粘弹性流体基纳米流体湍流流动与换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水中添加表面活性剂或者高分子聚合物能使其所形成的粘弹性流体在湍流状态下的流动摩擦阻力大幅降低,然而将其应用到具有换热单元的系统中会带来十分严重的传热恶化现象。在水中添加纳米尺度的高导热系数纳米颗粒并辅以一定的稳定剂所形成的纳米流体能增强换热系统中的对流换热特性,然而,由于固体颗粒的加入会带来额外的流动阻力。粘弹性流体的传热恶化问题以及纳米流体的流动阻力问题的解决是实现这两种流体在工程实际中应用的一个十分重要的课题。本文将从这一角度出发,结合粘弹性流体和纳米流体各自的优势,以期成功配制以粘弹性流体为基液的纳米流体并获得该种流体流动减阻和传热相对强化的效果。
     本文首先对实验所需的测量仪器以及自行搭建的圆管对流换热与流动阻力实验台进行了详细的介绍。而后,通过考虑纳米粒子的热扩散效应,推导了适用于纳米流体传热直接数值模拟的热扩散模型以及能量方程,并给出了直接数值模拟采用的方法。
     在实验方面,成功配制了较为稳定的以十六烷基三甲基氯化铵(CTAC)和水杨酸钠(NaSal)(1:1质量比)水溶液所形成的粘弹性流体为基液,以高导热系数的铜(Cu)纳米颗粒作为纳米粒子的纳米流体,称之为粘弹性流体基纳米流体(VFBN),并详细介绍了该种流体的制备方法。对VFBN的悬浮稳定性、导热系数、流变学特性以及表面张力进行了详细的实验研究,并通过对Li-Qu-Feng导热系数模型的改进获得了适用于球形铜纳米粒子和长棒状碳纳米管所形成的VFBN的导热系数预测理论模型。VFBN的导热系数测量结果表明该种流体导热系数明显高于水的导热系数,且导热系数随着铜纳米粒子体积分数和流体温度的增加而增大;VFBN的流变学性质测量结果表明该种流体与粘弹性流体基液相似,出现了粘度的剪切稀变特性,表现出获得流动减阻效果的可能性。
     在前期导热系数和流变学性质的测量基础上,采用圆管对流换热与流动阻力测试实验台,对水、粘弹性流体、水基纳米流体和VFBN的流动阻力和换热特性进行了测量。实验结果表明水基铜纳米流体流动相比水流动而言有明显的传热强化效果且传热效果随粒子体积分数和佩克莱特数(Pe)的增加而增大,而流动阻力增加并不明显。对于粘弹性流体流动而言,其流动具有传热恶化和流动减阻的特性,且传热恶化率大于流动减阻率,然而对添加Cu纳米粒子所形成的VFBN流动而言,Cu纳米粒子的加入对粘弹性流体基液的粘弹性现象有一定的削弱,但增强了其换热性能。通过对各种流体流动综合性能象限分布图分析可以发现,VFBN流动在具有湍流减阻效应的同时,还具有相比于粘弹性流体流动传热强化的效果,达到了本研究的预期目的。
     在理论研究方面,通过将计算结果与实验结果对比,确定了实验中铜纳米流体的扩散导热系数常数值。采用该种方法对纳米流体的流动和传热特性进行了直接数值模拟(DNS)。DNS计算得到的流体流动综合性能象限分布图趋势与实验基本一致。同时,通过对计算所得的各种流体的湍流速度场、温度场和变形场结果进行分析,并从动量方程和能量方程出发推导并计算了流体的流动阻力总贡献中的粘性贡献、湍流贡献和粘弹性贡献以及传热总贡献中的导热贡献、湍流贡献以及纳米粒子热扩散贡献,深入研究了VFBN流动减阻和传热强化的机理。最后,采用比拟理论,对各种流体的传热契尔顿-柯尔本因子和流动阻力系数的比值进行计算,结果再次表明以水和粘弹性流体为基液的纳米流体表现出了非常优异的传热性能。
The viscoelastic fluid such as aqueous solution of surfactant or polymer caninduce a great reduction of flow resistance at turbulent flow state. However, avery serious heat transfer deterioration always occurs simultaneously in a systemcontains heat transfer units. The nanofluids prepared by suspending somenanoscaled particles with high thermal conductivity in water and adding auxiliarystabilizer can enhance the heat transfer performance of a heat transfer system.Nevertheless, the extra flow resistance will be introduced caused by thesuspended soild particles. To solve the issues of heat transfer deterioration inviscoelastic fluid turbulent flow and increase of resistance in nanofluid flow is animportant subject in practical engineering application for these two kinds offluids. From this viewpoint, the present thesis will combine the advantage ofviscoelastic fluid with that of nanofluid, hoping to prepare a kind of stablenanofluid using viscoelastic fluid as base fluid successfully and realize the effectsof fluid resistance reduction and heat transfer enhancement.
     Firstly, the required experiment equipments and self-made pipe flowconvective heat transfer and flow resistant test experiment system are introduced.Then, by considering the thermal dispersion effect of nanoparticles, the thermaldispersion model and energy equation which used to simulate heat transfer effectof nanofluid is deduced. And then, the direct numerical simulation method isintroduced at last.
     In the experiment study aspects, the nanofluid which named viscoelasticfluid based nanofluid (VFBN) has been successfully prepared by using aqueoussolution of cetyltrimethylammonium chloride (CTAC) and sodium salicylate(NaSal) with1:1in mass ratio as viscoelastic base fluid and copper (Cu) particleswith high thermal conductivity as nanopaticles. The detailed preparation methodof VFBN is introduced. Subsequently, the studies of suspension stability, thermalconductivity, rheology and surface tension for VFBN are carried out in thepresent thesis. A theoretical prediction model for thermal conductivity of VFBNwith spherical copper nanoperticles or long cylindrical carbon nano-tubes is proposed by modifying Li-Qu-Feng’s thermal conductivity model. Themeasurement results of thermal conductivity of VFBN show that this kind offluid has a larger thermal conductivity than water, and its thermal conducticity isincreased with the increase of volume fraction of copper nanoparticle and fluidtemperature. The rheology study results show that the VFBN retains the shearthinning behavior in its viscosity, which implies a potential flow drag reducingability.
     Based on the studies of thermal conductivity and rheology of tested fluid, theflow resistance and heat transfer performance of water, viscoelastic base fluid,water based nanofluid and VFBN are measured by using pipe flow convectiveheat transfer and flow resistance test experiment system. The experiment resultsshow that the water based nanofluid flows own a singnificant heat transferenhancement than water flows and its heat transfer enhancement is increased withthe increase of nanoparticle volume fraction and Peclet (Pe) number, however,the increase of flow resistant is not obvious. As for viscoelastic fluid flows, theheat transfer is deteriorated and flow resistance is reduced, besides, the heattransfer reduction rate is always larger than flow drag reduction rate. Whenadding copper nanoparticles in viscoelastic fluid and forms a VFBN, for this kindof fluid flows, the added nanoparticles weaken the viscoelasticity of base fluid,while enhance the heat transfer performance. By ploting and analyzing the flowcomprehensive performance phase diagram of different fluid flows, theviscoelastic fluid based nanofluid flows show a flow drag reduction and heattransfer enhancement than viscolelastic fluid flows, and the intended purposes ofthe present study are achived.
     In the theoretical study aspects, the constant thermal dispersion coefficientof copper nanofluid in experiment is got by comparisons of the simulated resultsand experiment results. Direct numerical simulations (DNS) of nanofluid flowsare carried out by using this method. From the fluid flow comprehensiveperformance phase diagram got by DNS results, it shows the similar trend withexperiment results. Meanwhile, through analyzing the simulated velocity field,temperature field and conformation filed of different fluid cases, deducing andcalculating the flow resistance with viscous, turbulent and viscoelasticcontributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparitcles from momentum equation and energyequation respectively, the mechanisms of heat transfer enhancement and flowdrag reduction of VFBN is studied further. Finaly, based on analogy theory, theratio of Chilton-Colburn factor to flow friction coefficient of different fluid flowcases is calculated. The results show that nanofluid which use water andviscoelastic fluid as base fluids show significant enhancement of heat transferperformance again.
引文
[1] Toms B A. Some Observations on the Flow of Linear Polymer Solutionsthrough Straight Tubes at Large Reynolds Number[C]. Proceedings of the1stInternational Rheological Congress, II, Part2, North-Holland Publish Co.,Netherlands,1949:135-142.
    [2] Ohlendorf D, Interthal W, Hoffmann H. Surfactant Systems for DragReduction: Physico-chemical Properties and Rheological Behaviour[J].Rheologica Acta.1986,25:468-486.
    [3] Bewersdorff H W, Ohlendorf D. The Behaviour of Drag-reducing CationSurfactant Solutions[J]. Colloid&Polymer Science.1988,266:941-953.
    [4] Burger E D, Munk W R, Wahl H. A. Flow Increase in Trans-Alaska Pipelinethrough Use of Polymeric Drag-reducing Additive[J]. Journal of PetroleumTechnology.1982,34:377-386.
    [5] Kawaguchi Y, Drag-reducing Surfactant Additives and its Applications[R].上海交通大学学术讲座,2003.
    [6]焦利芳,李风臣,苏文涛,等.减阻剂在供热系统节能中的应用试验研究[J].节能技术,2008,26(3):195-201.
    [7] Li P W, Kawaguchi Y, Yabe A. Transitional Heat Transfer and TurbulentCharacteristics of Drag-reducing Flow Through a Contracted Channel[J].Journal of Enhanced Heat Transfer.2001,8:23-40.
    [8] Li P W, Kawaguchi Y, Daisaka H, et al. Heat Transfer Enhancement to theDrag-reducing Flow of Surfactant Solution in Two-dimensional Channel withMesh-screen Inserts at the Inlet[J]. Journal of Heat Transfer.2001,123:779-789.
    [9] Qi Y Y, Kawaguchi Y, Christensen R N, et al. Enhancing Heat TransferAbility of Drag Reducing Surfactant Solutions with Static Mixers andHoneycombs[J]. International Journal of Heat and Mass Transfer.2003,46:5161-5173.
    [10] Qi Y Y, Kawaguchi Y, Lin Z Q, et al. Enhanced Heat Transfer of DragReducing Surfactant Solutions with Fluted Tube-in-tube Heat Exchanger[J].International Journal of Heat and Mass Transfer.2001,44:1495-1505.
    [11] Qi Y Y. Investigation of Relationships Among Microstructure, Rheology,Drag Reduction and Heat Transfer of Drag Reducing Surfactant Solutions[D].The Ohio State University,2003,519.
    [12] Maxwell J C. A Treatise on Electrity and Magnetism[M].2ed. ClarendoncPress.1881.
    [13] Choi S U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles,in Developments and Applications of Non-Newtonian Flows[C]. Singer DAand Wang HP Eds. American Society of Mechanical Engineers. New York:FED–231/MD-66,1995,99-105.
    [14] Zhu H T, Lin Y S, Yin Y S. A Novel One-step Chemical Method forPreparation of Copper Nanofluids[J]. Journal of Colloid Interface Science.2004,277:100-103.
    [15]洪欢喜,武卫东,盛伟,等.纳米流体制备的研究进展[J].化工进展,2008,27(12):1923-1928
    [16]李泽梁,李俊明,胡海滔,等. CuO纳米颗粒悬浮液中各组分对悬浮液稳定性及黏度的影响[J].热科学与技术,2005,2(4):157-163.
    [17] Pastoriza-Gallego M J, Casanova C, Páramo R, et al. A study on Stabilityand Thermophysical Properties (Density and Viscosity) of Al2O3in WaterNanofluid[J]. Journal of Applied Physics.2009,106:064301.
    [18] Xie H Q, Wang J C, Xi T G, et al. Thermal Conductivity Enhancement ofSuspensions Containing Nanosized Alumina Particles[J]. Journal of AppliedPhysics.2002,91:4568-4572.
    [19] Xuan Y M, Li Q, Hu W F. Aggregation Structure and Thermal Conductivityof Nanofluids[J]. AIChE Journal.2003,49:1038-1043.
    [20]范庆梅,卢文强.纳米流体热导率和粘度的分子动力学模拟计算[J].工程热物理学报.2004,2(25):268-270.
    [21] Jang S P, Choi S U S. Role of Brownian Motion in the Enhanced ThermalConductivity of Nanofluids[J]. Applied Physics Letters.2004,84:4316-4319.
    [22] Timofeeva E V, Gavrilov A N, McCloskey J M, et al. Thermal Conductivityand Particle Agglomeration in Alumina Nanofluids: Experiment andTheory[J]. Physics Review E.2007,76:061203.
    [23] Xie H Q, Yu W, Li Y. Thermal Performance Enhancement in NanofluidsContaining Diamond Nanoparticles[J]. Journal of Physics D: Applied Physics.2009,42:095413.
    [24]刘玉东,李蘷宁,童明伟,等. TiO2-水纳米流体的粘度修正公式[J].重庆大学学报.2006,9(29):52-55.
    [25]郭松顺,骆仲泱,王涛,等. SiO2纳米流体粘度研究[J].硅酸盐通报.2006,5(25):52-55.
    [26] Chen H S, Ding Y L, Tan C Q. Rheological Behaviour of Nanofluids[J].New Journal of Physics.2007,9:367.
    [27] Chen H S, Ding Y L, Lapkin A. Rheological Behaviour of NanofluidsContaining Tube/rod-like Nanoparticles[J]. Powder Technology.2009,194:132-141.
    [28] Mahbubul I M, Saidur R, Amalina M A. Latest Developments on theViscosity of Nanofluids[J]. International Journal of Heat and Mass Transfer.2012,55:874-885.
    [29]李强,宣益民.铜-水纳米流体流动与对流换热特性[J].中国科学(E辑).2002,32(3):331-337.
    [30] Xuan Y M, Li Q. Investigation on Convective Heat Transfer and FlowFeatures of Nanofluids[J]. Journal of Heat Transfer.2003,125:151-155.
    [31] Daungthongsuk W, Wongwises S. A Critical Review of Convective HeatTransfer of Nanofluids[J]. Renewable Sustainable Energy Review.2007,11:797-817.
    [32] Kim D, Kwon Y, Cho Y, et al. Convective Heat Transfer Characteristics ofNanofluids Under Laminar and Turbulent Flow Conditions[J]. CurrentApplied Physics.2009,9: e119-e123.
    [33] Kakac S, Pramuanjaroenkij A. Review of Convective Heat TransferEnhancement with Nanofluids[J]. International Journal of Heat and MassTransfer.2009,52:3187-3296.
    [34] Duangthongsuk W, Wongwises S. An Experimental Study on the HeatTransfer Performance and Pressure Drop of Ti2O3-water Nanofluids FlowingUnder a Turbulent Flow Regime[J]. International Journal of Heat and MassTransfer.2010,53:334-344.
    [35] Jung J Y, Oh H S, Kwak H Y. Forced Convective Heat Transfer ofNanofluids in Microchannels[J]. International Journal of Heat and MassTransfer.2009,52:466-472.
    [36] Wu X Y, Wu H Y, Cheng P. Pressure Drop and Heat Transfer of Al2O3-H2ONanofluids through Silicon Microchannels[J]. Journal of Micromechanicsand Microengineering.2009,19:105020.
    [37]帅美琴,施明恒,李强.纳米颗粒悬浮液池内泡状沸腾机理[J].东南大学学报.2006,5(36):785-789.
    [38] Taylor R A, Phelan P E. Pool Boiling of Nanofluids: Comprehensive Reviewof Existing Data and Limited New Data[J]. International Journal of Heat andMass Transfer.2009,52:5339-5347.
    [39] Frajollahi B, Etemad S. Gh, Hojjat M. Heat Transfer of Nanofluids in a Shelland Tube Heat Exchanger[J]. International Journal of Heat and Mass Transfer.2010,53:12-17.
    [40] Nguyen C T, Roy G, Gauthier C, et al. Heat Transfer Enhancement UsingAl2O3-water Nanofluid for an Electronic Liquid Cooling System[J]. AppliedThermal Engineering.2007,27:1501-1506.
    [41] Ho C J, Wei L C, Li Z W. An Experimental Investigation of ForcedConvective Cooling Performance of a Microchannel Heat Sink withAl2O3/water Nanofluid[J]. Applied Thermal Engineering.2010,30:96-103.
    [42] zerin S, Kaka S, Yaz c o lu A G. Enhanced Thermal Conductivity ofNanofluids: a State-of-the-art Review[J], Microfluid. Nanofluid.2010,8:145-170.
    [43] Murshed S M S, Leong K C, Yang C. Thermophysical and ElectrokineticProperties of Nanofluids-a Critical Review[J]. Applied Thermal Science.2008,47:01.005-10.1016.
    [44] Xie H Q, Yu W, Li Y, et al. Discussion on the Thermal ConductivityEnhancement of Nanofluids[J]. Nanoscale Research Letters2011,6:124.
    [45] Kleinstreuer C, Feng Y. Experimental and Theoretical Studies of NanofluidThermal Conductivity Enhancement: a Review[J]. Nanoscale ResearchLetters2011,6:229.
    [46] Yu W H, France D M, Routbort J L, et al. Review and Comparison ofNanofluid Thermal Conductivity and Heat Transfer Enhancements[J]. HeatTransfer Engineering.2008,29:432-460.
    [47] Wang X Q, Mujumdar A S. Heat Transfer Characteristics of Nanofluids: AReview[J]. International Journal of Thermal Sciences.2007,46:1-19.
    [48] Das S K, Choi S U S, Yu W, et al. Nanofluids: Science and Technology[M].Wiley New York,2008.
    [49]宣益民.纳米流体能量传递理论及应用[M].北京:科学出版社.2010.
    [50] Liao L, Liu Z H. Forced Convective Flow Drag and Heat TransferCharacteristics of Carbon Nanotube Suspensions in a Horizontal SmallTube[J], Heat Mass Transfer.2009,45:1129-1136.
    [51] Liu Z H, Liao L. Forced Convective Flow and Heat Transfer Characteristicsof Aqueous Drag-reducing Fluid with Carbon Nanotubes Added[J],International Journal of Thermal Science.2010,49:2331-2338.
    [52] Virk P S. Drag Reduction Fundamentals[J]. AIChE Journal.1975,21:625-656.
    [53] Wei T, Willmarth W W. Modifying Turbulent Structure with Drag-reducingPolymer Additives in Turbulent Channel Flows[J]. Journal of FluidMechanics.1992,245:619-641.
    [54] Yu B, Kawaguchi Y. Direct Numerical Simulation of the ViscoelasticDrag-reducing Flow: a Faithful Finite-difference Method[J]. Journal ofNon-Newtonian Fluid Mechanics.2004,116:431-466.
    [55] Li F C, Kawaguchi Y, Segawa T, et al. Reynolds-number Dependence ofTurbulence Structures in a Drag-reducing Surfactant Solution Channel FlowInvestigated by PIV[J]. Physical of Fluids.2005,17(7):075104.
    [56]王德忠,胡友情,王松平,等.低浓度表面活性剂减阻流体的性能[J].上海交通大学学报.2005,39:225-229.
    [57]魏进家,川口靖夫.零温度时二维通道内界面活性剂减阻流动的实验研究[J].西安交通大学学报.2006,40:79-83.
    [58] Li F C, Kawaguchi Y, Yu B, et al. Experimental Study of Drag-reductionMechanism for a Dilute Surfactant Solution Flow[J]. International Journal ofHeat Mass Transfer.2008,51:835-843.
    [59] Li F C, Kawaguchi Y, Hishida K. Investigation on the Characteristics ofTurbulence Transport for Momentum and Heat in a Drag-reducing SurfactantSolution Flow[J]. Physicas of Fluids.2004,16(9):3281-3295.
    [60] Lumley J L. Drag Reduction by Additives[J]. Annual Review of FluidMechanics.1967,1:367-384.
    [61]德鲁·迈尔斯.表面、界面和胶体:原理及应用[M].吴大诚,朱谱新,王罗新,等译.北京:化学工业出版社,2005.
    [62] Li F C, Yu B, Wei J J, et al. Turbulent Drag Reduction by SurfactantAdditives[M]. John Wiley&Sons (Asia) Pet Ltd., March2012.
    [63] Qi Y Y, Zakin J L. Chemical and Rheological Characterization ofDrag-reducing Cationic Surfactant Systems[J]. Industrial and EngineeringChemistry Research.2002,41:6326-6336.
    [64] Wei J J, Kawaguchi Y, Yu B, et al. Rheological Characteristics and TurbulentFriction Drag and Heat Transfer Reductions of a Very Dilute CationicSurfactant Solution[J]. Journal of Fluids Engineering.2006,128:977-983.
    [65] Gyr A, Bewersdorff H. Drag Reduction of Turbulent Flows by Additives[M].Fluid Mechanics and Its Applications. Springer,2010.
    [66] Virk P S, Merrill E W, Mickley H S, et al. The Toms Phenomenon: TurbulentPipe Flow of Dilute Polymer Solutions[J]. Journal of Fluid Mechanics.1967,30:305-328.
    [67]何钟怡.应用聚氧化乙烯降低湍流摩阻的实验研究[J].力学.1976,4:213-219.
    [68]韩宜农.关于高分子减阻液层流和Virk线力学性质的实验研究[D].哈尔滨建筑工程学院硕士论文.1987.
    [69]韦新东.关于高分子聚合物在明渠中的减阻实验研究[D].哈尔滨建筑工程学院硕士论文.1988.
    [70]史守峡.在线性剪切流中大分子流体动力学模型[D].哈尔滨建筑工程学院硕士论文.1992.
    [71] Luchik T S, Tiederman W G. Turbulet Structure in Low-concentrationDrag-reducing Channel Flows[J]. Journal of Fluid Mechanics.1988,190:241-263.
    [72] Walker D T, Tiederman W G. Turbulent Structure in a Channel Flow withPolymer Injection at the Wall[J]. Journal of Fluid Mechanics.1990,218:377-403.
    [73] Harder K J, Tiederman W G. Drag Reduction and Turbulent Structure inTwo-dimensional Channel Flows[J]. Philosophical Transactions of the RoyalSocietyA.1991,336:19-34.
    [74] Dujmovich T, Gallegos A. Drag Reducers Improve Through Put, CutCosts[J]. Offshore.2005,65(12):1-4.
    [75] Figueredo R C R, Sabadini E. Fire Fighting Foam Stability-the Effect of theDrag Reducer Poly (ethylene) Oxide[J]. Colloids Surface A.2003,215(1-3):77-86.
    [76] Zakin J L, Liu B, Bewersdorff H W. Surfactant Drag Reduction[J]. Reviewsin Chemical Engineering.1998,14:253-320.
    [77] Li F C, Wang D Z, Kawaguchi Y, et al. Simultaneous Measurements ofVelocity and Temperature Fluctuations in Thermal Boundary Layer in aDrag-reducing Surfactant Solution Flow[J]. Experiments in Fluids.2004,36:131-140.
    [78]焦利芳,李凤臣,董泳,等.表面活性剂溶液在不规则管件内的湍流减阻特性[J].节能技术,2009,27(1):7-13.
    [79]魏进家,川口靖夫.零下温度时二维通道内界面活性剂减阻流动的实验研究[J].西安交通大学学报.2006,40(1):79-83.
    [80]魏进家,川口靖夫, David J H.在一种新型两性界面活性剂的减阻特性[J].化工学报.2006,57(11):2750-2754.
    [81] Wei J J, Kawaguchi Y, Li F C, et al. Drag-reducing and Heat TransferCharacteristics of a Novel Zwitterionic Surfactant Solution[J]. InternationalJournal of Heat and Mass Transfer.2009,52:3547-3554.
    [82] Wei J J, Kawaguchi Y, Li F C, et al. Reduction and TurbulenceCharacteristics in Sub-zero Temperature Range of Cationic and ZwitterionicSurfactants in EG/Water Solvent[J]. Journal of Turbulence.2009,10:1-15.
    [83] Olagunju D O, Cook L P, Mckinley G H. Effect of Viscous Heating onLinear Stability of Viscoelastic Cone-and-plate Flow: Axisymmetric Case[J].Journal of Non-Newtonian Fluid Mechanics.2002,102:321-342.
    [84] Giesekus H. A Simple Constitutive Equation for Polymer Fluids Based onthe Concept of Deformation-dependent Tensorial Mobility[J]. Journal ofNon-Newtonian Fluid Mechanics.1982,11:69-109.
    [85] James D F. Boger fluids[J]. Annual Review of Fluid Mechanics[J].2009,41:129-142.
    [86] Sureshkumar R, Beris A N. Effect of Artificial Stress Diffusivity on theStability of Numerical Calculations and the Flow Dynamics ofTime-dependent Viscoelastic Flows[J]. Journal of Non-Newtonian FluidMechanics.1995,60:53-80.
    [87] Li F C, Kawaguchi Y, Hishid K. Structural Analysis of Turbulent Transportin a Heated Drag-reducing Channel Flow with Surfactant Additives[J].International Journal of Heat and Mass Transfer.2005,48(5):965-973.
    [88] Housiadas K D, Beris A N. Direct Numerical Simulations of ViscoelasticTurbulent Channel Flows at High Drag Reduction[J]. Korea-AustraliaRheology Journal.2005,17(3):134-140.
    [89] Den Toonder J M J, Hulsen M A, Kuiken G D C, et al. Drag Reduction byPolymer Additives in a Turbulent Pipe Flow: Numerical and Laboratoryexperiments[J]. Journal of Fluid Mechanics.1997,337:193-231.
    [90] De Angelis E, Casciola C M, Piva R. DNS of Wall Turbulence: DilutePolymers and Self-sustaining Mechanisms[J]. Computers&Fluids.2002,31:495-507.
    [91] Ptasinski P K, Boersma B J, Nieuwstadt F T M, et al. Turbulent ChannelFlow Near Maximum Drag Reduction: Simulations, Experiments andMechanisms[J]. Journal of Fluid Mechanics.2003,490:251-291.
    [92] Yu B, Kawaguchi Y. DNS of Fully Developed Turbulent Heat Transfer of aViscoelastic Drag-reducing Flow[J]. International Journal of Heat and MassTransfer.2005,48:4569-4578.
    [93]宇波,王艺,侯磊,等.不同流变性质的表面活性剂湍流减阻的直接数值模拟研究[J].工程热物理学报.2007,28(3):469-471.
    [94] Poreh M, Dimant Y. Heat Transfer in Flows with Drag Reduction[M].Academic Press.1976.
    [95] Azouz I, Shirazi S A. Numerical Simulation of Drag-reducing TurbulentFlow in Annular Conduits[J]. Journal of Fluids Engineering.1997,119(4):838-846.
    [96] Pinho F T, Li C F, Younis B A, et al. A Low Reynolds Number TurbulenceClosure for Viscoelastic Fluids[J]. Journal of Non-Newtonian FluidMechanics.2008,154:89-108.
    [97] Richard Leighton et al. Reynolds Stress Modeling for Drag ReducingViscoelastic Flows[C]. In: Proceedings of ASME FEDSM’03. Honolulu,Hawaii, USA,2003.2A:735-744.
    [98] Lumley J L. Drag Reduction in Turbulent Flow by Polymer Additives[J].Journal of Polymer Science: Macromolecular Reviews.1973,7:263-290.
    [99] DeGennes P G. Introduction to Polymer Dynamics[M]. CambridgeUniversity Press,1990.
    [100] Li F C, Yu B, Wei J J, et al. Experimental Study of Drag-reductionMechanics for a Dilute Surfactant Solution Flow[J]. International Journal ofHeat and Mass Transfer2008,51:835-843.
    [101] Bewersdoff H W, Frings B, Lindner P, et al. The Conformation of DragReducing Micelles From Small-angle-neutron-scattering Experiments[J].Rheologica Acta.1986,25:642-646.
    [102] Yu B, Wu X, Wei J J, et al. DNS Study by a Bilayer Model on theMechanism of Heat Transfer Reduction in Drag-reduced Flow Induced bySurfactant[J]. International Communications in Heat and Mass Transfer.2011,38:160-167.
    [103] Wang Y, Yu B, Wu X, et al. POD Study on the Mechanism of TurbulentDrag Reduction and Heat Transfer Reduction Based on Direct NumericalSimulation[J]. Progress in Computational Fluid Dynamics.2011,11:149-159.
    [104] Tsai C Y, Chiena H T, Dingb P P. Effect of Structural Character of GoldNanoparticles in Nanofluid on Heat Pipe Thermal Performance[J]. MaterialLetters.2004,58:1461-1464.
    [105]黄素逸,李中洲,黄锟剑,等.纳米材料在热管中的应用[J].华中科技大学学报.2006,34:105-107.
    [106] Lo C H, Tsung T T, Chen L C. Ni Nanomagnetic Fluid Prepared bySubmerged Arc Nanosynthesis System (sanss)[J], JSME InternationalJournal, Series B: Fluids and Thermal Engineering.2006,48(4):750-755.
    [107] Wagener M, Murty B S, Gunther B, Preparation of Metal Nanosuspensionsby High-pressure DC-sputtering on Running Liquids[C]. in: S. Komarnenl, J.C. Parker, H. J. Wollenberger (Eds.), Nanocrystalline and NanocompositeMaterials II, vol.457, Materials Research Society, Pittsburgh, PA,1997,149-154.
    [108] Eastman J A, Choi S U S, Li S, et al. Enhanced Thermal Conductivitythrough the Development of Nanofluids[C]. Materials Research SocietySymposium–Proceedings, Materials Research Society, Pittsburgh, PA, USA,Boston, MA, USA,1997,457:3-11.
    [109] Zhu H, Lin Y, Yin Y. A Novel One-step Chemical Method for Preparationof Copper Nanofluids[J]. Journal of Colloid and Interface Science.2004,227:100-103.
    [110] Lee S, Choi S U S, Li S, et al. Measuring Thermal Conductivity of FluidsContaining Oxide Nanoparticles[J]. Journal of Heat Transfer.1999,121:280-289.
    [111] Wang X, Xu X, Choi S U S. Thermal Conductivity of Nanoparticle-fluidMixture[J]. Journal of Thermophysics and Heat Transfer.1999,13(4):474-480.
    [112] Xuan Y, Li Q. Heat Transfer Enhancement of Nanofluids[J]. InternationalJournal of Heat and Fluid Transfer.2000,21:58-64.
    [113] Ghadimietal A, Saidur R, Metselaar H S C. A Review of NanofluidStability Properties and Characterization in Stationary Conditions[J].International Journal of Heat and Mass Transfer2011,54:4051-4068.
    [114] Paul G, Chopkar M, Manna I, et al. Techniques for Measuring the ThermalConductivity of Nanofluids: A Review[J]. Renewable and Sustainable EnergyReviews.2010,14:1913-1924.
    [115] Keblinski P, Prasher R, Eapen J. Thermal Conductance of Nanofluids: isthe Controversy Over?[J]. Journal of Nanoparticle Research.2008,10:1089-1097.
    [116] Teja A S, Beck M P, Yuan Y H, et al. The Limiting Behavior of the ThermalConductivity of Nanoparticles and Nanofluids[J]. Journal of Applied Physics.2010,107:114319.
    [117] Timofeeva E V, Yuan Y H, France D M, et al. Nanofluids for Heat Transfer:an Engineering Approach[J]. Nanoscale Research Letters.2011,6:182.
    [118] Das S K, Putta N, Thiesen P, et al. Temperature Dependence of ThermalConductivity Enhancement for Nanofluids[J]. Journal of Heat Transfer.2003,125:567-574.
    [119] Li C H, Peterson G P. Experimental Investigation of Temperature andVolume Fraction Variations on the Effective Thermal Conductivity ofNanoparticle Suspensions (nanofluids)[J]. Journal of Applied Physics.2006,99(8):084314.
    [120] Eastman J A, Choi S U S, Li S, et al. Anomalously Increased EffectiveThermal Conductivities of Ethylene Glycol-based Nanofluids ContainingCopper Nanoparticles[J]. Applied Physics Letters.2001,78(6):718-720.
    [121] Xie H, Wang J, Xi T, et al. Study on the Thermal Conductivity of SiCNanofluids[J]. Journal of the Chinese Ceramic Society.2001,29(4):361-364.
    [122] Xie H, Wang J, Xi T, et al. Thermal Conductivity of SuspensionsContaining Nanosized SiC Particles[J]. International Journal ofThermo-physics.2002,23(2):571-580.
    [123] Hong T K, Yang H S, Choi C J. Study of the Enhanced ThermalConductivity of Fe Nanofluids[J]. Journal of Applied Physics.2005,97(6):1-4.
    [124] Hong K, Hong T K, Yang H S. Thermal Conductivity of Fe NanofluidsDepending on the Cluster Size of Nanoparticles[J]. Applied Physics Letters.2006,88(3):31901.
    [125] Murshed S M S, Leong K C, Yang C. Enhanced Thermal Conductivity ofTiO2–water Based Nanofluids[J]. International Journal of Thermal Sciences.2005,44(4):367-373.
    [126] Patel H E, Das S K, Sundararagan T, et al. Thermal Conductivities ofNaked and Monolayer Protected Metal Nanoparticle Based Nanofluids:Manifestation of Anomalous Enhancement and Chemical Effects[J]. AppliedPhysics Letters.2003,83:2931-2933.
    [127] Putnam S A, Cahill D G, Braun P V, et al. Thermal Conductivity ofNanoparticle Suspensions[J]. Journal of Applied Physics.2006,99(8):084308.
    [128] Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature.1991,354(6348):56-57.
    [129] Choi S U S, Zhang Z G, Yu W, et al. Anomalous Thermal ConductivityEnhancement in Nano-tube Suspensions[J]. Applied Physics Letters.2001,79:2252-2254.
    [130] Xie H, Lee H, Youn W, et al. Nanofluids Containing Multiwalled CarbonNanotubes and Their Enhanced Thermal Conductivities[J]. Journal ofApplied Physics2003,94(8):4967-4971.
    [131] Biercuk M, Llaguno M, Radosavljevic M, et al. Carbon NanotubeComposites for Thermal Management[J]. Applied Physics Letters.2002,80(15):2767-2769.
    [132] Wen D, Ding Y. Effective Thermal Conductivity of Aqueous Suspensionsof Carbon Nanotubes (Carbon Nanotube Nanofluids)[J]. Journal ofThermophysics and Heat Transfer.2004,18(4):481-485.
    [133] Ding Y, Alias H, Wen D, et al. Heat Transfer of Aqueous Suspensions ofCarbon Nanotubes (CNT Nanofluids)[J]. International Journal of Heat andMass Transfer.2005,49(1–2):240-250.
    [134] Assael M J, Chen C F, Metaxa I N, et al. Thermal Conductivity ofSuspensions of Carbon Nanotubes in Water[J]. International Journal ofThermophysics.2004,25(4):971-985.
    [135] Assael M J, Metaxa I N, Arvanitidis J, et al. Thermal ConductivityEnhancement in Aqueous Suspensions of Carbon Multiwalled andDouble-walled Nanotubes in the Presence of Two Different Dispersants[J].International Journal of Thermophysics.2005,26(3):647-664.
    [136] Liu M S, Lin M C C, Huang I T, et al. Enhancement of ThermalConductivity with Carbon Nanotube for Nanofluids[J]. InternationalCommunications in Heat and Mass Transfer.2005,32(9):1202-1210.
    [137] Hwang Y J, Ahn Y C, Shin H S, et al. Investigation on Characteristics ofThermal Conductivity Enhancementof Nanofuids. Current Applied Physics.2006,6(6):1068-1071.
    [138] Nguyen C, Desgranges F, Roy G, et al. Temperature and Particle-sizeDependent Viscosity Data for Water-based Nanofluids–hysteresisPhenomenon[J]. International Journal of Heat Fluid Flow2007,28(6):1492-1506.
    [139] Masuda H, Ebata A, Teramae K, et al. Alteration of Thermal Conductivityand Viscosity of Liquid by Dispersing Ultra-fne Particles (Dispersion of-Al2O3, SiO2and TiO2Ultra-fne Particles)[J]. Netsu Bussei (Japan)1993,4(4):227-233.
    [140] Hamilton R L, Crosser O K. Thermal Conductivity of HeterogeneousTwo-component Systems[J]. Industrial&Engineering Chemistry Research.1962,1:182-191.
    [141] Yu W, Choi S U S. The Role of Interfacial Layers in the Enhanced ThermalConductivity of Nanofluids: a Renovated Hamilton–Crosser Model[J].Journal of Nanoparticle Research.2004,6(4):355-361.
    [142] Wang B X, Zhou L P, Peng X F. A Fractal Model for Predicting theEffective Thermal Conductivity of Liquid with Suspension ofNanoparticles[J]. International Journal of Heat and Mass Transfer.2003,46:2665-2672.
    [143] Xie H, Fujii M, Zhang X. Effect of Interfacial Nanolayer on the EffectiveThermal Conductivity of Nanoparticle–fluid Mixture[J]. International Journalof Heat and Mass Transfer.2005,48(14):2926-2932.
    [144] Prasher R, Bhattacharya P, Phelan P E. Thermal Conductivity of NanoscaleColloidal Solutions (Nanofluids)[J]. Physical Review Letters.2005,94(2):025901.
    [145] Koo J, Kleinstreuer C. A New Thermal Conductivity Model forNanofluids[J]. Journal of Nanoparticle Research2004,6(6):577-588.
    [146] Li Y, Qu W, Feng J C. Temperature Dependence of Thermal Conductivityof Nanofluids[J]. Chinese Physical Letters.2008,25:3319-3322.
    [147] Pak B C, Cho Y I. Hydrodynamic and Heat Transfer Study of DispersedFluids with Submicron Metallic Oxide Particles[J]. Experimental HeatTransfer.1998,11(2):151-170.
    [148] Murshed S, Leong K, Yang C. Investigations of Thermal Conductivity andViscosity of Nanofluids[J]. International Journal of Thermal Science.2008,47(5):560-568.
    [149] Chen L, Xie H, Li Y, et al. Nanofluids Containing Carbon NanotubesTreated by Mechanochemical Reaction[J]. Thermochimica Acta.2008,477(1-2):21-24.
    [150] Prasher R, Song D, Wang J, et al. Measurements of Nanofluid Viscosityand it Simplications for Thermal Applications[J]. Applied Physics Letters.2006,89(13):133108.
    [151] Chen H, Ding Y, He Y, et al. Rheological Behavior of Ethyleneglycol BasedTitania Nanofluids[J]. Chemical Physics Letters.2007,444(4–6):333-337.
    [152] Li J M, Li Z L, Wang B X. Experimental Viscosity Measurements forCopper Oxide Nanoparticle Suspensions[J]. Tsinghua of Science andTechnology.2002,7(2):198-201.
    [153] He Y, Jin Y, Chen H, et al. Heat Transfer and Flow Behaviour of AqueousSuspensions of TiO2Nanoparticles (Nanofluids) Flowing Upward Through aVertical Pipe[J]. International Journal of Heat and Mass Transfer.2007,50:2272-2281.
    [154] Chevalier J, Tillement O, Ayela F. Rheological Properties of NanofluidsFlowing Through Microchannels[J]. Applied Physics Letters.2007,91(23):233103.
    [155] Namburu P K, Kulkarni D P, Dandekar A, et al. Experimental Investigationof Viscosity and Specifc Heat of Silicon Dioxide Nanofluids[J]. Micro&Nano Letters.2007,2(3):67-71.
    [156] Pastoriza-Gallego M J, Casanova C, Legido J L, et al. CuO in WaterNanofluid: Influence of Particle Size and Polydispersity on VolumetricBehavior and Viscosity[J]. Fluid Phase Equilibria.2011,300(1–2):188-196.
    [157] Das S K, Putra N, Roetzel W. Pool Boiling Characteristics of Nanofluids[J].International Journal of Heat and Mass Transfer.2003,46(5):851-862.
    [158] Ko H G, Heo K, Lee K, et al. An Experimental Study on the Pressure Dropof Nanofluids Containing Carbon Nanotubes in a Horizontal Tube[J].International Journal of Heat and Mass Transfer.2007,50:4749-4753
    [159] Einstein A, Eine Neue Bestimmung Der Moleküldimensionen[J]. Annalender Physik.1906,324(2):289-306.
    [160] Brinkman H, The Viscosity of Concentrated Suspensions and Solutions[J].Journal of Chemical Physics.1952,20:571-581.
    [161] Masoumi N, Sohrabi N, Behzadmehr A, A New Model for Calculating theEffective Viscosity of Nanofluids[J]. Journal of Physics D: Applied Physics.2009,42(5):055501.
    [162] Tseng W J, Chen C N. Effect of Polymeric Dispersant on RheologicalBehavior of Nickel–terpineol Suspensions[J]. Journal of Materials ScienceEngineering A.2003,347(1–2):145-153.
    [163] Namburu P, Kulkarni D, Misra D, et al. Viscosity of Copper OxideNanoparticles Dispersed in Ethylene Glycol and Water Mixture[J].Experimental Thermal and Fluid Science.2007,32(2):397-402.
    [164] Ramesh G, Prabhu N. Review of Thermo-physical Properties, Wetting andHeat Transfer Characteristics of Nanofluids and Their Applicability inIndustrial Quench Heat Treatment[J]. Nanoscale Research Letters.2011,6(1):334.
    [165] Sridhara V, Satapathy L N, Al2O3-based Nanofluids: a Review[J].Nanoscale Research Letters.2011,6(1):456.
    [166] Zhou L P, Wang B X, Peng X F, et al. On the Specifc Heat Capacity ofCuO Nanofluid[J]. Advances in Mechanical Engineering.2010,172085.
    [167] Vajjha R S, Das D K. Specifc Heat Measurement of Three Nanofluids andDevelopment of New Correlations[J]. Journal of Heat Transfer.2009,131(7):1-7.
    [168] Lee S, Choi S U S. Application of Metallic Nanoparticle Suspensions inAdvanced Cooling Systems[C]. In:1996International MechanicalEngineering Congress and Exhibition, Atlanta, USA,1996.
    [169] Wen D, Ding Y. Experimental Investigation into Convective Heat Transferof Nanofluids at the Entrance Region under Laminar Flow Conditions[J].International Journal of Heat and Mass Transfer.2004,47(24):5181-5188.
    [170] Williams W, Buongiorno J, Hu L W. Experimental Investigation ofTurbulent Convection Heat Transfer and Pressure Loss of Alumina/water andZirconia/water Nanoparticle Collids (Nanofluids)[J]. Journal of Heat Transfer.2008,130:042412.
    [171] Eastman J A, Choi S U S, Li S. Development of Energy-EfficientNanofluids for Heat Transfer Applications[R]. Argonne National LaboratoryReport.2001.
    [172]戴闻亭,李俊明,陈骁,等.细圆管内纳米颗粒悬浮液流动特性的实验研究[J].上海理工大学学报.2003,25(2):121-124.
    [173]戴闻亭,李俊明,陈骁,等.细圆管内纳米悬浮液对流换热的实验研究[J].工程热物理学报.2003,24(4):633-636.
    [174] Teng T P, Hung Y H, Jwo C S, et al. Pressure Drop of TiO2Nanofluid inCircular Pipes[J]. Particuology.2011,9(5):486-491.
    [175] Li Q, Xuan Y M. Convective Heat Transfer and Flow Characteristics ofCu–water Nanofluid[J]. Science in China E.2002,45:408-416.
    [176]李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报.2002,23(6):721-723.
    [177]李强,宣益民.小通道扁管内纳米流体流动与传热特性[J].工程热物理学报.2004,25(2):305-307.
    [178] Heris S, Etemad S G, Esfahany M. Experimental Investigation of OxideNanofluids Laminar Flow Convective Heat Transfer[J]. InternationalCommunications in Heat and Mass Transfer.2006,33(4):529-535.
    [179] Heris S, Etemad S G, Esfahany M. Convective Heat Transfer of a Cu/waterNanofluid Flowing Through a Circular Tube[J]. Experimental Heat Transfer.2009,22:217-227.
    [180] He Y, Jin Y, Chen H, et al. Heat Transfer and Flow Behaviour of AqueousSuspensions of TiO2Nanoparticles (nanofluids) Flowing Upward through aVertical Pipe[J]. International Journal of Heat and Mass Transfer.2007,50:2272-2281.
    [181] Arani A A A, Amani J. Experimental Study on the Effect of TiO2–waterNanofluid on Heat Transfer and Pressure Drop[J]. Experimental Thermal andFluid Science.2012,42:107-115.
    [182] Sajadi A R, Kazemi M H. Investigation of Turbulent Convective HeatTransfer and Pressure Drop of TiO2/water Nanofluid in Circular Tube[J].International Communications in Heat and Mass Transfer.2011,38(10):1474-1478
    [183] Amrollahi A, Rashidi A M, Lotfi R, et al. Convection Heat Transfer ofFunctionalized MWNT in Aqueous Fluids in Laminar and Turbulent Flow atthe Entrance Region[J]. International Communications in Heat and MassTransfer.2010,37(6):717-723.
    [184] Garg P, Alvarado J, Marsh C, et al. An Experimental Study on the Effect ofUltrasonication on Viscosity and Heat Transfer Performance of Multi-wallCarbon Nanotube–based Aqueous Nanofluids[J]. International Journal ofHeat and Mass Transfer2009,52:5090-5101.
    [185] Hojjat M, Etemad S G, Bagheri R, et al. Turbulent Forced Convection HeatTransfer of Non-Newtonian Nanofluids[J]. Experimental Thermal and FluidScience.2011,35(7):1351-1356.
    [186] Xie H, Li Y, Yu W. Intriguingly High Convective Heat TransferEnhancement of Nanofluid Coolants in Laminar Flows[J]. Physics Letters A.2010,374:2566-2568.
    [187] Buongiorno J. Convective Transport in Nanofluids[J]. Journal of heattransfer2006,128(3):240-250.
    [188] Xuan Y, Roetzel W. Conceptions for Heat Transfer Correlation ofNanofluids[J]. International Journal of Heat and Mass Transfer.2000,43:3701-3707.
    [189] Corcione M, Cianfrini M, Quintino A. Heat Transfer of Nanofluids inTurbulent Pipe Flow[J]. International Journal of Thermal Sciences.2012,56:58-69.
    [190] Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transferenhancement in a two-dimensional enclosure utilizing nanofluids[J].International Journal of Heat and Mass Transfer200346:3639-53.
    [191] Roy G, Nguyen C T, Lajoie P R. Numerical Investigation of Laminar Flowand Heat Transfer in a Radial Flow Cooling System with the Use ofNanofluids[J]. Superlattices and Microstructures.2004,35:497-511.
    [192] Maiga S E B, Palm S J, Nguyen C T, et al. Heat Transfer Enhancement byUsing Nanofluids in Forced Convection Flows[J]. International Journal ofHeat and Fluid Flow.2005,26(4):530-546.
    [193] Palm S J, Roy G, Nguyen C T. Heat Transfer Enhancement with the Use ofNanofluids in Radial Flow Cooling Systems ConsideringTemperature-dependent Properties[J]. Applied Thermal Engineering2006,26:2209-2218.
    [194] Heris S Z, Esfahany M N, Etemad G. Numerical Investigation of NanofluidLaminar Convective Heat Transfer Through a Circular Tube[J]. NumericalHeat Transfer Part A: Applications.2007,52:1043-1058.
    [195] Mokmeli A, Saffar-Avval M. Prediction of Nanofluid Convective HeatTransfer Using the Dispersion Model[J]. International Journal of ThermalSciences.2010,49:471-478.
    [196] zerin a S, Yaz c o lua A G, Kaka S. Numerical Analysis of LaminarForced Convection with Temperature-dependent Thermal Conductivity ofNanofluids and Thermal Dispersion[J]. International Journal of ThermalSciences.2012,62:138-148.
    [197] Namburu P K, Das D K, Tanguturi K M,et al. Numerical Study of TurbulentFlow and Heat Transfer Characteristics of Nanofuids Considering VariableProperties[J]. International Journal of Thermal Science.2009,48(2):290-302.
    [198] Ma ga S E B, Nguyen C T, Galanis N, et al. Heat Transfer Behaviours ofNanofluids in a Uniformly Heated Tube[J]. Super lattices andMicrostructures.2004,35(3-6):543-557.
    [199] Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of Turbulent ForcedConvection of a Nanofluid in a Tube with Uniform Heat Flux Using a TwoPhase Approach[J]. International Journal of Heat and Fluid Flow.2007,28(2):211-219.
    [200] Kalteh M, Abbassi A, Saffar-Avval M, et al. Eulerian–Eulerian Two-phaseNumerical Simulation of Nanofluid Laminar Forced Convection in aMicrochannel[J]. International Journal of Heat and Fluid Flow.2011,32(1):107-116.
    [201] Bianco V, Chiacchio F, Manca O, et al. Numerical Investigation ofNanofluids Forced Convection in Circular Tubes[J]. Applied ThermalEngineering.2009,29(17-18):3632-3642.
    [202] Mirmasoumi S, Behzadmehr A. Numerical Study of Laminar MixedConvection of a Nanofluid in a Horizontal Tube Using Two-phase MixtureModel[J]. Applied Thermal Engineering.2008,28(7):717-727.
    [203] Kondaraju S, Jin E K, Lee J S. Investigation of Heat Transfer in TurbulentNanofluids Using Direct Numerical Simulations[J]. Physical Review E.2010,81(016304):1-10.
    [204] Lotf R, Saboohi Y, Rashidi A M. Numerical Study of Forced ConvectiveHeat Transfer of Nanofluids: Comparison of Different Approaches[J].International Communications in Heat and Mass Transfer.2010,37(1):74-78.
    [205] Alinia M, Ganji D D, Gorji-Bandpy M. Numerical Study of MixedConvection in an Inclined Two Sided Lid Driven Cavity Filled withNanofluid Using Two-phase Mixture Model[J]. InternationalCommunications in Heat and Mass Transfer.2011,38(10):1428-1435.
    [206] Xuan Y, Yao Z. Lattice Boltzmann Model for Nanofluids[J]. Heat and MassTransfer.2005,41(3):199-205.
    [207] Xuan Y, Yu K, Li Q. Investigation on Flow and Heat Transfer of Nanofluidsby the Thermal Lattice Boltzmann Model[J]. Progress in ComputationalFluid Dynamics.2005,5(1/2):13-19.
    [208] Yang Y T, Lai F H. Numerical Study of Flow and Heat TransferCharacteristics of Alumina–water Nanofluids in a Microchannel Using theLattice Boltzmann Method[J]. International Communications in Heat andMass Transfer.2011,38:607-614.
    [209] Zhou L, Xuan Y, Li Q. Multiscale Simulation of Flow and Heat Transfer ofNanofluid with Lattice Boltzmann Method[J]. International Journal ofMultiphase Flow.2010,36(5):364-374.
    [210] Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of Heat Flow inSuspensions of Nano-sized Particles (Nanofluids)[J]. International Journal ofHeat and Mass Transfer.2002,45:855-863.
    [211] Eastman J A, Phillpot S R, Choi S U S, et al. Thermal Transport inNanofluids[J]. Annual Review of Materials Research.2004,34:219-246.
    [212] Xue L, Keblinski P, Phillpot S R, et al. Effect of Liquid Layering at theLiquid–solid Interface on Thermal Transport[J]. International Journal of Heatand Mass Transfer.2004,47(19–20):4277-4284.
    [213] Koo J, Kleinstreuer C. Impact Analysis of Nanoparticle MotionMechanisms on the Thermal Conductivity of Nanofluids[J]. InternationalCommunications in Heat and Mass Transfer.2005,32(9):1111-1118.
    [214] Khaled A R A, Vafai K. Heat Transfer Enhancement through Control ofThermal Dispersion Effects[J]. International Journal of Heat and MassTransfer.2005,48(11):2172-2185.
    [215] Ding Y, Wen D. Particle Migration in a Flow of NanoparticleSuspensions[J]. Powder Technology.2005,149(2–3):84-92.
    [216] Wen D, Ding Y. Effect of Particle Migration on Heat Transfer inSuspensions of Nanoparticles Flowing Through Minichannels[J].Microfluidics and Nanofluidics.2005,1(2):183-189.
    [217] Kostic M M. Poly-nanofluids (Polymer-nanofluids)&DR-nanofluids(Drag-Reduction-nanofluids). http://www.kostic.niu.edu/DRnanofluids/.
    [218] Taylor G I. Dispersion of Soluble Matter in Solvent Flowing through aTube[J]. Proceedings of the Royal Society A.1954,21:186-203.
    [219] Harlow F H, Welch J E. Numerical Calculation of Time-dependent ViscousIncompressible Flow of Fluid with Free Surface[J], Physics of Fluids.1965,8:2182-2189.
    [220]陶文铨,数值传热学[M].第二版.北京:高等教育出版社.2001.
    [221] Li X, Zhu D, Wang X, et al. Thermal Conductivity EnhancementDependent pH and Chemical Surfactant for Cu-H2O Nanofluids[J].Thermochimica Acta2008,469:98-103.
    [222] Jeong Y H, Chang W J, Chang H S. Wettability of Heated Surfaces underPoll Boiling Using Surfactant Solutions and Nanofluids[J]. InternantionalJournal of Heat and Mass Transfer.2008,1:3025-3031.
    [223] Gu T R, Zhu B Y, Li W L. Surface Chemistry[M]. Bejing: Science Press.2004.
    [224] Kole M, Dey T K. Viscosity of Alumina Nanoparticles Dispersed in CarEngine Coolant[J]. Experimental Thermal and Fluid Science.2010,34(6):677-683.
    [225] Schramm G.实用流变测量学[M].朱怀江,译.北京:石油工业出版社.2009.
    [226] Blasius H. Des Aehnlichkeitsgesetz bei Reibungsvorgangen inFlussigkeiten[J]. VDI Mitt. Forschungsarb.1913,131:1-39.
    [227] Tennekes H and Lumley J L. A First Course in Turbulence[M]. MIT,Cambridge, MA,1972.
    [228] Kawamura H. DNS Database of Wall Turbulence and Heat Transfer[OL].http://murasun.me.noda.tus.ac.jp/turbulence/index.html.
    [229] Kays W, Crawford M, Weigand B.对流传热与传质[M].赵镇南,译.第四版.北京.高等教育出版社.2007.
    [230]王艺.管道减阻流动及传热的实验与数值模拟研究[D].北京:中国石油大学.2011.
    [231]张锁龙,肖立川,刘敏珊,等.管内置弹性珠换热管的换热及结垢性能研究[J].化学工程.2005,33(5):22-25.
    [232]杨世铭,陶文铨.传热学[M].第四版.北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700