charlotte, North Carolina, USA,2004: HT-FED2004-56143.
    [31] K. R. Fowler, J. Sheehan and S. Silver. Simplified and Inexpensive Experim-ental Setups for Studying Supercavitation. Instrumentation and MeasurementTechnology Conference, Ottawa, Canada,2005,2:975~977.
    [32] R. Kuklinski. Experimental Studies in the Control of Cavitating Bodies. AIAAGuidance, Navigation, and Control Conference and Exhibit, Colorado,2006:AIAA2006-6443.
    [33] M. Wosnik, R. E. A. Arndt. Measurements in High Void-Fraction BubblyWakes Created by Ventilated Supercavitation. Proceedings of the SixthInternational Symposium on Cavitation, Wageningen, Netherlands,2006.
    [34]杨武刚,张宇文,阚雷等.通气法控制超空泡流动的实验研究.应用力学学报.2007,24(4):504~508.
    [35]杨武刚,张宇文,邓飞等.通气流量对超空泡外形特征影响实验研究.西北工业大学学报.2007,25(3):358~362.
    [36]贾力平,王聪,于开平等.空化器参数对通气超空泡形态影响的实验研究.工程力学.2007,24(3):159~164.
    [37]贾力平,于开平,张嘉钟等.空化器参数对超空泡形成和发展的影响.力学学报.2007,39(2):210~216.
    [38]贾力平,张嘉钟,魏英杰等.空化器几何参数对通气超空泡生成影响的实验研究.船舶力学,2007,11(2):171~178.
    [39]王海斌,张嘉钟,魏英杰等.水下航行体通气超空泡减阻特性实验研究.船舶工程.2006,28(3):14~17.
    [40]王海斌,王聪,魏英杰等.轴对称航行体通气超空泡的特性实验研究.工程力学.2007,24(2):166~171.
    [41]王海斌,王聪,魏英杰等.水下航行体通气超空泡的实验研究.船舶力学.2007,11(4):514~520.
    [42]刘玉秋,张嘉钟,于开平等.非流线型航行体超空泡减阻的实验分析和数值模拟.哈尔滨工程大学学报.2006,27(3):335~338.
    [43]隗喜斌,魏英杰,黄庆新等.通气超空泡临界通气率的水洞试验分析.哈尔滨工业大学学报.2007,39(5):797~799.
    [44]蒋增辉,于开平,张嘉钟等.水下航行体通气超空泡形态及阻力特性试验研究.工程力学.2007,24(4):152~158.
    [45]蒋增辉,于开平,张嘉钟等.超空泡航行体尾部流体动力特性试验研究.工程力学,2008,25(3):26~30.
    [46] Q. T. Lee, L. P. Xue and Y. S. He. Experimental Study of Ventilated Supercav-ities with a Dynamic Pitching Model. J. Hydrodyn. Ser. B.2008,20(4):456~460.
    [47] X. B. Li, G. Y. Wang, M. D. Zhang, et al. Structures of SupercavitatingMultiphase Flows. Int. J. Therm. Sci.2008,47(10):1263~1275.
    [48] I. I. Kozlov, V. V. Prokof’ev, A. A. Puchkov. High-speed VideocameraInvestigation of the Wave Structure Development on an Unstable CavityBoundary. Fluid Dyn.2008,43(2):287~296.
    [49] I. I. Kozlov, V. V. Prokof’ev. Development of Waves on a Cavity Surface witha Negative Cavitation Number. Dokl. Phys.2006,51(7):361~364.
    [50]张博,张宇文,阚雷等.超空泡航行体前部线形对空泡生成临界通气量影响的实验研究.应用力学学报.2008,25(4):562~566.
    [51]张博,张宇文,李文哲等.超空泡航行体前部线型对空泡生成速度影响实验研究.西北工业大学学报.2008,26(5):540~544.
    [52]张博,张宇文,张纪华.通气空泡生成和溃灭特性试验研究.应用力学学报.2011,28(1):55~58.
    [53] C. J. Lu, Y. S. He, X. Chen X, et al. Numerical and Experimental Research onCavitating Flows. New Trend in Fluid Mechanics Research.2009,45~52.
    [54]张学伟,魏英杰,张嘉钟等.模型结构对通气超空泡影响的实验研究.工程力学.2008,25(9):203~208.
    [55] J. Z. Zhang, J. Zhao, Y. J. Wei, et al. Experimental Research on the UnsteadyCharacteristic of Cavitating Flow. International Conference on MechanicalEngineering and Mechanics, Beijing, China,2009.
    [56]杨传武,王安稳,施连会等.超空泡流下壳结构模型动态特性实验研究.振动与冲击.2010,29(11):17~21.
    [57]裴譞,张宇文,孟生等.超空泡航行器尾喷管实验研究.应用力学学报.2010,27(3):584~588.
    [58]裴譞,王育才,张宇文等.超空泡航行器舵效的水洞试验研究.西南交通大学学报.2011,46(6):1008~1018.
    [59]裴譞,张宇文,袁绪龙等.尾翼对超空泡航行器形态及力学特性影响实验研究.实验流体力学.2011,25(1):23~28.
    [60] J. Z. Zhang, J. Zhao, Y. J. Wei, et al. Re-entrant Jet and Its Effect on the Shapeof Ventilated Supercavity. J. of Ship Mech.2010,14(6):571~576.
    [61] G. Feng, X. S. Chu, C. H. Tao, et al. Experimental Study of SupercavitatingFlow around Body Swinging at Two Degree of Freedom. J. of Ship Mech.2010,14(6):633~640.
    [62]张纪华,张宇文,李雨田.水下航行体通气超空泡生成与维持实验研究.实验力学.2011,26(6):715~720.
    [63]张纪华,张宇文,朱灼.通气量对超空泡生成与维持影响实验研究.实验流体力学.2012,26(2):56~59.
    [64] Z. Wang, X. X. Peng, K.Yan, et al. Experimental Study of VentilatedSupercavity on an Axisymmetric Model. Proceedings of the EighthInternational Symposium on Cavitation, Singapore,2012.
    [65] Y. D. Wang, X. L. Yuan, Y. W. Zhang. On the Re-Entrant Jet of a Supercavita-ting Body. Proceedings of the Eight International Symposium on Cavitation,Singapore,2012.
    [66] X. L. Yuan, Y. D. Wang, Z. Zhu. Experimental Studies on HydrodynamicCharacteristic of Supercavitating Vehicles. Proceedings of the EighthInternational Symposium on Cavitation, Singapore,2012.
    [67] Y. N. Savchenko, Y. D. Vlasenko, V. N. Semenenko. Experimental Studies ofHigh-Speed Cavitated Flows. Int. J. of Fluid Mech. Res.1999,26(3):365~374.
    [68] H. H. Shi, M. Itoh and T. Takami. Optical Observation of the SupercavitationInduced by High-Speed Water Entry. J. of Fluids Eng.2000,122(4):806~810.
    [69] H. H. Shi, T. Takami. Hydrodynamic Behavior of an Underwater Moving BodyAfter Water Entry. Acta Mech. Sin.2001,17(1):35~44.
    [70] H. H. Shi, K. Makoto. Underwater Acoustics and Cavitating Flow of WaterEntry. Acta Mech. Sin.2004,20(4):374~382.
    [71] J. D. Hrubes. High-Speed Imaging of Supercavitating Underwater Projectiles.Exp. Fluids.2001,30:57~64.
    [72] I. N. Kirschner. Results of Selected Experiments Involving SupercavitatingFlows. RTO-AVT Lecture Series on “Supercavitating Flows”, Brussels,2001:EN-010-15..
    [73] Y. D. Vlasenko. Experimental Investigation of Supercavitation Flow Regimesat Subsonic and Transonic Speeds. Proceedings of the Fifth InternationalSymposium on Cavitation, Osaka, Japan,2003: Cav03-GS-6-006.
    [74] M. Schaffar, C. Rey, and G. Boeglen. Behavior of Supercavitating ProjectilesFired Horizontally in a Water Tank: Theory and Experiments CFDComputations with the OTi-HULL Hydrocode.35th AIAA Fluid DynamicsConference and Exhibit, Toronto, Ontario Canada,2005.
    [75]曹伟,王聪,魏英杰等.自然超空泡形态特性的射弹试验研究.工程力学.2006,23(12):175~187.
    [76]曹伟,魏英杰,王聪等.超空泡航行体加速段通气规律设计.哈尔滨工业大学学报.2007,39(12):1938~1944.
    [77] X. J. Wu, G. L. Chahine. Characterization of the Content of the Cavity behinda High-Speed Supercavitating Body. J. Fluids Eng.2007,129:136~145.
    [78] C. Weiland, P. Vlachos. Observation of a Critical Time Scale for Supercavi-tation Development and the Effect of Gas Leakage.2008ASME FluidsEngineering Conference, Florida USA,2008.
    [79]李凤臣,邹志林,蔡伟华等.减阻剂水溶液内弹体入射超空泡特性实验研究.工程热物理学报.2010,31(5):857~862.
    [80] W. J. Yi, J. J. Tan and T. H. Xiong. Investigations on the Drag Reduction ofHigh-Speed Natural Supercavitation Bodies. Mod. Phys. Lett. B.2009,23(3):405~408.
    [81]金大桥,王聪,魏英杰等.通气超空泡水下射弹实验研究.工程力学.2011,28(9):214~222.
    [82] H. H. Shi, H. L. Zhou, J. H. Hu, et al. Experimental Research on Supercavita-tion Flows during Water Exit of Blunt Bodies. Proceedings of EighthInternational Symposium on Cavitation, Singapore,2012.
    [83]施红辉,周浩磊,吴岩等.伴随超空泡产生的高速细长体入水实验研究.力学学会.2012,44(1):49~55.
    [84]施红辉,张晓萍,吴岩等.细长体倾斜入水时的非平衡态超空泡气液两相流研究.浙江理工大学学报.2012,29(4):570~574.
    [85]魏平,侯健,陈汀峰.高速射弹超空泡的形态特性.海军工程大学学报.2012,24(5):108~112.
    [86]张木,谭俊杰,易文俊等.高速自然超空泡射弹阻力特性试验研究.实验流体力学.2012,26(4):33~37.
    [87] B. Saranjam. Experimental and Numerical Investigation of an UnsteadySupercavitating Moving Body. Ocean Eng.2013,59:9~14.
    [88] R. Kuklinski, C. Henoch and J. Castano. Experimental Study of VentilatedCavities on Dynamic Test Model. Proceedings of the Fourth InternationalSymposium on Cavitation, Pasadena, CA USA,2001: sessionB3.004.
    [89]易文俊,熊天红,王中原等.小空化数下超空泡航行体的阻力特性试验研究.水动力学研究与进展.2009,24(1):1~6.
    [90]易叔群,惠昌年,周建伟等.通气量对轴向加速过程超空泡发展规律影响的试验研究.船舶力学.2009,13(4):522~526.
    [91]易淑群,张明辉,周建伟等.攻角对轴向约束模型加速过程超空泡影响的试验研究.水动力学研究与进展.2010,25(3):292~298.
    [92]易淑群,惠昌年,周建伟等.通气量对轴向加速过程超空泡发展规律的试验研究.船舶力学.2009,3(4):522~526.
    [93] T. Levi-Civita. Scie e leggi di resistenzia. Rend. Circ. Mat. Palermo.1907,18:1~37.
    [94] H. Villat. Sur La Validitédes Solutions De Certains Problèmes D’hydrodynam-ique. J. Math. Pures Appl.1914,10:31~290.
    [95] T. Y. Wu. A Free Streamline Theory for Two-Dimensional Fully CavitatedHydrofoils. J. of Math. and Phys.1956:236.
    [96] M. P. Tulin, M. P. Burkart. Linearized Theory for Flows about Lifting Foils atZero Cavitation Number. DTMB-Rep.1955: C638.
    [97] J. Auslaender. The Linearized Theory for Supercavitating HydrofoilsOperating at High Speeds near a Free Surface. Technical Report.1961:001-5.
    [98]董世汤.二元超空泡水翼线性化理论.中国造船.1963,1:13~29.
    [99]董世汤.超空泡和局部空泡水翼的线性化理论.中国造船.1964,2:9~28.
    [100]董世汤.空泡绕流.力学情报.1973,4:55~60.
    [101]计志也.超空泡圆弧型水翼的流体动力性能计算方法.中国造船.1964,2:1~8.
    [102] G. H. Zhang. A General Linearized Theory for Supercavitating HydrofoilSections. Shipbuilding of China.1980,4:1~26.
    [103] L. C. Woods. On the Instability of Ventilated Cavities. J. Fluid Mech.1966,36(3):437~457.
    [104] P. Leehey. Supercavitating hydrofoil of finite span. Proc. IUTAM Symp. onNon-steady Flow of Water at High Speeds, Leningrad,1971:277~298.
    [105] O. Furuya. Three-Dimensional Theory on Supercavitating Hydrofoils near aFree Surface. J. of Fluid Mech.1975,71(2):339~359.
    [106] Y. A. Semenov. Analytical Method of Solution of Nonlinear Problems ofUnsteady Cavity Flows. Int. J. of Fluid Mech. Res.2001,28(5):683~691.
    [107] G. V. Logvinovich. Hydrodynamics of Flows with Free Boundaries. Kyiv:Naukova dumka,1969.
    [108] V. V. Serebryakov. Ring Model for Calculation of Axisymmetric Flows withDeveloped Cavitation. J. of Hydromech.1974,27:25~29(in Russian).
    [109] A. D. Vasin. The Principle of Independence of the Cavity Sections Expansion(Logvinovich’s Principle) as the Basis for Investigation on Cavitation Flows.RTO-AVT Lecture Series on “Supercavitating Flows”, Brussels, Belgium,2001: EN-010-08.
    [110] E. V. Paryshev. Mathematical Modeling of Unsteady Cavity Flows. Proceedi-ngs of the Fifth International Symposium on Cavitation, Osaka, Japan,2003:Cav03-OS-7-014.
    [111] E. V. Paryshev. Approximate Mathematical Models in High-speed Hydrod-ynamics. J. Eng. Math.2006,55:41~64.
    [112] C. Pellone, J. P. Franc and M. Perrin. Modeling of Unsteady2D Cavity FlowsUsing the Logvinovich Independence Principle. C.R. Mecanique.2004,332:827~833.
    [113] A. D. Vasin. Supercavities in Compressible Fluid. RTO-AVT Lecture Series on“Supercavitating Flows”, Brussels,2001: EN-010-16.
    [114] A. D. Vasin. Application of the Slender Body Theory to Investigation of theDeveloped Axially Symmetric Cavitation Flows in a Subsonic Stream ofCompressible Fluid. Int. J. of Fluid Mech. Res.2001,28(5):702~716.
    [115] A. D. Vasin. Some Problems of Supersonic Cavitation Flows. Proceedings ofthe Fourth International Symposium on Cavitation, Pasadena, CA USA,2001:EN-010-08.
    [116] V. V. Serebryakov. Some Models of Prediction of Supercavitation Flows basedon Slender Body Approximation. Proceedings of the Fourth InternationalSymposium on Cavitation, Pasadena, USA,2001: sessionB3.001.
    [117]高强,张宇文,陈伟政.基于细长体理论的超空泡外形估算.弹箭与制导学报.2005,25(2):373~376.
    [118]张志宏,孟庆昌,顾建农等.水下亚声速细长锥型射弹超空泡形态的计算方法.爆炸与冲击.2010,30(3):254~261.
    [119]张志宏,孟庆昌,顾建农等.水下超声速细长锥型射弹超空泡形态的计算方法.爆炸与冲击.2011,31(1):49-54.
    [120]王献孚.近自由表面超空泡物体绕流的一个理论及其应用.武汉水运工程学院学报.1984,4:59~67.
    [121]吴秀恒,王献孚,韩久瑞.近自由表面浅水中水翼超空泡绕流得计算.中国造船.1984,1:9~17.
    [122]韩久瑞,王献孚.超空泡叶栅绕流的数值解.武汉水利工程学院学报.1984,2:69~75.
    [123] P. R. Garabedian. Variational Methods in Cavitational Flow. RTO-AVT LectureSeries on “Supercavitating Flows”, Brussels,2001: EN-010-07.
    [124] V. A. Frolov. High-Speed Compressible Flows About Axisymmetric Bodies.Proceedings of the Fifth International Symposium on Cavitation, Osaka, Japan,2003: Cav03-OS-7-004.
    [125] K. V. Rozhdestvensky. Supercavitating Flows: Small Perturbation Theory andMatched Asymptotics. RTO AVT Lecture Series on “Supercavitating Flows”,Brussels, Belgium,2001: EN-010-18.
    [126] T. Nishiyama. Unsteady Supercavitating Hydrofoil Theory at Non-zeroCavitation Number. Tohoku University, Japan,1972,37(2):259~282.
    [127] I. I. Yefremov. Linearized Theory of Cavitation Flow. Naukova DumkaPublishing House,1974.
    [128] V. N. Semenenko. Instability of a Plane Ventilated Supercavity in an InfiniteStream. Fluid Mech. Res.1996,23:134~143.
    [129] V. N. Semenenko. Computer Modeling of Pulsations of Ventilated Supercav-ities. Int. J. of Fluid Mech. Res.1996,23(3):302~312.
    [130] V. N. Semenenko. Instability and Oscillation of Gas-Filled Supercavities.Proceedings of the Third International Symposium on Cavitation. Grenoble,France,1998:25~30.
    [131]高永琪,顾建农.超空泡鱼雷有关流体动力分析.海军工程大学学报.2005,17(3):57-60.
    [132] C. C. Hsu, C. F. Chen. On the Pulsation of Finite, Ventilated Cavities. Hydro-nautics, Inc., Technical Report.1962,115-4.
    [133] L. C. Woods. On the Stability of Ventilated Cavities. J. Fluid Mech.1966,26:437~457.
    [134] C. Brennen. Cavity Surface Wave Patterns and General Appearance. J. FluidMech.1970,44:33~49.
    [135] Y. N. Savchenko. Modeling the Supercavitation Processes. Int. J. Fluid Mech.Res.2001,28(5):644~659.
    [136] Y. N. Savchenko. Supercavitation-Problems and Perspectives. Proceedings ofthe Fourth International Symposium on Cavitation, Pasadena, CA USA,2001:lecture.003.
    [137] S. I. Putilin. Some Features of a Supercavitating Model Dynamics. Int. J. FluidMech. Res.2001,28(5):631~643.
    [138] Y. Khakpour, M. Yazdani. On the Stability of Supercavitating Projectiles basedon Lagrangian Analysis.2005ASME Fluids Engineering Division SummerMeeting and Exhibition, Houston, TX, USA,2005.
    [139] V. D. Kubenko, O. V. Gavrilenko. Impact Interaction of Cylindrical Body witha Surface of Cavity during Supercavitation Motion in Compressible Fluid. J. ofFluids Struct.2009,25:794~814.
    [140] L. A. Epshtein. Methods of Theory of Dimensionality and Similarity in Prob-lems of Ship Hydromechanics. Sudostroenie Publishing. House, Leningrad,1970[in Russian].
    [141] L. A. Epshtein. Characteristics of Ventilated Cavities and Some Scale Effect-s.Unsteady Water Flow with High Velocities, Proc. of Int. Symposium IUTAM,Nauka Publishing House, Moscow,1973.
    [142] L. A. Epshtein. On Mechanism of Pulse Processes in End Zone of AttachedCavities. Proc. of Symp. on Physics of Acoustic-Hydrodynamic Phenomena,Nauka Publishing House, Moscow,1975[in Russian].
    [143] I. J. Campbell, D. V. Hilborne. Air Entrainment behind Artificially InflatedCavities. Proceedings of the Second Symposium on Cavitation on NavalHydrodynamics, Washington DC,1958.
    [144] J. H. Spurk. On the Gas Loss from Ventilated Supercavities. Acta Mech.2002,155:125~135.
    [145]杨武刚,杨振才,温凯歌等.超空化航行体气体流量率的确定方法研究.力学学报.2012,44(4):694~700.
    [146] H. Reichardt, H. Munzner. Rotationally Symmetric Source-Sink Bodies withPredominantly Constant Pressure Distributions. Arm. Res. Est. Trans,1950,50(1).
    [147] J. S. Uhlman. The Surface Singularity Method or Boundary Integral MethodApplied to Supercavitating Hydrofoils. J Ship Res.1989,33(1):16~20.
    [148] S. A. Kinnas, C. H. Mazel. Numerical Versus Experimental Cavitation Tunnel.J Fluids Eng.1993,115(12):760~765.
    [149] C. S. Lee, Y. G. Kim, J. T. Lee. A Potential Based Panel Method for theAnalysis of a Two-Dimensional Super or Partially Cavitating Hydrofoil. J ShipRes.1992,36(2):168~181.
    [150] I. N. Kirschner, N. E. Fine, J. S. Uhlman, et al. Numerical Modeling ofSupercavitating Flows. RTO AVT Lecture Series on “Supercavitating Flows”,Brussels, Belgium,2001: EN-010-09.
    [151] D. Kring, N. Fine, J. Uhlman, et al. A Time-Domain Cavitation Model Using aThree-Dimensional Boundary-Element Method. Int. J. of Fluid Mech. Res.2001,28(5):614~622.
    [152] D. Battistin, A. Iafrati. Hydrodynamic Loads during Water entry of Two-Dim-ensional and Axisymmetric Bodies. J. of Fluids Struct.2003,17:643~664.
    [153] S. A. Kinnas, H. Sun. Numerical Analysis of Flow around the CavitatingCAV2003Hydrofoil. Proceedings of the Fifth International Symposium onCavitation, Osaka, Japan,2003: Cav03-OS-1-010.
    [154] E. Amromin. Analysis of Body Supercavtation in Shallow Water. Ocean Eng.2007,34(11-12):1602~1606.
    [155] N. M. Nouri, A. Eslamdoos. An Iterative Scheme for Axisymmetric Supercav-itating flow. J. Mechanical Engineering Science.2009,223:1869~1876.
    [156] N. M. Nouri, A. Eslamdoost. An Iterative Scheme for Two-DimensionalSupercavitating Flow. Ocean Eng.2009,36:708~715.
    [157] R. Shafaghat, S. M. Hosseinalipour, N. M. Nouri, et al. MathematicalApproach to Investigate the Behaviour of the Principle Parameters inAxisymmetric Supercavitating Flows, Using Boundary Element Method. J. ofMech.2009,25(4):465~473.
    [158] Y. Delannoy, J. L. Kueny. Two Phase Flow Approach in Unsteady CavitationModeling. Cavitation and Multiphase Flow Forum. ASME-FED,1990,98:153~158.
    [159] Y. Chen, S. D. Heister. Modeling Hydrodynamics Nonequilibrium in Bubblyand Cavitating Flows. J. Fluids Eng.1995,118:172~178.
    [160] J. R. Edwards, R. K. Franklin, M. S. Liou. Low-Diffusion Flux SplittingMethods for Real Fluid Flows with Phase Transitions. J. AIAA.2000,38(9):1624~1633.
    [161] Y. Ventikos, G. Tzabiras. A Numerical Method for the Simulation of Steadyand Unsteady Cavitating Flows. Comput. Fluids.2000,29(1):63~88.
    [162] B. R. Shin, Y. Iwata, T. Ikohagi. Numerical Simulation of Unsteady CavitatingFlows Using A Homogenous Equilibrium Model. Comput. Mech.2003,30:388~395.
    [163] Y. Iga, M. Nohmi, A. Goto. Numerical Study of Sheet Cavitation BreakoffPhenomenon on A Cascade Hydrofoil. J. Fluid Eng.2003,125:643~651.
    [164] Y. Iga, M. Nohmi, A. Goto. Numerical Analysis of Cavitation InstabilitiesArising in the Three-blade Cascade. J Fluid Eng,2004,126:419~429.
    [165] O. Coutier-Delgosha, R. Fortes-Patella and J. L. Rebound. Evaluation of theTurbulence Model Influence on the Numerical Simulations of UnsteadyCavitation. J Fluids Eng.2003,125:38~45.
    [166] O. Coutier-Delgosha, J. L. Reboud and Y. Delannoy. Numerical Simulation ofthe Unsteady Behaviour of Cavitating Flows. Int J Numer Meth Fluids.2003,42:527~548.
    [167] C. C. S. Song, Q. Qin. Numerical Simulation of Unsteady Cavitating Flows.Proceedings of the Fourth International Symposium on Cavitation, California,2001: sessionB5.004.
    [168] Q. Qin Q, C. C. S. Song. R. E. A. Arndt. A Virtual Single-Phase NatureCavitation Model and Its Application to Cav2003Hydrofoil. Proceedings ofthe Fifth Intermational Symposium on Cavitation, Osaka,2003: Cav03-OS-1-004.
    [169] M. Wosnik, R. E. A. Arndt. Indentification of Large Scale Structures in theWake of Cavitating Hydrofoils using LES and Time-Resolved PIV. SixthInternational Symposium on Cavitation, Wageningen, Netherlands,2006.
    [170] A. Kubota, H. Kato and H. Yamaguchi. A New Modelling of CavitatingFlows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section. J.Fluid Mech.1992,240:59~96.
    [171] H. P. Fu, C. J. Lu, J. Li. Numerical Research on Drag ReductionCharacteristics of Supercavitating Body of Revolution. J. of Ship Mech.2004,8(3):1~7.
    [172]王海斌,张嘉钟,王聪等.加速度对自然超空泡特性影响的数值仿真研究.工程力学.2007,24(1):18~22.
    [173]周家胜,易文俊,王中原等.水下射弹的空泡形态特性研究.弹箭与制导学报.2007,27(3):173~178.
    [174]熊天红,易文俊,吴军基等.水下高速射弹超空泡流特性分析.火炮发射与控制学报.2008,3:6-9.
    [175]熊天红,易文俊,吴军基等.小攻角下水下高速航行体超空泡流特性研究.舰船科学技术.2009,31(5):27~38.
    [176] M. S. Seif, A. Asnaghi and E. Jahanbakhsh. Drag Force on a Flat Plate inCavitating Flows. Pol. Marit. Res.2009,16(3):18~25.
    [177] C. L. Merkle, J. Feng and P. E. O. Buelow. Computational Modeling of theDynamics of Sheet Cavitation. Proceedings of the Third InternationalSymposium on Cavitation, Grenoble, France,1998.
    [178] R. F. Kunz, D. A. Boger, T. S. Chyczewski, et al. Multi-phase CFD Analysis ofNatural and Ventilated Cavitation about Submerged Bodies. ASME FEDSM99-7364, San Francisco, USA,1999.
    [179] A. K. Singhal, N. Vaidya and A. D. Leonard. Multi-Dimensional Simulation ofCavitating Flows Using a PDF Model for Phase Change. ASME PaperFEDSM97-3272, ASME Fluids Engineering Division Summer,1997.
    [180] G. H. Schnerr, J. Sauer. Physical and Numerical Modeling of UnsteadyCavitation Dynamics. Proceedings of the Fourth International Conference onMultiphase Flow, New Orleans, USA,2001.
    [181] F. M. Owis, A. H. Nayfeh. A Compressible Multi-Phase Flow Solver for theComputation of the Supercavitation over High-Speed Torpedo.40th AIAAAerospace Sciences Meeting&Exhibit,2002.
    [182] P. J. Zwart, A. G. Gerber and T. Belamri. A Two-Phase Flow Model forPredicting Cavitation Dynamics. Proceedings of the Fifth InternationalConference on Multiphase Flow, Yokohama, Japan,2004.
    [183] I. Senocak. Computational Methodology for the Simulation of TurbulentCavitating Flows. University of Florida,2002:23~26.
    [184] I. Senocak, W. Shyy. A Pressure-Based Method for Turbulent Cavitating FlowComputations. J. Comp. Phys.2002,176:363~383.
    [185] R. Vaidyanathan, I. Senocak and J. Wu. Sensitivity Evaluation of aTransport-Based Turbulent Cavitation Model. J. Fluids Eng.2003,125:447~458.
    [186] F. M. Owis, A. H. Nayfeh. Computations of the Compressible MultiphaseFlow Over the Cavitating High-Speed Torpedo. J. of Fluids Eng.2003,125(3):459~468.
    [187] W. X. Yuan, G. H. Schnerr. Numerical Simulation of Two-Phase Flow inInjection Nozzles: Interaction of Cavitation and External Jet Formation. J.Fluids Eng.2003,125(6):963~969.
    [188] M. D. Neaves, J. R. Edwards. All-Speed Time-Accurate Underwater ProjectileCalculations Using a Preconditioning Algorithm. J. of Fluids Eng.2006,128(2):284~296.
    [189]陈瑛,鲁传敬,吴磊.三维小空化数空泡流数值方法.计算物理.2008,25(2):163~171.
    [190]孟庆昌,张志宏,刘巨斌等.超空泡形态及其流动特性的数值模拟.应用力学学报.27(3):476~480.
    [191]邬明,张宇文,张纪华.基于SST湍流模型的空化流场的仿真分析.计算机仿真.2010,7:330~334.
    [192]张纪华,张宇文,张博.高速射弹流体动力特性及空泡形态数值仿真.计算机仿真.2012,29(4):15~18.
    [193] L. X. Zhang, B. C. Khoo. Effect of External Pressure Wave on the Dynamicsof the Supercavitating Flow around a Cylinder. Proceedings of the EighthInternational Symposium on Cavitation, Singapore,2012.
    [194] L. X. Zhang, B. C. Khoo. Computations of Partial and Supercavitating Flowsusing Implicit Pressure-Based Algorithm (IPA). Comput. Fluids.73:1~9.
    [195] S. Zhang, M. D. Lin, Z. W. Wang, et al. Numerical Simulation ofSupercavitating Flow Created by Cavitators with Different Shapes.Proceedings of the Eighth International Symposium on Cavitation, Singapore,2012.
    [196] R. F. Kunz, D. A. Boger, D. R. Stinebring, et al. A PreconditionedNavier-Stokes Method for Two-Phase Flows with Application to CavitationPrediction. Comput. Fluids.2000,29:849~875.
    [197] J. W. Lindau, R. F. Kunz, S. Venkateswaran, et al. Application of Precondition,Multiple-Species, Navier-Stokes Models to Cavitating Flows. Proceedings ofFourth International Symposium on Cavitation, Pasadena, CA USA,2001:sessionB4.005.
    [198] J. W. Lindau, R. F. Kunz, D. A. Boger, et al. High Reynolds Number, Unsteady,Multiphase CFD Modeling of Cavitating Flows. J. of Fluids Eng.124(3):607~616.
    [199] R. F. Kunz, J. W. Lindau, H. J. Gibeling, et al. Unsteady, Three-DimensionalMultiphase CFD Analysis of Maneuvering High Speed SupercavitatingVehicles.41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2003.
    [200] M. P. Kinzel, J. W. Lindau, J. Peltier, et al. Computational Investigation of AirEntrainment, Hysteresis, and Loading for Large-Scale, Buoyant Cavities.Ninth International Conference on Numerical Ship Hydrodynamics, Ann Arbor,Michgan,2007.
    [201] A. K. Singhal, M. M. Athavale, H. Y. Li, et al. Mathematical Basis andValidation of the Full Cavitation Model. J. Fluid Eng.2002,124(3):617~624.
    [202]陈鑫,鲁传敬,吴磊.通气空泡流的多相流模型与数值模拟.水动力学研究与进展.2005,20(z1):916~920.
    [203] X. Chen, C. J. Lu, J. Li, et al. The Wall Effect on Ventilated Cavitating Flowsin Closed Cavitation Tunnels. J. of Hydrodyn.2008,20(5):561~566.
    [204]黄海龙,黄文虎,王聪等.数值模拟通气角度对超空泡形态特性影响分析.工程力学.2007,24(z2):195~208.
    [205] W. G. Yang, Y. W. Zhang, J. Yang, et al. Three Dimensional MultiphaseComputational Fluid Dynamics Analysis of Ventilated Supercavitation. Chin. J.Mech. Eng.2008,21(1):61~65.
    [206]熊天红,易文俊,吴军基等.水下高速航行体超空泡减阻特性数值模拟研究.船舶工程.2008,30(6):11~14.
    [207]胡勇,陈鑫,鲁传敬等.水下航行体尾喷燃气与通气超空泡相互作用的研究.水动力学研究与进展.2008,23(4):438~445.
    [208]郭建红,鲁传敬,陈瑛等.基于输运方程类空化模型的通气超空泡流数值模拟.力学季刊.2009,20(3):378~384.
    [209] J. H. Guo, C. J. Lu. Pulsation Characteristics of Ventilated Supercavitation ona2D Hydrofoil. J. Shanghai Jiangtong Univ.2010,15(4):423~427.
    [210]向敏,吴雄,张为华等.超空泡航行器内外流场仿真及性能分析.弹箭与制导学报.2011,30(1):137~142.
    [211]向敏,吴雄,张为华等.超空泡航行器三维流场仿真及性能分析.工程力学.2011,28(2):217~222.
    [212]邢彦江,张嘉钟,魏英杰等.航行体加速运动对空泡形态影响研究.工程力学.2012,343~348.
    [213] S. Park, S. H. Rhee. Computational Analysis of Turbulent SupercavitatingFlow around a Two-Dimensional Wedge-Shaped Cavitator Geometry. Comput.Fluids.2012,70:73~85.
    [214] Y. Chen, C. J. Lu, J. Y. Cao, et al. Application of Quadratic and CubicTurbulence Models on Cavitating Flows around Submerged Objects. J.Hydrodyn.2012,24(6):823~833.
    [215] J. J. Zhou, K. P. Yu, J. X. Min, et al. The Comparative Study of VentilatedSupercavity Shape in Water Tunnel and Infinite Flow Field. J. Hydrodyn.2010,22(5):689~696.
    [216] K. P. Yu, J. J. Zhou, J. X. Min, et al. A Contribution to Study on the Lift ofVentilated Supercavitating Vehicle with Low Froude Number. J Fluids Eng.2010,11(132):111303-1~7.
    [217] J. J. Zhou, K. P. Yu and G. Zhang. Numerical Simulation on the Process ofSupercavity Development and the Planing State of Supercavitating Vehicle. J.Ship Mech.2011,16(3):199~206.
    [218]张广,于开平,周景军等.超空泡航行体转弯运动流体动力特性的数值研究.应用力学学报.2012,29(3):278~283.
    [219] G. Zhang, K. P. Yu and J. J. Zhou. Numerical Research on VentilatedSupercavity Shape and Flow Structure in the Turning Motion. J. Ship Mech.2011,15(12):1335~1343.
    [220]周景军,于开平,杨明.低弗劳德数条件下通气超空泡泄气机理数值模拟.工程力学.2011,28(1):251~256.
    [221] K. P. Yu, G. Zhang, J. J. Zhou, et al. Numerical Study of the Pitching Motionsof Supercavitating Vehicles. J. of Hydrodyn.2012,24(6):951~958.模拟.力学季刊.2009,20(3):378~384.
    [209] J. H. Guo, C. J. Lu. Pulsation Characteristics of Ventilated Supercavitation ona2D Hydrofoil. J. Shanghai Jiangtong Univ.2010,15(4):423~427.
    [210]向敏,吴雄,张为华等.超空泡航行器内外流场仿真及性能分析.弹箭与制导学报.2011,30(1):137~142.
    [211]向敏,吴雄,张为华等.超空泡航行器三维流场仿真及性能分析.工程力学.2011,28(2):217~222.
    [212]邢彦江,张嘉钟,魏英杰等.航行体加速运动对空泡形态影响研究.工程力学.2012,343~348.
    [213] S. Park, S. H. Rhee. Computational Analysis of Turbulent SupercavitatingFlow around a Two-Dimensional Wedge-Shaped Cavitator Geometry. Comput.Fluids.2012,70:73~85.
    [214] Y. Chen, C. J. Lu, J. Y. Cao, et al. Application of Quadratic and CubicTurbulence Models on Cavitating Flows around Submerged Objects. J.Hydrodyn.2012,24(6):823~833.
    [215] J. J. Zhou, K. P. Yu, J. X. Min, et al. The Comparative Study of VentilatedSupercavity Shape in Water Tunnel and Infinite Flow Field. J. Hydrodyn.2010,22(5):689~696.
    [216] K. P. Yu, J. J. Zhou, J. X. Min, et al. A Contribution to Study on the Lift ofVentilated Supercavitating Vehicle with Low Froude Number. J Fluids Eng.2010,11(132):111303-1~7.
    [217] J. J. Zhou, K. P. Yu and G. Zhang. Numerical Simulation on the Process ofSupercavity Development and the Planing State of Supercavitating Vehicle. J.Ship Mech.2011,16(3):199~206.
    [218]张广,于开平,周景军等.超空泡航行体转弯运动流体动力特性的数值研究.应用力学学报.2012,29(3):278~283.
    [219] G. Zhang, K. P. Yu and J. J. Zhou. Numerical Research on VentilatedSupercavity Shape and Flow Structure in the Turning Motion. J. Ship Mech.2011,15(12):1335~1343.
    [220]周景军,于开平,杨明.低弗劳德数条件下通气超空泡泄气机理数值模拟.工程力学.2011,28(1):251~256.
    [221] K. P. Yu, G. Zhang, J. J. Zhou, et al. Numerical Study of the Pitching Motionsof Supercavitating Vehicles. J. of Hydrodyn.2012,24(6):951~958.技术.2012,20(5):321~325.
    [237] P. R. Garabedian. Calculation of Axially Symmetric Cavities and Jets. Pac. J.Math.1956,6(4):611~684.
    [238] C. Brennen. A Numerical Solution of Axismmetric Cavity Flows. J. FluidMech.1969,37(4):671~688.
    [239]叶取源.锥头物体垂直入水空泡的发展和闭合.水动力学研究与进展.1989,4(2):33~41.
    [240] V. N. Semenenko. Prediction of the2-D Unsteady Supercavity Shapes.Proceedings of the Fourth International Symposium on Cavitation, Pasadena,CA USA,2001: sessionB2.006.
    [241]冯光,颜开.超空泡航行体水下弹道的数值计算.船舶力学.2005,9(2):1~8.
    [242]杨洪澜,张嘉钟,赵存宝等.变速运动锥体超空泡形状分析与预测.水动力学研究与进展.2007,22(1):53~60.
    [243] A. N. Varyukhin. Deformation Boundaries of an Axisymmetric Cavity by GasJets. J. Appl. Mech. Tech. Phys.2008,49(5):770~775.
    [244] B. Z. Gong, B. J. Zhang and H. Zhang. NEMD Study for SupercavitationMechanism with Underwater Object. Phys. Lett. A.2008:7063~7067.
    [245] Y. A. Antipov, A. Y. Zemlyanova. Motion of a Yawed Supercavitating WedgeBeneath a Free Surface. Siam J. Appl. Math.2009,70(3):923~948.
    [246] R. Shafaghat, S. M. Hosseinalipour and S. M. E. Derakhshani. Derivation of aCorrelation for Drag Coefficient in Two-Dimensional Boundary Supercavita-ting Flows, using Artificial Neutral Networks. Arch Appl. Mech.2010,80:771~784.
    [247]孟庆昌,张志宏,刘巨斌等.超声速圆盘空化器超空泡流动数值计算方法.上海交通大学.2011,45(10):1435~1439.
    [248] M. B. Liu, J. R. Shao, Z. Shang. SPH Modeling of Supercavity Induced byUnderwater High Speed Objects. Proceedings of the Eighth InternationalSymposium on Cavitation, Singapore,2012.
    [249] P. R. Garabedian. Cavities and Jets. Pac. J. Math.1956,6(4):611~684.
    [250]袁绪龙,张宇文,王育才等.水下航行体通气超空泡非对称性研究.力学学报.2004,36(2):146~150.
    [251] Y. J. Wei, W. Cao, C. Wang, et al. Experiment Research on Character ofVentilated Supercavity. New trends in fluid mechanics research, Shanghai,China,2009.
    [252] C. J. Lu, Y. S. He, X. Chen, et al. Numerical and Experimental Research onCavitating Flows. New trends in fluid mechanics research, Shanghai, China,2009.
    [253] W. M. Swanson, J. P. O’Neill. The Stability of an Air-Maintained Cavitybehind a Stationary Object in Flowing Water. Hydrodynamics Laboratory,California Institute of Technology, Memorandum Report.1951: M-24.3.
    [254] R. N. Cox, W. A. Clayden. Air Entrainment at the Rear of a Steady Cavity.Proceedings of N. P.: Symposium on Cavitation in Hydrodynamics, London,1956.
    [255] I. J. Campbell, D. V. Hilborne. Air Entrainment behind Artificially InflatedCavities. Second Symposium on Cavitation on Naval Hydrodynamics,Washington DC,1958.
    [256] E. Kawakami, R. E. A. Arndt. Investigation of the Behavior of VentilatedSupercavities. J. Fluids Eng.2011,133:091305-1~11.
    [257] V. V. Serebryakov. About One Variant of the Equations of the Principle ofIndependence of Cavity Expansion. J. Hydromech.1976,34:45~48(inRussian).
    [258] H. Reichardt. The Laws of Cavitation Bubbles at Axially Symmetric Bodies ina Flow. Ministry of Aircraft Production. Report And Translation.1946,766.
    [259] G. Birkhoff, E. H. Zarantonello. Jets, wakes, and cavities. Academic Press,1957:406.
    [260] V. V. Serebryakov. Physical-Mathematical bases of the Principle of Independ-ence of Cavity Expansion. Proceedings of the Seventh InternationalSymposium on Cavitation, Ann Arbor, Michigan, USA,2009: No.169.
    [261] M. P. Kinzel, J. W. Lindau, R. F. Kunz. Air Entrainment Mechanisms fromArtificial Supercavities: Insight based on Numerical Simulations. Proceedingsof the Seventh International Symposium on Cavitation, Ann Arbor, Michigan,USA,2009: No.136.
    [262] J. H. Guo, C. J. Lu, Y. Chen, et al. Study of Ventilated Cavity Morphology inDifferent Gas Leakage Regime. J. Hydrodyn. Ser. B.2010,22(5),820~826.
    [263] M. I. Gurevich. Theory of Ideal Fluid Jets (the second edition). Nauka,1979.536(in Russian).
    [264] L. I. Sedov Mechanics of Continuum. Vol.2. Nauka Publishing House,Moscow,1976(in Russian).
    [265] R. Delfos, C. J. Wisse and R. V. A. Oliemans.Measurement of Air-entrainmentFrom a Stationary Taylor Bubble in a Vertical Tube. Int J Multiphase Flow.001,27:1769~787.
    [266] M. P. Tulin. Handbook of Fluid Dynamics. McGraw-Hill, New York,1961.1224~1246.
    [267] V. P. Karlikov, G. I. Sholomovich. Method of Approximate Account for theWall Effect in Cavitation Flow around Bodies in Water Tunnel. Fluid Dyn.1966,1(4):61~64.
    [268] Y. N. Savchenko. Control of Supercavitation Flow and Stability of Supercav-itating Motion of Bodies. RTO AVT Lecture Series on “SupercavitatingFlows”, Brussels, Belgium,2001: EN-010-14.
    [269] E. Alyanakl, V. Venkayya, R. Grandhi, et al. Variable Shape Cavitator Designfor a Supercavitating Torpedo. Tenth AIAA/ISSMO Multidisciplinary Analysisand Optimization Conference, Albany, New York,2004.
    [270]傅慧萍,鲁传敬,冯雪梅.超空泡武器技术中的几个水动力学问题.船舶力学.2003,7(5):112~118.
    [271] R. Kuklinski. Supercavitation Ventilation Control System. US:6684801B1,2004-2-3.
    [272] R. E. A. Arndt, G. J. Balas, M. Wosnik. Control of Cavitating Flows: a Persp-ective. JSME Int J. Ser. B.2005,48(2):334~341.
    [273] R. E. A. Arndt, W. T. Hambleton, E. Kawakami. Creation and Maintenance ofCavities under Horizontal Surfaces in Steady and Gust Flows. J. Fluids Eng.2009,131:111301.
    [274] Y. Khakpour, M. Yazdani. On the Effects of Aero Boundary Layer Control onPressure Drag Reduction in Supercavitating Bodies.24th InternationalConference on Offshore Mechanics and Arcti Engineering, Halkidiki, Greece,2005.
    [275] Y. Khakpour, M. Yazdani. Separartion Control of Aero Boundary LayerSupercavitating Bodies and Its Effect on Pressure Drag Reduction. ASMEFluids Engineering Division Summer Meeting and Exhibition, Houston, TX,USA,2005.
    [276] A. Hjartarson, H. Mokhtarzadeh, E. Kawakami, et al. A Dynamic Test Platformfor Evaluating Control Algorithms for a Supercavitating Vehicle. Proceedingsof the7th International Symposium on Cavitation, Ann Arbor, Michigan, USA,2009:110.
    [277] M. Wosnik, R. E. A. Arndt. Control Experiments with a Semi-AxisymmetricSupercavity-Piercing Fin. Proceedings of the7th International Symposium onCavitation, Ann Arbor, Michigan, USA,2009:146.
    [278] I. V. Kirschner, S. H. Arzoumanian. Implementation and Extension ofParyshev’s Model of Cavity Dynamics. International Conference onInnovative Approaches to Further Increase Speed of Fast Marine Vehicles,Moving Above, Under And In Water Surface, SuperFAST’2008,Saint-Petersburg, Russia,2008.
    [279] I. N. Kirschner, D. C. Kring, A. W. Stokes, et al. Control Strategies forSupercavitating Vehicles. J. Vib. Control.2002,8:219~242.
    [280] G. V. Logvinovich. Some Problems in Planing Surfaces. Trudy TsAGI.1980,2052:3~12.
    [281] A. D. Vasin, E. V. Paryshev. Immersion of a Cylinder in a Fluid through a Cyl-indrical Free Surface. Fluid Dyn.2001,36(2):169~177
    [282] J. Dzielski, A. Kurdila. A Benchmark Control Problem for SupercavitatingVehicles and an Initial Investigation of Solutions. J. Vib Control.2003,9:791~804.
    [283] G. J. Lin, B. Balakumar, E. Abed. Supercavitating Body Dynamics, Bifurcat-ions and Control. American Control Conference, Portland, OR, USA,2005.
    [284] G. J. Lin, B. Balakumar B., E. H. Abed. Nonlinear Dynamics and Bifurcationof a Supercavitating Vehicle. IEEE J. Oceanic Eng.2007,23(4):37~40.
    [285]王京华,魏英杰,曹伟等.水下超空泡航行体非线性动力学建模与仿真.工程力学.2011,28(12):183~198.
    [286] G. J. Balas, J. Bokor, B. Vanek, et al. Control of High-Speed UnderwaterVehicles. Control of Uncertain Systems Modelling, Approximation, andDesign, Berlin, Germany,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700