斜拉索风雨激振数值模拟与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风雨激振是指斜拉桥拉索在特定风雨条件下的低频、大幅度振动,会使斜拉索发生疲劳破坏,降低斜拉索的使用寿命。由于这一现象涉及气、液、固三相耦合问题,其产生机理至今尚未明确,对此本文应用将滑移理论与CFD技术相结合建立理论模型及基于VOF法建立有限元模型的方法分别模拟斜拉索的风雨激振现象,深入系统的研究斜拉索表面水线振荡与斜拉索气动力及其振动之间的相互作用,揭示其产生机理,主要研究内容包括:
     考虑水膜形态变化对风压力和风摩擦力的影响,将滑移理论与CFD技术相结合提出了斜拉索风雨激振问题的理论模型,基于滑移理论和单质点单自由度振动理论建立了耦合的水膜运动方程和斜拉索振动方程。
     忽略斜拉索振动对水膜形态变化的影响,应用已建立的理论模型研究不同风速、不同风向下的斜拉索表面水膜形态和气动力变化规律及其内在联系,发现只有当气流方向与斜拉索下倾方向一致,且风速处于斜拉索发生风雨激振的风速范围内时,水膜形态变化及其引起的斜拉索气动力变化均呈现出明显的周期性,二者频率均接近斜拉索的自振频率,说明水线与斜拉索之间的共振是引发风雨激振现象的主要因素。
     考虑斜拉索振动对水膜形态变化的影响,应用已建立的理论模型进行斜拉索表面水膜形态变化与斜拉索振动间的双向耦合研究,分析发现当风速处于斜拉索发生风雨激振的风速范围内时,斜拉索表面会形成明显的上水线和下水线,同时斜拉索发生大幅度振动,振动主频接近斜拉索的自振频率,水膜形态变化及其引起的斜拉索升力变化具有相似的周期性,主频均有斜拉索的自振频率相近;进一步说明水线与斜拉索之间的共振是引发风雨激振现象的主要因素。
     将气液两相流理论与VOF法相结合,提出了模拟风雨共同作用下斜拉索表面水线的形成的新方法;应用这一方法对不同风速条件下受重力和气流共同作用时的水线初始形成时间、位置和形态进行了深入研究;在此基础上,应用点源补水的方式实现斜拉索表面水膜的连续和质量守恒,模拟风雨作用下斜拉索表面水线的形成与振荡,得到斜拉索表面水线运动规律和斜拉索气动力,并通过将气动升力施加到单质点单自由度模型上得到斜拉索的振动响应,研究水线运动对斜拉索气动力变化及其振动的影响,得到了与应用滑移理论数值计算相类似的结论,即上水线与斜拉索间的共振是产生风雨激振现象的主要原因。
Rain-wind induced vibration (RWIV) is a large amplitude and low frequencyvibration of cables of cable-stayed bridges under wind and rain, which may cause thefatigue failure of stay cable and reduce its service life. As RWIV is a very complexproblem of coupling oscillation of gas, liquid and solid, its mechanism is still unclearso far. For this reason, in this paper RWIV of saty cable is simulated by combininglubrication theory with computational fluid dynamics (CFD) method and finiteelement method based on Volume of fluid method (VOF method), respectively. Onthis basis, the mutual influences of water film evolution, lift and vibration of cable areanalysed to reveal the mechanism of RWIV. The main research contents include:
     Considering the influence of wind pressure coefficient and friction coefficient onmorphology of water film around stay cable, a theoretical model for simulation ofmorphological change of water film around stay cable under wind and rain bycombining lubrication theory with CFD method is presented. And then2D coupledequations of water film evolution and cable vibration are presented for the first timebased on the combination of lubrication theory and vibration theory of single-modesystem.
     Negelcted the effect of cable vibration on the change of water-film morphology,the relations between the lift and the change of water-film morphology around staycable with different wind speeds and directions are investigated by theoretical model.The results show that only when wind speed is located in the certain region whenRWIV occurs and stay cable is down inclined along wind direction, the change ofwater-film morphology and the lift of stay cable have obvious periodicity with thesame frequency closed to cable natural frequency, which confirms the conclusion thatthe resonance between rivulets and cable may be one of the main reasons for RWIV
     The two-way coupling between the change of water-film morphology aroundcable and cable vibration is studied by theoretical model considering the effect ofcable vibration on the change of water-film morphology. The results show that in thewind speed range when RWIV occurs, upper and lower rivulets are formed on cablesurface, and cable vibrates with large amplitude and the dominant frequency closed toits natural frequency. The variation of water film morphology and the lift of cable alsodisplay a significant periodicity with the similar frequency, which is similar to cable natural frequency. These further explain that the resonance between rivulets and cablemay leads to RWIV.
     A new method to simulate the evolution of rivulets on stay cable surface ispresented combining gas-liquid two-phase theory and volume of fluid method (VOFmethod). The initial time of rivulet formation, rivulet location and morphology underdifferent wind speeds and gravity are investigated by this method using CFX software.On this basis, the formation and oscilation of rivulets around cable are simulated bythe way of water supplement on point source, which can ensure the continuousdistribution and mass conservation of water film. The aerodynamic lift obtained byCFX is applied to a single degree of freedom model of stay cable to calculate cablevibration response. Similar to the numerical calculation results by lubrication theory,the conclusion that the resonance between upper rivulet and cable causes RWIV canbe drawn by study the influence of rivulet motion on aerodynamic lift change andvibration of stay cable.
引文
[1]魏建东,杨佑发,车惠民,斜拉桥斜拉索的参数振动有限元分析,工程力学,2000,17(6):130~134
    [2]于岩磊,高维成,孙毅,斜拉索参数振动精细化模型及其影响因素研究,工程力学,2010,A02:178~185
    [3]陈丕华,王修勇,陈政清等,斜拉索面内参数振动的理论和试验研究,振动与冲击,2010,29(2):50~53
    [4]李凤臣,大跨度桥梁斜拉索的参数振动及索力识别研究:[博士学位论文],哈尔滨;哈尔滨工业大学,2010
    [5]覃虹,斜拉索风致振动分析及抑振措施的研究现状,四川建筑,2004,24(1):34~35
    [6]陈政清,桥梁风工程,北京:人民交通出版社,2005,139~141
    [7]李永乐,王涛,廖海黎,斜拉桥并列斜拉索尾流驰振风洞试验研究,工程力学,2010,A01:216~221
    [8]董乐善,田伟平,斜拉桥顺流双排缆索的涡激振动研究,重庆交通学院学报,1994,13(1):10~13
    [9]陈文礼,李惠,基于RANS的圆柱风致涡激振动的CFD数值模拟,工程力学,2006,36(8):509~513
    [10]许福友,丁威,姜峰,大跨度桥梁涡激振动研究进展与展望,振动与冲击,2010,29(10):40~49
    [11]季小勇,陈文礼,斜拉桥斜拉索二维涡激振动的数值模拟研究,公路工程,2012,37(3):6~11
    [12]李晓渝,卢伟,蒋永林,考虑局部斜拉索振动的斜拉桥抖振响应分析,振动与冲击,2001,20(4):62~64
    [13]卢伟,强士中,蒋永林,斜拉索抖振疲劳可靠度分析,中国公路学报,2001,14(4):63~66
    [14]李永乐,周述华,张焕新,某大跨度斜拉桥施工阶段的抖振控制措施研究,西南交通大学学报,2001,36(4):374~377
    [15]杨靓,悬索桥吊索风致抖振疲劳全寿命可靠度分析,铁道勘测语设计,2011,4:61~67
    [16] Bosdogianni A, Olivari D. Wind-and-rain-induced oscillations of cables ofstayed bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,64(2):171~185
    [17]项海帆等,现代桥梁抗风理论语实践,北京:人民交通出版社,2005,157~158
    [18] Hikami Y, Shiraishi N. Rain-wind induced vibrations of cables stayedbridges. Journal of Wind Engineering and Industrial Aerodynamics,1988,29(1):409~418
    [19] Geurts C, Vrouwenvelder T, van Staalduinen P, et al., Numerical modelingof rain-wind-induced vibration: Erasmus Bridge, Rotterdam. Structural EngineeringInternational,1998,8(2):129~135
    [20] Zuo D, JonesN P, Main J A. Field observation of vortex andrain-wind-induced stay-cable vibrations in a three-dimensional environment. Journalof Wind Engineering and Industrial Aerodynamics,2008,96(6):1124~1133
    [21] Ni Y Q, Wang X Y, Chen ZQ, et al., Field Observations ofrain-wind-induced cable vibration in cable2stayed Dongting Lake Bridge. Journal ofWind Engineering and Industrial Aerodynamics,2007,95(5):303~328
    [22]顾明,刘慈军,罗国强等,斜拉桥斜拉索的风(雨)激振及控制,力学季刊,1998,9(4):281~288
    [23]张碧波,胡世德,斜拉桥的斜拉索破坏及其对结构动力特性的影响,苏州城建环保学院学报,1998,11(2):25~30
    [24]李国芬,陈研,朱华平,南京长江第三大桥斜拉索的防腐系统研究,南京林业大学学报,2006,30(6):102~104
    [25]黎学明,周杰敏,刘强等,张力对斜拉桥斜拉索镀锌钢绞线腐蚀行为影响,电化学,2007,13(3):297~301
    [26]汤国栋,陈宜言,姜瑞娟等,破损安全桥梁斜拉索及其系统研究,四川大学学报,2007,39(6):14~20
    [27]赵翔,斜拉索损伤对斜拉桥结构性能影响的研究:[博士学位论文],南京;东南大学,2005
    [28] Main J A, JonesN P. Full scale measurements of stay cable vibration. In:Proceeding of the10th International Conference on Wind Engineering. Copenhagen,Denmark Larsen A, Larose GL, Liversay, FM (eds.),1999:963~970
    [29]陈政清,柳成荫,倪一清等,洞庭湖大桥斜拉索风雨振中的风场参数,铁道科学与工程学报,2004,1(1):52~57
    [30]陈政清,斜拉索风雨振现场观测与振动控制,建筑科学与工程学报,2005,22(4):5~10
    [31]柳成荫,陈政清,倪一清等,洞庭湖大桥风雨振现场观测实验研究,第十一届全国结构风工程学术会议论文集,三亚:2003,477~482
    [32]王修勇,陈政清,倪一清,斜拉桥斜拉索风雨振观测及其控制,土木工程学报,2003,36(6):53~59
    [33] Matsumoto M, Yokoyama K, Miyata T, et al., Wind-induced cable vibrationof cable-stayed bridges in Japan. In: Proceedings of the Canada–Japan Workshop onBridge Aerodynamics. Ottawa, Canada,1989:101~110
    [34] Matsumoto M, Shiraishi N, Kitazawa M, et al., Aerodynamic behavior ofinclined circular cylinders-cable aerodynamics. Journal of Wind Engineering andIndustrial Aerodynamics,1990,33(1):63~72
    [35] Matsumoto M, Shiraishi N, Shirato H, Rain-wind induced vibration of cablesof cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1):2011~2022
    [36] Matsumoto M, Saitoh T, Kitazawa M, et al., Response characteristics ofrain-wind induced vibration of stay-cables of cable-stayed bridges. Journal of WindEngineering and Industrial Aerodynamics,1995,57(2):323~333
    [37] Matsumoto M, Yagi T, Shigemura Y, et al., Vortex-induced cable vibrationof cable-stayed bridges at high reduced wind velocity. Journal of Wind Engineeringand Industrial Aerodynamics,2001,89(7):633~647
    [38] Matsumoto M, Yagi T, Goto M, et al., Rain–wind-induced vibration ofinclined cables at limited high reduced wind velocity region. Journal of WindEngineering and Industrial Aerodynamics,2003,91(1):1~12
    [39] Flamand O, Rain-wind induced vibration of cables. Journal of WindEngineering and Industrial Aerodynamics,1995,57(2):353~362
    [40] Coesentino N, Flamand O, Ceccoli C, Rain wind-induced vibration ofinclined stay cables Part I: experimental investigation and physical explanation. Windand Structures,2003,6(6):471~484
    [41]陈文礼,李惠,李凤臣,斜拉索风雨激振水线的超声波测试研究,地震工程与工程振动,2009,29(1):139~145
    [42]陈文礼,斜拉索风雨激振的实验研究与数值模拟:[博士学位论文],哈尔滨;哈尔滨工业大学,2009
    [43] Li F C, Chen W L, Li H, et al., An ultrasonic transmission thicknessmeasurement system for study of water rivulets characteristics of stay cables sufferingfrom wind-rain-induced vibration. Sensors and Actuators A: Physical,2010,159(1):12~23
    [44]李文勃,林志兴,斜拉桥斜拉索风雨激振的试验研究,郑州大学学报,2005,26(1):33~37
    [45]李文勃,林志兴,杨立波,超长斜拉索风阻系数及风雨激振的试验研究,振动、测试与诊断,2005,25(2):85~90
    [46]顾明,杜晓庆,模拟降雨条件下斜拉桥斜拉索风雨激振及控制的试验研究,土木工程学报,2004,37(7):101~105
    [47] Gu M, Du X Q, Experimental investigation of rain-wind-induced vibrationof cables in cable-stayed bridges and its mitigation. Journal of Wind Engineering andIndustrial Aerodynamics,2005,93(1):79~95
    [48]许林,汕葛耀,君赵林,高精度风雨模拟环境下斜拉索风雨激振试验研究新发现,土木工程学报,2011,44(5):86~93
    [49]杜晓庆,顾明,全涌,斜拉桥斜拉索风雨激振控制的试验研究,同济大学学报,2003,31(11):1266~1279
    [50]李明水,何向东,斜拉索风雨振动及制振措施的风洞试验研究,试验流体力学,2010,24(6):11~15
    [51] Yamaguchi H, Analytical study on growth mechanism of rain vibration ofcable. Journal of Wind Engineering and Industrial Aerodynamics,1990,33(1):73~80
    [52]顾明,刘慈军,罗国强,斜拉桥斜拉索的风(雨)激振及控制,上海力学,1998,19(4):283~289
    [53]刘慈军,斜拉桥斜拉索风致振动研究:[博士学位论文],上海;同济大学,1999
    [54]顾明,刘慈军,徐幼麟等,带人工雨线的斜拉索在风激励下的响应,应用数学与力学,2002,23(10):1047~1054
    [55]彭天波,斜拉桥斜拉索风雨激振的机理研究:[博士学位论文],上海;同济大学,2000
    [56] Gu M, Lu Q, Theoretical analysis of wind-rain induced vibration of cables ofcable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(9):125~128
    [57]吕强,顾明,斜拉桥斜拉索风雨激振的分析模型,结构工程师,2001,29(1):12~15
    [58]吕强,斜拉桥斜拉索风雨激振的理论研究:[博士学位论文],上海;同济大学,2001
    [59]黄麟,郭志明,王国砚等,斜拉桥斜拉索风雨激振的理论分析,同济大学学报,2002,30(5):569~576
    [60]黄麟,斜拉桥斜拉索风雨激振的稳定性研究:[博士学位论文],上海;同济大学,2002
    [61] Gu M, Huang L, Theoretical and experimental studies on the aerodynamicinstability of a two-dimensional circular cylinder with a moving attachment. Journalof Fluids and Structures,2008,24(2):200~211
    [62]顾明,杜晓庆,带人工雨线的斜拉桥斜拉索模型测压试验研究,空气动力学学报,2005,23(4):420~424
    [63]顾明,杜晓庆,不同风向角下斜拉桥斜拉索模型测压试验研究,振动语冲击,2005,24(6):5~20
    [64]杜晓庆,顾明,斜拉索上雨线的气动力特性的试验研究,同济大学学报,2005,33(5):585~589
    [65]杜晓庆,顾明,李寿英,斜拉桥斜拉索风雨激振的实验和理论研究,振动工程学报,2007,20(5):473~479
    [66]杜晓庆,顾明,临界雷诺数下斜拉桥斜拉索的平均风压和风力特性,空气动力学学报,2010,28(6):639~644
    [67]刘庆宽,张峰,乔富贵,轴向流对斜拉索气动稳定性影响的试验研究,石家庄铁道学院学报,2008,21(4):16~19
    [68] Peil U, Nahrath N, Modeling of rain-wind induced vibration. Wind andStructures,2003,6(1):41~52
    [69] Seidel C, Dinkler D, Rain-wind induced vibrations-phenomenology,mechanical modeling and numerical analysis. Computers and Structures,2006,84:1584~1595
    [70]刘习军,王霞,贾启芬等,斜拉桥斜拉索的风雨激励振动特性,天津大学学报,2005,38(8):674~678
    [71]黄麟,郭志明,王国砚等,斜拉桥斜拉索风雨激振的理论分析,同济大学学报,2002,30(5):569~572
    [72]顾明,黄麟,王国砚,水线震荡对斜拉桥斜拉索风雨激振稳定性的作用,振动工程学报,2004,17(1):96~101
    [73]顾明,杜晓庆,斜拉桥三维斜拉索风雨激振准两自由度模型,力学季刊,2004,25(4):496~501
    [74]马星,仲政,胡瑞龙,斜拉索风雨激振空间模型,同济大学学报,2003,31(8):895~898
    [75]李寿英,陈政清,顾明,斜拉索风雨激振中斜拉索和水线之间的耦合运动,振动与冲击,2008,27(10):1~5
    [76]李寿英,顾明,陈政清,运动水线三维连续弹性斜拉索风雨激振理论模型,湖南大学学报,2009,36(2):1~7
    [77]李暾,陈政清,李寿英,连续弹性斜拉索风雨激振理论模型研究,振动工程学报,2010,23(4):380~388
    [78]李暾,陈政清,李寿英,风雨激振中斜拉索与水线耦合运动规律研究,振动与冲击,2010,29(12):71~78
    [79]张琪昌,李伟义,王炜,斜拉索风雨振的动力学行为研究,振动与冲击,2010,29(4):173~176
    [80] Xu Y L, Wang L Y, Analytical study of wind-rain induced cable vibration:SDOF model. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(1):27~40
    [81] Wang L Y, Xu Y L, Wind–rain-induced vibration of cable: an analyticalmodel (1). International Journal of Solids and Structures,2003,40(5):1265~1280
    [82] Wilde K, Witkowski W, Simple model of rain-wind-induced vibrations ofstayed cables. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(7):873~891
    [83]顾明,李寿英,杜晓庆,斜拉桥斜拉索风雨激振理论模型和机理研究,空气动力学学报,2007,25(2):169~174
    [84]李寿英,顾明,陈政清,准运动水线三维连续弹性斜拉索风雨激振理论模型,工程力学,2007,24(6):7~14
    [85]毕继红,王青太,尹元彪,斜拉索风雨激振机理及减振措施的研究,工程力学,2010,27(12):229~237
    [86]李伟义,张琪昌,何学军,斜拉索风雨激振面内运动的非线性分析,天津大学学报,2010,43(2):156~160
    [87]张二辉,刘习军,张素侠,三维运动水线斜拉索风雨激振影响因素探究,工程力学,2012,29(12):241~247
    [88]吕强,顾明,斜拉桥斜拉索风雨激振的分析模型,结构工程师,2001,1:12~15
    [89]王凌云,徐幼麟,斜拉桥斜拉索的风雨振动:参数研究,工程力学,2009,26(7):147~154
    [90]李永乐,徐幼麟,沈其民等,斜拉桥斜拉索风-雨致振动(Ⅰ):机理分析,西南交通大学学报,2011,46(4):529~534
    [91] Lemaitre C, Alam M, Hémon P, et al., Rainwater rivulets on a cable subjectto wind. Comptes Rendus Mécanique,2006,334(3):158~163
    [92] Lemaitre C, Hémon P, Langre E, hin water film around a cable subject toWind. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(9):1259~1271
    [93] Lemaitre C, Langre E, Hémon P, Rainwater rivulets running on a stay cablesubject to wind. European Journal of Mechanics B/Fluids,2010,29(4):251~258
    [94] Robertson A C, Taylor I J, Wilson S K, et al., Numerical simulation ofrivulet evolution on a horizontal cable subject to an external aerodynamic field.Journal of Fluids and Structures,2010,26(1):50~73
    [95]许林汕,赵林,葛耀君,发生风雨激振斜拉索表面水膜形态数值分析和实测初探,空气动力学学报,2011,29(1):91~96
    [96] Taylor I J, Robertson A C, Numerical simulation of the airflow–rivuletinteraction associated with the rain-wind induced vibration phenomenon. Journal ofWind Engineering and Industrial Aerodynamics,2011,99(9):931~944
    [97]李寿英,顾明,带固定人工水线三维斜拉索绕流的数值模拟,同济大学学报,2005,33(5):590~594
    [98]李寿英,顾明,斜、直圆柱绕流的CFD模拟,空气动力学学报,2005,23(2):222~227
    [99]刘庆宽,用LES方法对斜拉桥斜拉索风雨振的机理的研究,工程力学,2007,24(9):134~139
    [100]李永乐,安伟胜,赵彤等,带水路斜拉索气动特性的CFD模拟研究,四川建筑科学研究,2011,37(5):161~163
    [101]任洪鹏,基于风雨两相流的斜拉索风雨激振的机理研究:[博士学位论文],天津;天津大学,2012
    [102] Li H, Chen W L, Li F C, et al., A numerical and experimental hybridapproach for the investigation of aerodynamic forces on stay cables suffering fromrain-wind induced vibration. Journal of Fluids and Structures,2010,26(7):1195~1215
    [103]陈文礼,李惠,斜拉索风雨振-实验与数值模拟混合子结构方法,哈尔滨工业大学学报,2011,43(8):6~10
    [104]唐善然,陈文礼,李惠,斜拉索风雨激振的数值模拟研究,工程力学,2012,29(3):124~132
    [105]李文勃,林志兴,抑制斜拉桥斜拉索风雨激振的气动措施研究,土木工程学报,2005,38(5):48~53
    [106]李文勃,林志兴,杨立波,超长斜拉索风阻系数及风雨激振的试验研究,振动、测试与诊断,2005,25(2):85~90
    [107]郑莉婵,湛江海湾大桥斜拉索抗风雨振措施,中外公路,2006,26(5):122~126
    [108]郑宗仕,泉州晋江大桥斜拉索抗风雨振的研究,山西建筑,2007,33(10):283~284
    [109]李明水,何向东,斜拉索风雨振动及制振措施的风洞试验研究,试验流体力学,2010,24(6):11~15
    [110]何向东,廖海黎,李明水等,斜拉索风雨振动试验研究,第十一届全国结构风工程会议论文集,三亚,2003,210~214
    [111]李暾,陈政清,李寿英,斜拉索表面材料对风雨激振的影响研究,工程力学,2009,26(7),47~53
    [112] Ehsan F, Scanlan R H, Damping stay cables with ties. In:5th US-JapanBridge Workshop,1999,85~90
    [113] Yamaguchi H, Jayawardena L, Analytical estimation of structural dampingin cable structures. Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1):1961~1972
    [114] Yamaguchi H, Adhikari R, Loss factors of damping treated structuralcables. Journal of Sound and Vibration,1994,176(4):487~495
    [115] Yamaguchi H, Adhikari R, Energy-based evaluation of modal damping instructural cables with and without damping treatment. Journal of Sound and Vibration,1995,181(1):71~83
    [116] Yamaguchi H,Nagahawatta H D, Damping effects of cable cross ties incable stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics,1995,54(1):35~43
    [117]魏建东,杨佑发,辅助索制振效果的有限元分析,中国公路学报,2000(4):66~69
    [118] Caracoglia L, Jones N P, In-plane dynamic behavior of cable networks part1: formulation and basic solutions. Journal of Sound and Vibration,2005,279(3):969~991
    [119] Caracoglia L, Jones N P, In-plane dynamic behavior of cable networks part2: prototype prediction and validation. Journal of Sound and Vibration,2005,279(3):993~1014
    [120] Takano H, Ogasawara M, Ito N, et al., Vibrational damper for cables of theTsurumi Tsubasa Bridge. Journal of Wind Engineering and Industrial Aerodynamics,1997,69:807~818
    [121]汪正兴,阻尼减振技术及其在桥梁与塔式结构中的应用,桥梁建设,1999,4:22~25
    [122]薛晓锋,胡兆同,刘健新,高阻尼橡胶耗能性能试验研究,公路交通科技,2006,23(3):71~74
    [123]程华才,朱雨林,孙汉超,斜拉桥斜拉索减振阻尼器工作性能试验研究,工程与建设,2006,20(1):4~7
    [124]杨高中,粘性剪切阻尼器(VSD)在铜陵长江大桥上的应用,公路,2000,3:66~67
    [125]孙利民,周海俊,陈艾荣,索承重大跨桥梁斜拉索的振动控制装置种类和性能,国外桥梁,2004,4:36~40
    [126] Chen J C, Response of large space structures with stiffness control. Journalof Spacecraft and Rockets,1984,21(5):463~467
    [127] Fujino Y, Warnitchai P, Pacheco B M, R Active stiffness control cablevibration. Journal of Applied Mechanics,1993,60(4):948~953
    [128]陈南,郭希红,索缆结构系统动态响应的轴向主动刚度控制,东南大学学报,1999,29(6):66~69
    [129] Hagedorn P, Active vibration damping in large flexible structures. In:Germain P, Piau M, Caillerie D Eds. Proceeding of the17th International Congress ofTheoretical and Applied Mechanics. Amsterdam, Holland, Elsevier SciencePublishers,1989:83~100
    [130] Carlson J D, Jolly M R, MR fluid, foam and elastomer devices.Mechatronics,2000,10(4):555~569
    [131] Gen S, PhuléP P, Rheological properties of magnetorheological fluids.Smart Materials and Structures,2002,11(1):140~146
    [132]王修勇,陈政清,倪一清,斜拉桥斜拉索风雨振观测及其控制,土木工程学报,2003,36(6):53~59
    [133]陈政清,斜拉索风雨振现场观测与振动控制,建筑科学与工程学报,2005,22(4):5~19
    [134] Yalcintas M, Dai H M, Magnetorheological and electrorheologicalmaterials in adaptive structures and their performance comparison. Smart Materialsand Structures,1999,8(5):560~573
    [135] El Wahed A K, Sproston J L, Schleyer G K, Electrorheological andmagnetorheological fluids in blast resistant design applications. Materials and Design,2002,23(4):391~404
    [136] Akbay Z, Aktan H M, Intelligent energy dissipation devices. In: Proceedingof the4th U.S. National Conference on Earthquake Engineering. Palm Springs,1990,3(4):427~435
    [137] Shinozuka M, Constantinou M C, Ghanem R, Passive and active fluiddampers in structural applications. U.S/China/Japan workshop on structural control,1992:507~516
    [138]周海俊,孙利民,斜拉索风雨激振的形状记忆合金半主动控制数值模拟分析,防灾减灾工程学报,2008,28(3):308~312
    [139] Reisfeld B, Bankoff S G, Non-isothermal flow of a liquid film on ahorizontal cylinder. Journal of Fluid Mechanics,1992,236:167~196
    [140] Achenbach E, Distribution of local pressure and skin friction around acircular cylinder in a cross-flow up to Re=5×10-6. Journal of Fluid Mechanics,1968,34(4):625~639
    [141] Ansys, Inc., Ansys Fluent12.0User’s Guide,2009
    [142] Menter F R, Two-equation eddy-viscosity turbulence models forengineering applications. AIAA Journal,1994,32(8):1598~1605
    [143] Wilcox D C, Comparison of Two-Equation Turbulence Models forBoundary Layers with Pressure Gradient. AIAA Journal,1993,31,1414~1421
    [144] Fage A, Falkner V M, Further Experiments on the Flow Around a CircularCylinder. London: H.M.S.O.,1931
    [145] Celika I, Shaffer F D, Long time-averaged solutions of turbulent flow past acircular cylinder. Journal of Wind Engineering and Industrial Aerodynamics,1995,56(2):185~212
    [146] Trefethen, L N, Finite Difference and Spectral Methods for Ordinary andPartial Differential Equations. Department of Computer Science and Center forApplied Mathematics, Cornell University,1996,232~259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700