粘弹性流体各向同性湍流特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
添加剂湍流减阻技术对流体输送系统的节能及输送效率的提高有重要的应用价值。自Toms湍流减阻效应被发现至今60多年来,国内外学者开展了大量的研究工作,但仍存在很多亟需解决的问题,如粘弹性流体湍流减阻机理和高雷诺数下粘弹性流体流动大涡数值模拟等。
     目前,粘弹性流体湍流减阻的研究工作主要集中在具有壁面效应的槽道、管道及边界层流动。壁面的存在使得流动具有不均匀性,因此不利于分析粘弹性流体分子微观结构与湍流结构之间的相互作用。然而,粘弹性流体各向同性湍流的研究却能很好地解决上述问题,这主要是因为在该流动中不存在流动剪切应力,粘弹性流体的存在并不能改变流动系统的动量输运,但能够改变从大尺度到小尺度间的能量传递规律。因此对粘性流体各向同性湍流的研究具有重要的理论意义和学术价值。
     本文首先基于粘弹性流体各向同性湍流模型推导了其动力学方程,通过对方程中各项分析研究了粘弹性流体的作用,并建立了粘弹性流体各向同性湍流直接数值模拟(DNS)程序。采用伪谱方法对粘弹性流体弹性应力修正的Navier-Stokes方程进行求解,而对于具有双曲型特性的粘弹性流体分子变形率张量输运方程(FENE-P模型)的求解采用有限差分方法,并基于KT格式离散其对流项,从而保证了粘弹性流体分子变形率张量的对称正定特性。
     其次,对粘弹性流体衰减各向同性湍流DNS结果进行分析,主要从能量输运方程,分析流体粘弹性对流动的影响,发现流体粘弹性的存在改变了经典的湍动能输运模式。基于粘弹性流体分子微观结构与湍流结构之间的能量转换谱很好地解释了这一现象,提出了粘弹性流体衰减各向同性湍流的减阻定义表达式,并阐述了其物理意义。从涡结构、拟涡能和变形能输运方程中的生成项与粘弹性流体的作用项之间的联合概率密度函数,发现流体粘弹性的存在抑制了流动中的涡结构(尤其是小尺度涡结构)。通过速度梯度偏斜因子解释了粘弹性流体对流动非线性及耗散率的影响,并基于不同尺度下的平坦因子和速度结构函数的高阶平坦因子解释了小尺度间歇性受抑制的现象。根据速度梯度张量的Galilean不变量特性分析了流动中的几何特性,即涡量场、流动变形场和粘弹性流体分子变形场之间的关系。基于涡量、变形能和弹性能采样平均拟涡能生成项等物理量,分析了流动的非线性及拟涡能生成项等物理量和弹性能之间的关系。
     最后,对粘弹性流体强迫各向同性湍流DNS结果进行分析,根据速度梯度平坦因子及湍动能等物理量随时间的演化规律,可知本文外力场的施加方式是可行的。根据粘弹性流体分子微观结构与湍流结构之间的能量转换谱及二阶径向结构函数,很好地解释了流体粘弹性的存在改变了经典的湍动能输运模式的现象,提出了粘弹性流体强迫各向同性湍流的减阻定义表达式,解释了其物理意义。同时,通过对涡结构和速度场本征正交分解结果的分析,发现流体粘弹性抑制了小尺度涡结构且使流动更加规则,进一步解释了粘弹性流体的湍流减阻效果。速度偏导数的平坦因子和高阶统计量的分析结果表明,流体粘弹性的存在抑制了小尺度间歇性,且拟涡能场(或涡量场)比变形场(或耗散率场)具有更强的间歇性。基于速度梯度张量的Galilean不变量特性,分析了拟涡能和变形能的分布规律,并研究了流动拓扑动力学特性。
The turbulent drag-reducing technique by additives has important application value for energy-saving and increasing transport efficiency for liquid transportation system. Since the discovery of Toms effect (turbulent drag reduction) more than sixty years ago, there have been a large amount of foreign and domestic researchers being engaged in the investigation of this phenomenon. But there still exist many problems to be solved immediately, for example, the drag-reducing mechanism for viscoelastic fluid flow and large eddy simulation for viscoelastic fluid flow at high Reynolds number.
     Up to now, the main efforts of turbulent drag-reducing flow of viscoelastic fluid have been focused on the wall-bounded turbulent flows where the wall plays an important role, such as channel, pipe and boundary layer flows. The existence of the wall makes the flow inhomogeneous, so it is hard to investigate the interaction between the micro-molecular structures of viscoelastic fluid and turbulent vortex structures. However, the study on isotropic turbulence in viscoelastic flud can solve well the above problems. This is because there is no mean shear stress in the flow; the existence of viscoelastic fluid can not change the momentum transportation of flow system, but it can change the turbulent kinetic energy cascading from large-scale to small-scale. So the study of isotropic turbulence in viscoelastic fluid has important theoretic meaning and scientific value.
     Firstly, the dynamics equations based on isotropic turbulence in viscoelastic fluid were deduced in this thesis, and the effect of viscoelastic fluid was investigated through analyzing each term of the equations, and then a direct numerical simulation (DNS) program of isotropic turbulence in viscoelastic fluid was built. The pseudo-spectral method and the finite different method were used to numerically simulate the modified Navier-Stokes equation with elastic stress of viscoelastic fluid and the rate-of-strain tensor transportation equation of viscoelastic fluid molecules with hyperbolic charactericstics. The Kurganov-Tadmor (KT) scheme was used to discrete the convection term so as to assure the symmetric and positive definite characteristics of the rate-of-strain tensor of viscoelastic fluid molecules.
     Then, the DNS results of decaying homogeneous isotropic turbulence (DHIT) in viscoelastic fluid were analyzed in the thesis. It investigated the effect of viscoelastic fluid on flow through budget-analyzing the energy transportation equations. The results showed that the existence of viscoelastic fluid changes the classical turbulent kinetic energy cascading. This phenomenon could be well explained based on the energy transformation spectra between the micro-molecular structures of viscoelastic fluid and turbulent vortex structures. A definition of drag-reduction rate for DHIT in viscoelastic fluid was proposed and its physical meaning was expatiated. Through investigating the vortex structures and the joint probability density function between the production terms and the effective terms of viscoelastic fluid in the enstrophy and strain transportation equations, it was found that the existence of viscoelasticity in the fluid inhibits the vortex structures, especially for small-scale votex structures. It explained the effect of viscolasticity on dissipation based on the skewness of the velocity gradient and explained the inhibition of small-scale intermittency based on the flatness of different scales and the high-order flatness of velocity structure function. According to the Galilean characteristics of velocity gradient tensor, it studied the geometrical characteristics of the flow, such as, the relationship among vorticity, strain of the flow and molecules strain of viscoelastic fluid. Then it investigated the flow nonlinearity and the relationships between the important parameters (such as the enstrophy production term) and elastic energy through conditionally-averaging some important parameters based on vorticity, strain energy and elastic energy.
     Finally, the DNS results of forcing homogeneous isotropic turbulence (FHIT) in viscoelastic fluid were analyzed in the thesis. Accroding to the skewness of velocity gradient and the elovement of the important parameters, such as turbulent kinetic energy, it showed that the method of force field in our simulations is reasonable. The existence of viscoelastic fluid changes the classical turbulent kinetic energy cascading in FHIT also. This phenomenon was explained well based on the energy transformation spectra between the micro-molecular structures of viscoelastic fluid and turbulent vortex structures and second-order longitudinal structure function. Then the definition of drag-reduction rate for FHIT in viscoelastic fluid was proposed and its physical meaning was expatiated. Meanwhile, the analyses results for vortex structures and the proper orthogonal decomposition of velocity field showed that the small-scale vortex structures are inhibited and the flow is more regular, which further explains the turbulent drag-reducing effect of viscoelastic fluid. The results of the skewness of velocity partial derivative and high-order statistical parameters suggested that the small-scale intermittency is inhibited due to the existence of viscoelasticity and the intermittency of enstrophy field (or vorticity field) is stronger than that of strain field (or dissipation field). Based on the Galilean characteristics of velocity gradient tensor, it studied the distribution of enstrophy and strain, and investigated the characteristics of flow topological dynamics.
引文
[1] Toms B A. Some Obervations on the Flow of Linear Polymer Solutions through Straight Tubes at Large Reynolds Numbers[C]. Proceeding of 1st International congress on Rheology. Amsterdam: North Holland, 1948:135-138.
    [2] Bewersdorff H W, Ohlendorf D. The Behaviour of Drag-reducing Cation Surfactant Solutions[J]. Colloid & Polymer Science, 1988, 266: 941-953.
    [3] Ohlendorf D, Interthal W, Hoffmann H. Surfactant Systems for Drag Reduction: Physico-chemical Properties and Rheological Behaviour[J]. Rheologica Acta, 1986, 25: 468-486.
    [4] Lumley J L. Drag Reduction by Additives[J]. Annual Review of Fluid Mechanics, 1967. 1: 367-384.
    [5] Lumley J L. Drag Reduction in Turbulent Flow by Polymer Additives[J]. Journal of Polymer Science: Macromolecular Reviews, 1973, 7: 263-290.
    [6] Pinho F T, Whitelaw J H. Flow of Non-Newtonian Fluids in a Pipe[J]. Journal of Non-Newtonian Fluid Mechanics, 1990, 34: 129-144.
    [7] Tabor M, De Gennes P G. A Casecade Theory of Drag Reduction[J]. Europhysics Letters, 1986, 2: 519-522.
    [8] de Gennes P G. Towards a Scaling Theory of Drag Reduction[J]. Physica A, 1986, 140: 9-25.
    [9] Rabin Y, Zielinska B J A. Scale-dependent Enhancement and Damping of Vorticity Disturbances by Polymers in Elongational Flow[J]. Physical Review Letter, 1989, 63(5): 512-515.
    [10] Keyes D E, Abernathy F H. A Model for the Dynamics of Polymers in Laminar Shear Flows[J]. Journal of Fluid Mechanics, 1987, 185: 503-522.
    [11] Kline S J. The Structure of Turbulent Boundary layer[J]. Journal of Fluid Mechanics, 1967, 30: 741-773.
    [12] Robinson S K. Coherent Motions in Turbulent Boundary Layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601-609.
    [13] De Angelis E, Casciola C M, Piva R. DNS of Wall Turbulence: Dilute Polymers and Self-sustaining Mechanisms[J]. Computers & Fluids, 2002, 31: 495-507.
    [14] Ptasinski P K, Boersma B J, Nieuwstadt F T M, et al. Turbulent Channel Flow Near Maximum Drag Reduction: Simulations, Experiments and Mechanisms[J]. Journal of Fluid Mechanics, 2003, 490: 251-291.
    [15] Virk P S, Merrill E W, Mickley H S, et al. The Toms Phenomenon: Turbulent Pipe Flow of Dilute Polymer Solutions[J]. Journal of Fluid Mechanics, 1967, 30: 305-328.
    [16] Luchik T S, Tiederman W G. Turbulet Structure in Low-concentration Drag-reducing Channel Flows[J]. Journal of Fluid Mechanics, 1988, 190: 241-263.
    [17] Walker D T, Tiederman W G. Turbulent Structure in a Channel Flow with Polymer Injection at the Wall[J]. Journal of Fluid Mechanics, 1990, 218: 377-403.
    [18] Wei T, Willmarth W W. Modifying Turbulent Structure with Drag Reducing Polymer Additives in Turbulent Channel Flows[J]. Journal of Fluid Mechanics, 1992, 245: 619-641.
    [19] Zakin J L, Liu B, Bewersdorff H W. Surfactant Drag Reduction[J]. Reviews in Chemical Engineering, 1998, 14: 253-320.
    [20] Kawaguchi Y, Segawa T, Feng Z P, et al. Experimental Study on Drag-reducing Channel Flow with Surfactant Additives-Spatial Structure of Turbulence Investigated by PIV System[J]. International Journal of Heat and Fluid Flow, 2002, 23: 700-709.
    [21] Li F C, Kawaguchi Y, Hishida K. Investigation on the Characteristics of Turbulence Transport for Momentum and Heat in a Drag-reducing Surfactant Solution[J]. Physical of Fluids, 2004. 16(9): 3281-3295.
    [22] Li F C, Kawaguchi Y, Segawa T, et al. Reynolds-number Dependence of Turbulence Structures in a Drag-reducing Surfactant Solution Channel Flow Investigated by Particle Image Velocimetry[J]. Physics of Fluids, 2005, 17(7): 75-104.
    [23]王德忠,胡友情,王松平,等.低浓度表面活性剂减阻流体的性能[J].上海交通大学学报, 2005, 39(2): 225-229,233.
    [24]董正方,顾卫国,张红霞,等.表面活性剂减阻流体传热与阻力关系试验研究[J].水动力学研究与进展, 2006, 21(4): 494-498.
    [25] Wei J J, Kawaguchi Y, Yu B, et al. Rheological Characteristics and Turbulent Friction Drag and Heat Transfer Reductions of a Very Dilute Cationic Surfactant Solution[J]. ASME Journal of Heat Transfer. 2006, 128: 977-983.
    [26]许鹏,王德忠,扈黎光,等.低浓度CTAC减阻流体流动性能试验研究[J].热能动力工程, 2002, 17(102): 585-588.
    [27]王德忠,胡友情,王松平,等.表面活性剂减阻流体湍流空间结构试验研究[J].热能动力工程, 2004, 19(2): 140-146.
    [28]魏进家,川口靖夫.零下温度时二维通道内界面活性剂减阻流动的实验研究[J].西安交通大学学报, 2006, 40(1): 79-83.
    [29]魏进家,川口靖夫, J. H. David.在一种新型两性界面活性剂的减阻特性[J].化工学报, 2006, 57 (11): 2750-2754.
    [30] Wei J J, Kawaguchi Y, Li F C, et al. Drag-reducing and Heat Transfer Characteristics of a Novel Zwitterionic Surfactant Solution[J]. International Journal of Heat and Mass Transfer, 2009, 52: 3547-3554.
    [31] Wei J J, Kawaguchi Y, Li F C, et al. Reduction and Turbulence Characteristics in Sub-zero Temperature Range of Cationic and Zwitterionic Surfactants in EG/Water Solvent[J]. Journal of Turbulence, 2009, 10: 1-15.
    [32] Bird R B, Armstrong R C, Hassager O, et al. Dynamics of Polymeric Liquids[J]. Vol1, second ed., Wiley, New York. 1987.
    [33] Sureshkumar R, Beris A N. Effect of Artificial Stress Diffusivity on the Stability of Numerical Calculations and the Flow Dynamics of Time-dependent Viscoelastic Flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 60: 53-80.
    [34] Sureshkumar R, Beris A N, Handler A H. Direct Numerical Simulation of Turbulent Channel Flow of a Polymer Solution[J]. Physics of Fluids, 1997, 9: 743-755.
    [35] Dimitropoulos C D, Sureshkumar R, Beris A N. Direct Numerical Simulation of Viscoelastic Turbulent Channel Flow Exhibiting Drag Reduction: Effect of the Variation of Rheological Parameters[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 79: 433-468.
    [36] Beris A N, Dimitropoulos C D. Pseudospectral Simulation of Turbulent Viscoelastic Channel Flow[J]. Computer Method in Applied Mechanics and Engineering, 1999, 180: 365-392.
    [37] Housiadas K D, Beris A N. Direct Numerical Simulations of Viscoelastic Turbulent Channel Flows at High Drag Reduction[J]. Korea-Australia Rheology Journal, 2005, 17(3): 134-140.
    [38] Den Toonder J M J, Hulsen M A, Kuiken G D C, et al. Drag Reduction by Polymer Additives in a Turbulent Pipe Flow: Numerical and Laboratory Experiments[J]. Journal of Fluid Mechanics, 1997, 337: 193-231.
    [39] Yu B, Kawaguchi Y. Direct Numerical Simulation of Viscoelastic Drag-reducing Flow: a Faithful Finite Difference Method[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 116: 431-466.
    [40] Yu B, Kawaguchi Y. DNS of Fully Developed Turbulent Heat Transfer of aViscoelastic Drag-reducing Flow[J]. International Journal of Heat and Mass Transfer, 2005, 48: 4569-4578.
    [41] Ezrachi S, Tuval E, Aserin A. Properties, Main Applications and Perspectives of Worm Micelles[J]. Advances in Colloid and Interface Science, 2006, 128-130: 77-102.
    [42] Bananai M, Kuwabara K, Itasaka H. Energy-saving in Chilled-water Supply System for Clean Room of Semiconductor Manufacturing Plant: Variable Flow Control of Chilled-water and Addition of Drag Reduction[J]. Tran. Japan Soc. Refrigerating & Air Conditioning Engineering, 2006, 23: 133-143.
    [43] Pollert J, Zakin J L, Myska J, et al. Use of Friction Reducing Additives in District Heating System Field Test at Kladno-Krocehlavy[C]. In: Proc. Czech Republic Conf. Int. DHC Association, Seattle, USA. 1994, 85: 141-156.
    [44] Myska J, Mik V. Application of a Drag Reducing Surfactant in the Heating Circuit[J]. Energy & Building, 2003, 35: 813-819.
    [45] Flemming H. Manager of Development, Friction Reduction in District Heating Systems in Denmark [On line]. News from DBDH, 1999.
    [46]焦利芳.添加剂减阻技术在集中供暖系统中的节能应用[D].哈尔滨:哈尔滨工业大学, 2008.
    [47]苏文涛.弱腐蚀性两性表面活性剂减阻剂特性实验研究[D].哈尔滨:哈尔滨工业大学, 2009.
    [48] Fabula A G. An Experimental Study of Grid Turbulence in Dilute High-polymer Solutions[D]. Ph.D. Thesis, The Pennsylvania State University, 1966.
    [49] Barnard B J S, Sellin R H J. Grid Turbulence in Dilute Polymer Solutions[J]. Nature, 1969, 222: 1160-1162.
    [50] Greated C A. Effect of Polymer Additive on Grid Turbulence[J]. Nature. 1969, 224: 1196-1197.
    [51] Friehe C A, Schwarz W H. Grid-generated Turbulence in Dilute Polymer Solutions[J]. Journal of Fluid Mechanics, 1970, 44: 173-193.
    [52] McComb W D, Allan J, Greated C A. Effect of Polymer Additives on the Small-scale Structure of Grid-generated Turbulence[J]. Physics of Fluids, 1977, 20: 873-879.
    [53] De Angelis E, Casciola C M, Benzi R, et al. Homogeneous Isotropic Turbulence in Dilute Polymers: Scale by Scale Budget[J]. Chaotic Dynamics (nlin.CD), 2002b, 0208016: 1-12.
    [54] De Angelis E, Casciola C M, Benzi R, et al. Homogeneous Isotropic Turbulence in Dilute Polymers[J]. Journal of Fluid Mechanics, 2005, 531:1-10.
    [55] Vaithianathan T, Collins L R. Numerical Approach to Simulating Turbulent Flow of a Viscoelastic Polymer Solution[J]. Journal of Computational Physics, 2003, 187: 1-23.
    [56] Kalelkar C, Govindarajan R, Pandit R. Drag Reduction by Polymer Additives in Decaying Turbulence[J]. Physical Review E, 2005, 72: 1-4.
    [57] Perlekar P, Mitra D, Pandit R. Manifestations of Drag Reduction by Polymer Additives in Decaying, Homogeneous, Isotropic Turbulence[J]. Physical Review Letters, 2006, 97(264501): 1-4.
    [58] Berti S, Bistagnino A, Boffetta G, et al. Small-scale Statistics of Viscoelastic Turbulence[J]. Europhysics Letters, 2006, 76: 63-69.
    [59] Jin S. Numerical Simulations of a Dilute Polymer Solution in Isotropic Turbulence[D]. PhD thesis. The Cornell University, 2007.
    [60]张兆顺,崔桂香,许春晓著.湍流理论与模拟[M].北京:清华大学出版社, 2005.
    [61] Kolmogorov A N. The Local Structure of Turbulence in Incompressible Viscous Fluid for very Large Reynolds Number[C]. Dokl. Akad. Nauk SSSR 1941, 30: 9~13, Reprinted in Proceedings of Royal Society of London. Seria A, 1991, 434: 9-13.
    [62] Taylor G I. Turbulence in Contracting Stream[J]. Z Angew Mathematics Mechanics, 1935, 15: 91-96.
    [63] Taylor G I. Diffusion by Continuous Movement[C]. Proceedings of Royal Society of London. Seria A, 1921, 20: 196-212.
    [64] Taylor G I. Statistical Theory of Turbulence[C]. Proceedings of Royal Society of London. Seria A, 1935, 151: 421-478.
    [65] Kármán V, Horwarth L. On the Statistical Theory of Isotropic Turbulence[J]. Proceedings of Royal Society of London. Seria A, 1938, 164: 192-215.
    [66]北京大学湍流工作小组.湍流理论简述[J].力学情报, 1973, (3): 3-13.
    [67]蔡树棠,吴烽.涡旋成对分布和对二元速度关联函数的影响[J].中国科学(A辑), 1984, (12): 1104-1110.
    [68]魏中磊,李文绚.均匀各向同性湍流的涡旋结构统计理论的一级近似数值解[J].力学学报, 1983, (3): 241-247.
    [69]黄永念.周培源湍流统计理论的新发展[J].北京大学学报(自然科学版), 1998, 34(2-3):151-158.
    [70] Domaradzki J A, Mellor G L. A Simple Turbulence Closure Hypothesis for the Triple-velocity Correlation Functions in Homogeneous IsotropicTurbulence[J]. Journal of Fluid Mechanics, 1984, 140: 45-61.
    [71] Huang M J, Leonard A. Power-law Decay of Homogeneous Turbulence at Low Reynolds Numbers[J]. Physics of Fluids, 1994, 6(11): 3765-3775.
    [72] Maxey M R. The Velocity Skewness Measured in Grid Turbulence[J]. Physics of Fluids, 1987, 30(4): 935-938.
    [73] Lavoie P, Burattini P, Djenidi L, et al. Effect of Initial Conditions on Decaying Grid Turbulence at Low Reλ[J]. Experiments in Fluids, 2005, 39: 865-874.
    [74]佘振苏,苏卫东.湍流中的层次结构和标度律[J].力学进展, 1999, 29(3): 289-302.
    [75] Landau L D, Lifshits E M. Fluid Mechanics[M]. Pergmon Press London, 1963.
    [76] Zeff B W, Lanterman D D, Mcallister R, et al. Measuring Intense Rotation and Dissipation in Turbulent Flows[J]. Nature, 2003, 421: 146-149.
    [77] Chen S Y, Sreenivasan K R, Nelkin M. Inertial Range Scalings of Dissipation and Enstrophy in Isotropic Turbulence[J]. Physics Review Letters, 1997, 79(7): 1253-1256.
    [78] Kolmogorov A N. A Refinement of Previous Hypothesis Concerning the Local Structure of Turbulence in Incompressible Viscous Fluid for very Large Reynolds Number[J]. Journal of Fluid Mechanics, 1962, 13: 82-85.
    [79] Benzi R, Ciliberto S, Tripiccione R, et al. Extended Self-similarity in Turbulent Flows[J]. Physical Review E, 1993, 48(1): R29-R32.
    [80] Benzi R, Ciliberto S, Baudet C, et al. On the Scaling of Three-dimension Homogeneous and Isotropic Turbulence[J]. Physica D, 1995, 80: 395-398.
    [81] Benzi R, Biferale L, Ciliberto S, et al. Generalized Scaling in Fully Developed Turbulence[J]. Physica D, 1996, 96: 162-181.
    [82] Amati G, Benzi R, Succi S, et al. Extended Self-similarity in Boundary Layer Turbulence[J]. Physical Review E, 1997, 55(6): 6985-6988.
    [83] Benzi R, Amati G, Casciola C M, et al. Intermittency and Scaling Laws for Wall Bounded Turbulence[J]. Physics of Fluids, 1999, 11(6): 1284-1286.
    [84] Jacob B, Olivieri A, Casciola C M. Experimental Assessment of a New Form of Scaling Law for Near-wall Turbulence[J]. Physics of Fluids, 2002, 14(2): 481-491.
    [85] She Z S, Leveque E. Universal Scaling Laws in Fully Develop Turbulence[J]. Physical Review Letters, 1994, 72: 336-339.
    [86]佘振苏,程雪玲.湍流的复杂系统论[J].钱学森技术科学思想与力学论文集, 2001: 161-169.
    [87] Batchelor G K. Energy Decay and Self-preserving Correlation Functions in Isotropic Turbulence[J]. Quarterly of Applied Mathematics, 1948, 6: 97-116.
    [88] Batchelor G K, Townsend A A. Decay of Isotropic Turbulence in the Initial Period[C]. Proceedings of Royal Society of London. Seria A, 1948, 193: 539-558.
    [89] Batchelor G K, Townsend A A. Decay of Turbulence in the Final Period[C]. Proceedings of Royal Society of London. Seria A, 1948, 194: 527-543.
    [90] Tan H S, Ling S C. Final Stage Decay of Grid-produced Turbulence[J]. Physics of Fluids, 1963, 6: 1693-1699.
    [91] Skrbek L, Stalp S R. On the Decay of Homogeneous Isotropic Turbulence[J]. Physics of Fluids, 2000, 12(8): 1997-2019.
    [92] Saffman P G. Note on Decay of Homogeneous Turbulence[J]. Research Notes, 1967: 1349.
    [93] Saffman P G. The Large Scale Structure of Homogeneous Turbulence[J]. Journal of Fluid Mechanics, 1967, 27: 581-593.
    [94] Speziale C G, Bernard P S. The Energy Decay in Self-preserving Isotropic Turbulence Revisited[J]. Journal of Fluid Mechanics, 1992, 241: 645-667.
    [95] Ristorcelli J R. The Self-preserving Decay of Isotropic Turbulence: Analytic Solution for Energy and Dissipation[J]. Physics of Fluids, 2003, 15: 3248-3250.
    [96] Oberlack M. On the Decay Exponent of Isotropic Turbulence[C]. Proceedings in Applied Mathematics and Mechanics, 2002, 1: 294-297.
    [97] Uberoi M S, Wallis S. Effect of Grid Geometry on Turbulence Decay[J]. Physics of Fluids, 1967, 10: 1216-1223.
    [98]魏中磊,诸乾康,钮珍南.网格湍流微结构的实验研究[J].力学学报, 1988, 20(3): 200-204.
    [99] Kistler A L, Vrebalovich T. Grid Turbulence at Large Reynolds Number[J]. Journal of Fluid Mechanics, 1966, 26: 37-47.
    [100]Murzyn F, Bélorgey M. Experimental Investigation of the Grid-generated Turbulence Features in a Free Surface Flow[J]. Experimental Thermal and Fluid Science, 2005, 29: 925-935.
    [101]Siggia E D. Numerical Study of Small Scale Intermittency in Three Dimensional Turbulence[J]. Journal of Fluid Mechanics, 1981, 107: 375-406.
    [102]Douady S, Couder Y, and Brachet M E. Direct Observation of the Intermittncy of Intense Vorticity Filaments in Turbulence[J]. Physical Review Letters, 1991, 67: 983-986.
    [103]Jiménez J, Wray A A, Saffman P G, et al. The Structure of Intense Vorticity inHomogeneous Isotropic Turbulence[J]. Journal of Fluid Mechanics, 1993, 255: 65-90.
    [104]Jiménez J, Wray A A. On the Characteristics of Vortex Filaments in Isotropic Turbulence[J]. Journal of Fluid Mechanics, 1998, 373: 255-285.
    [105]Ruetsh G R and Maxey M R. The Evolution of Small-scale Structures in Homogeneous Tubulence[J]. Physics of Fluids, 1992, 4: 2747-2760.
    [106]Vincento A and Meneguzzi M. On the Dynamics of Vorticity Tubes in Homogeneous Turbulence[J]. Journal of Fluid Mechanics, 1994, 258: 245-254.
    [107]Perry A E and Chong M S. A Description of Edding Motions and Flow Paterns Using Critical-point Concepts[J]. Aunual Review of Fluid Mechanics, 1987, 19: 125-155.
    [108]Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow[J]. Journal of Fluid Mechanics, 1999, 387: 353-396.
    [109]Jeong J and Hussain F. On the Definition of a Vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94.
    [110]Hunt J C R, Wray A A, Moin P. Eddies, Streams and Convergence Zones in Turbulent Flows[J]. Report CTR-S88, Center for Turbulence Research, 1988: 193-208.
    [111]Mouri H, Hori A, Kawashima Y. Vortex Tubes in Velocity Fields of Laboratory Isotropic Turbulence[J]. Physics Letters A, 2000, 276: 115-121.
    [112]Grant H L, Nisbet I C T. The Inhomogeneity of Grid Turbulence[J]. Journal of Fluid Mechanics, 1957, 2: 263-272.
    [113]Uberoi M S. Energy Transfer in Isotropic Turbulence[J]. Physics of Fluids, 1963, 6: 1048-1056.
    [114]Uberoi M S, Wallis S. Small Axisymmetric Contraction of Grid Turbulence[J]. Journal of Fluid Mechanics, 1966, 24: 539-543.
    [115]Comte-Bellot G, Corrsin S. The Use of a Contraction to Improve the Isotropy of Grid-generated Turbulence[J]. Journal of Fluid Mechanics, 1966, 25: 657-682.
    [116]Lavoie P, Djenidi L, Antonia R A. Effects of Initial Conditions in Decaying Turbulence Generated by Passive grid[J]. Journal of Fluid Mechanics, 2007, 585: 395-420.
    [117]Antonia R A, Lavoie P, Djenidi L, et al. Effect of a Small Axisymmetric Contraction on Grid turbulence[J]. Experiment in Fluids, 2009, 7: 348-355.
    [118]Thompson S M, Turner J S. Mixing Across an Interface Due to TurbulenceGenerated by an Oscillating Grid[J]. Journal of Fluid Mechanics, 1975, 67: 349-368.
    [119]Hopfinger E J, Toly J A. Spatially Decaying Turbulence and Its Relation to Mixing Across Density Interface[J]. Journal of Fluid Mechanics, 1976, 78: 155-175.
    [120]Srdic A, Fernando H J S, Montenegro L. Generation of Nearly Turbulence Using Two Oscillating Grids[J]. Experiments in Fluids, 1996, 20: 395-397.
    [121]Villermaux E, Sixou B, Gagne Y. Intense Vortical Structures in Grid-generated Turbulence[J]. Physics of Fluids, 1995, 7: 2008-2013.
    [122]Birouk M, Sarh B, G?kalp I. An Attempt to Realize Experimental Isotropic Turbulence at Low Reynolds Number[J]. Flow, Turbulence and Combustion, 2003, 70: 325-348.
    [123]Fallon T, Rogers C B. Turbulence-induced Preferential Concentration of Solid Particles in Microgravity Conditions[J]. Experiments in Fluids, 2003, 33: 233-241.
    [124]Hwang W, Eaton J K. Creating Homogeneous and Isotropic Turbulence Without a Mean Flow[J]. Experiments in Fluids, 2004, 36: 444-454.
    [125]Orszag S A, Patterson G S. Numerical Simulation of Three-dimensional Homogeneous Isotropic Turbulence[J]. Physical Review Letters, 1972, 28: 76-79.
    [126]Rogallo R S. Numerical Experiments in Homogeneous Turbulence[J]. NASA, 1981, TM-81315: 1-91.
    [127]Mansour N N, Wray A A. Decay of Isotropic Turbulence at Low Reynolds Number[J]. Physics of Fluids, 1994, 6(2): 808-813.
    [128]de Bruyn Kops S M, Riley J J. Direct Numerical Simulations of Laboratory Experiments in Isotropic Turbulence[J]. Physics of Fluids, 1998, 10(9): 2125-2127.
    [129]Meng Q G. On the Evolution of Decaying Isotropic Turbulence[J]. Acta Mechanica Sinica, 2004, 20(1): 113-116.
    [130]Kraichnan R H, Panda R. Depression of Nonlinearity in Decaying Isotropic Turbulence[J]. Physics of Fluids, 1988, 31(9): 2395-2397.
    [131]Shtilman L, Polifke W. On the Mechanism of the Reduction of Nonlinearity in the Incompressible Navier-Stokes Equation[J]. Physics of Fluids, 1989, 1(5): 778-780.
    [132]Tsinober A, Ortenberg M, Shtilman L. On Depression of Nonlinearity in Turbulence[J]. Physics of Fluids, 1999, 11(8): 2291-2297.
    [133]Eswaran V, Pope S B. An Examination of Forcing in Direct NumericalSimulations of Turbulence[J]. Computers & Fluids, 1988, 16(3): 257-278.
    [134]Lundgren T S. Linearly Forced Isotropic Turbulence[J]. Annual Research Briefs, Center for Turbulence Research, Standford, 2003: 461-473.
    [135]Rosales C, Meneveau C. Linear Forcing in Numerical Simulations of Isotropic Turbulence: Physical Space Implementations and Convergence Properties[J]. Physics of Fluids, 2005, 17(095106): 1-8.
    [136]Goth T, Fukayama D, Nakano T. Velocity Field Statistics in Homogeneous Steady Turbulence Obtained Using a High-resolution Direct Numerical Simulation[J]. Physics of Fluids, 1997, 14(3): 1065-51081.
    [137]Screenivasan K R. An Update on the Energy Dissipation Rate in Isotropic Turbulence[J]. Phys of Fluids, 1997, 10: 528-529.
    [138]Kaneda Y, Ishihara T, Yokokawa M, et al. Energy Dissipation Rate and Energy Spectrum in High Resolution Direct Numerical Simulations of Turbulence in a Periodic Box[J]. Physics of Fluids, 2003, 15(2): L21-L24.
    [139]Siggia E D, Patterson G S. Intermittency Effects in a Numerical Simulation of Stationary Three-dimensional Turbulence[J]. Journal of Fluid Mechanics, 1978, 86: 567-592.
    [140]Kerr R M. Higher-order Derivative Correlations and the Alignment of Small-scale Structures in Isotropic Turbulence[J]. Journal of Fluid Mechanics, 1985, 153: 31-58.
    [141]Ashurst W T, Kerstein A R, Kerr R M, et al. Alignment of Vorticity and Scalar Gradient with Strain Rate in Simulated Navier-Stokes Turbulence[J]. Physics of Fluids, 1987, 30(8): 2343-2353.
    [142]Tsinober A, Kit E, Dracos T. Experimental Investigation of the Field of Velocity Gradients in Turbulent Flows[J]. Journal of Fluid Mechanics, 1992, 242: 169-192.
    [143]Moin P, Mahesh K. Direct Numerical Simulation: a Tool in Turbulence Research[J]. Annual Review of Fluid Mechanics, 1998, 30: 539-578.
    [144]Cantwell B J. On the Behavior of Velocity Gradient Tensor Invariants in Direct Numerical Simulations of Turbulence[J]. Physics of Fluids, 1993, 5(8): 2008-2013.
    [145]Soria J, Sondergaard R, Cantwell B J, et al. A Study of the Fine-scale Motions of in Compressible Time-devolping Mixing Layers[J]. Physics of Fluids, 1994, 6(2): 871-884.
    [146]Kerr R M. Histogram of Helicity and Strain in Numerical Turbulence[J]. Physical Review Letters, 1987, 59(7): 783-786.
    [147]Choi Y, Kim B G, Lee C. Alignment of Velocity and Vorticity and theIntermittency Distribution of Helicity in Isotropic Turbulence[J]. Physical Review E, 2009, 80(017301): 1-4.
    [148]Vedula P, Yeung P K. Similarity Scaling of Acceleration and Pressure Statistics in Numerical Simulations of Isotropic Turbulence[J]. Physics of Fluids, 1999, 11(5): 1208-1220.
    [149]Porta A L, Voth G A, Crawford A M, et al. Fluid Particle Accelerations in Fully Developed Turbulence[J]. Nature, 1999, 409: 1017-1019.
    [150]Voth G A, Porta A L, Crawford A M, et al. Measurement of Particle Accelerations in Fully Developed Turbulence[J]. Journal of Fluid Mechanics, 2002, 469: 121-160.
    [151]Mordant N, Delour J, Leveque E, et al. Long Time Correlations in Lagrangian Dynamics: a Key to Intermittency in Turbulence[J]. Physical Review Letters, 2002, 89(214501): 1-4.
    [152]Hill R J, Thoroddesn S T. Experimental Evaluation of Acceleration Correlations for Locally Isotropic Turbulence[J]. Physical Review E, 1997, 55(2): 1600-1606.
    [153]Lee S, Lee C. Intermittency of Acceleration in Isotropic Turbulence[J]. Physical Review E, 2005, 71(056310): 1-5.
    [154]McComb W D. The Physics of Fluid Turbulence[M]. Oxford University Press. New York. 1990.
    [155]van Doorn E, White C M, Sreenivasan K R. The Decay of Grid Turbulence in Polymer and Surfactant Solutions[J]. Physics of Fluids, 1999, 11(8): 2387-2393.
    [156]Cadot O, Bonn D, Douady S. Turbulent Drag Reduction in a Closed Flow System: Boundary Layer Versus Bulk Effects[J]. Physics of Fluids, 1998, 10(2): 426-436.
    [157]Bonn D, Amarouchène Y, Wagner C, et al. Turbulent Drag Reduction by Polymers[J]. Journal of Physics: Condens Matter. 2005, 17: S1195-S1202.
    [158]Drappier J, Divoux T, Amarouchène Y, et al. Turbulent Drag Reduction by Surfactants[J]. Europhysics Letters, 2006, 74(2): 362-368.
    [159]Liberzon A, Guala M, Lüthi B, et al. Turbulence in Dilute Polymer Solution[J]. Physics of Fluids, 2005, 17(031707): 1-4.
    [160]Liberzon A, Guala M, Kinzelbach W, et al. On Turbulent Kinetic Energy Production and Dissipation in Dilute Polymer Solutions[J]. Physics of Fluids, 2006, 18(125101): 1-12.
    [161]Crawford A M, Mordant N, Xu H T, et al. Fluid Accelation in the Bulk of Turbulent Dilute Polymer Solutions[J]. New Journal of Physics, 2008,10(123015): 1-10.
    [162]Ouellette N T, Xu H T, Bodenschatz E. Bulk Turbulence in Dilute Polymer Solutions[J]. Journal of Fluid Mechanics, 2009, 629: 375-385.
    [163]Benzi R, De Angelis E, Govindarajan R, et al. Shell Model for Drag Reduction with Polymer Additive in Homogeneous Turbulence[J]. Physical Review E, 2003, 68(016308): 1-10.
    [164]阳倦成,张红娜,李小斌,等.粘弹性流体纯弹性不稳定现象研究综述[J].力学进展, 2010, 40(5): 1-22.
    [165]Versluis M, Blom C, van der Meer D, et al. Leaping Shampoo[J]. Physics of Fluids, 2007, 19(091106): 1.
    [166]Everaers R, Sukumaran S K, Grest G S, et al. Rheology and Microscopic Topology of Entangled Polymeric Liquids[J]. Science, 2004, 303: 823-826.
    [167]Ezrahi S, Tuval E, Aserin A. Properties, Main applications and Perspectives of Worm Micelles[J]. Advances in Colloid and Interface Science, 2006, 128-130: 77-102.
    [168]张红娜.粘弹性流体三维Kolmogorov流动弹性湍流直接数值模拟研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [169]Vaithianathan T, Robert A, Brasseur J G, et al. An Improved Algorithm for Simulating Three-dimensional, Viscoelastic Turbulence[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 140: 3-22.
    [170]Sagaut P, Cambon C. Homogeneous Turbulence Dynamics[M]. Cambridge University Press. 2008.
    [171]Cui G X, Zhou H B, Zhang Z S, et al. A New Dynamic Subgrid Eddy Viscosity Model with Application to Turbulent Channel Flow[J]. Physics of Fluids, 2004, 16(8): 2835-2842.
    [172]Sullivan N P, Mahalingam S, Kerr R M. Deterministic Forcing of Homogeneous, Isotropic Turbulence[J]. Physics of Fluids, 1994, 6: 1612-1614.
    [173]Yeung P K, Brasseur J G. The Response of Isotropic Turbulence to Isotropic and Anisotropic Forcing at the Large Scales[J]. Physics of Fluids, 1991, 3: 884-897.
    [174]Taylor M A, Kurien S, Eyink G L. Recovering Isotropic Statistics in Turbulence Simulations: The Kolmogorov 4/5th law[J]. Physical Review E, 2003, 68(026310): 1-8.
    [175]Biferale L, Lanotte A S, Toschi F. Effects of Forcing in Three-dimensional Turbulent Flows[J]. Physical Review Letters, 2004, 92(094503): 1-4.
    [176]Mazzi B, Vassilicos J C. Fractral-generated Turbulence[J]. Journal of FluidMechanics, 2004, 502: 65-87.
    [177]Chen S Y, Doolen G D, Kraichnan R H, et al. On Statistical Correlations between Velocity Increments and Locally Averaged Dissipation in Homogeneous Turbulence[J]. Physics of Fluids, 1993, 5: 458-463.
    [178]郭晓东.直接数值模拟与大涡模拟后台阶湍流流动[D].南京:南京航空航天大学, 2007.
    [179]Missirlis K A, Assimacopoulos D, Mitsoulis E, et al. A Finite Volume Approach in the Simulation of Viscoelastic Expansion Flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 78: 91-118.
    [180]Oliveira P J, Pinho F T, Pinto G A. Numerical Simulation of Non-linear elastic Flows with a General Collocated Finite-volume Method[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 78: 1-43.
    [181]Singh P, Leal L G. Finite-element Simulation of the Start-up Problem for a Viscoelastic Fluid in an Eccentric Rotating Cylinder Geometry Using a Third-order Upwind Scheme[J]. Theoretical and Computational Fluid Dynamics, 1993, 5: 107-137.
    [182]Min T, Yoo J Y, Choi H. Effect of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 100: 27-47.
    [183]Kurganov A, Tadmor E. New High-resolution Central Schemes for Nonlinear Conservation Laws and Convection-diffusion Equation[J]. Journal of Computational Physics, 2000, 160: 241-282.
    [184]Kraichnan R H. Decay of Isotropic Turbulence in the Direct-interaction Approximation[J]. Physis of Fluids, 1964, 7: 1030-1048.
    [185]Taylor G I. Production and Dissipation of Vorticity in a Turbulent Fluid[C]. Proceedings of Royal Society of London. Seria A, 1938, 164: 15-23.
    [186]Tennekes H, Lumley J L. A First Course in Turbulence[M]. MIT Press. 1972.
    [187]Tsinober A. Vortex Stretching Versus Production of Strain/Dissipation[M]. Turbulence Structure and Vortex Dynamics. edited by J. C. R. Hunt & J. C. Vassilicos. Cambridge University Press. 2000.
    [188]邱翔,刘宇陆.湍流的相干结构[J].自然杂志, 2004, 4: 187-193.
    [189]Horiuti K. A classification Method for Vortex Sheet and Tube Structures in Turbulent Flows[J]. Physics of Fluids, 2001, 13(12): 3756-3774.
    [190]Alfonsi G, Primavera L. Temporal Evolution of Vortical Structures in the Wall Region of Turbulent Channel Flow[J]. Flow, Turbulence and Combustion, 2009, 83: 61-79.
    [191]Sibilla S, Beretta C P. Near-wall Coherent Structures in the TurbulentChannel Flow of a Dilute Polymer Solution[J]. Fluid Dynamics Research, 2005, 37: 183-202.
    [192]Tanaka M, Kida S. Characterization of Vortex Tubes and Sheets[J]. Physics of Fluids, 1993, 5: 2079-2082.
    [193]Horiuti K, Takagi Y. Identification Method for Vortex Sheet Structures in Turbulent Flows[J]. Physics of Fluids, 2005, 17(121703): 1-4.
    [194]Jiménez J. Kinematic Alignment Effects in Turbulent Flows[J]. Physics of Fluids, 1992, 4: 652-654.
    [195]Lund T S, Rogers M M. An Improved Measure of Strain State Probability in Tturbulent Flows[J]. Physics of Fluids, 1994, 6: 1838-1847.
    [196]Tsinober A. Is Concentrated Vorticity that Important?[J] European Journal of Mechanics-B/Fluids, 1998, 17(4): 421-449.
    [197]Hou T Y, Li R. Dynamic Depletion of Vortex Stretching and Non-blowup of the 3-D Incompressible Euler Equations[J]. Journal of Nonlinear Science, 2006, 16: 639-664.
    [198]Lumley J L. In Atmospheric Turbulence and Radio Wave Propagation[M], edited by A. M. Yaglom and V. I. Tararsky. Nauka, Moscow. 1967.
    [199]Sirovich L. Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures[J]. Quarterly of Applied Mathematics, 1987, 45: 561-571.
    [200]何江,符松.竖直平板间自然对流大尺度相干结构的POD分析[J].力学学报, 2003, 35(4): 385-392.
    [201]Delville J, Ukeiley L, Cordier L, et al. Examination of Large-scale Structures in a Turbulent Plane Mixing Layer. Part. 1. Proper Orthogonal Decomposition[J]. Journal of Fluid Mechanics, 1999, 391: 91-122.
    [202]Bi W T, Sugii Y, Sakamoto K, et al. Time-resolved Proper Orthogonal Decomposition of the Near-field Flow of a Round Jet Measured by Dynamic Particle Image Velocity[J]. Measurement Science and Technology, 2003, 14: L1- L5.
    [203]Kostas J, Soria J, Chong M S. A Comparison between Snapshot POD Analysis of PIV Velocity and Vorticity Data[J]. Experiments in Fluids, 2005, 38: 146-160.
    [204]Samanta G, Oxberry G M, Beris A N, et al. Time-evolution K-L Analysis of Coherent Structures based on DNS of Turbulent Newtonian and Viscoelastic Flows[J]. Journal of Turbulence, 2008, 9(41): 1-25.
    [205]Samanta G, Oxberry G M, Beris A N, et al. Velocity and Conformation Statistics based on Reduced Karhunen-Loeve Projection Data from DNS ofViscoelastic Turbulent Channel Flow[J]. Journal of Non-Newtonian fluid Mechanics, 2009, 165(19): 55-63.
    [206]Siggia E D. Invariants for the One-point Vorticity and Strain Rate Correlation Functions[J]. Physics of Fluids, 1981b, 24: 1934-1936.
    [207]Martín J, Ooi A, Chong M S, et al. Dynamics of the Velocity Gradient Tensor Invariants in Iotropic Turbulence[J]. Physics of Fluids, 1998, 10: 2336-2346.
    [208]Ooi A, Martín J, Soria J, et al. A Study of the Evolution and Characteristics of the Invariants of the Velocity-gradient Tensor in Isotropic Turbulence[J]. Journal of Fluid Mechanics, 1999, 381: 141-174.
    [209]van der Bos F, Tao B, Meneveau C, et al. Effects of Small-scale Turbulent Motions on the Filtered Velocity Gradient Tensor as Deduced From Holographic Partical Image Velocimetry Measurements[J]. Physics of Fluids, 2002, 14: 2456-2474.
    [210]da Silva C B, Pereira J C F. Invariants of the Velocity-gradient, Rate-of-strain, and Rate-of-rotation Tensors across the Turbulent/Nonturbulent Interface in Jet[J]. Physics of Fluids, 2008, 20(055101): 1-18.
    [211]Neill P L O, Soria J. The Topology of Homogeneous Isotropic Turbulence with Passive Scalar Transport[J]. ANZIAM J, 2005, 46: C1170-C1187.
    [212]Soria J, Cantwell B J. Topological Visualization of Focal Structures in Free Shear Flows[J]. Applied Scientific Research, 1994, 53: 375-386.
    [213]Blackburn H M, Mansour N N, Cantwell B J. Topology of Fine-scale Motions in Turbulent Channel Flow[J]. Journal of Fluid Mechanics, 1996, 310: 269-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700