三峡库区消落带土壤汞库及其风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是一种高毒性的非必需元素,具有持久性、易迁移性和高度的生物富集性等特征。自20世纪50年代初日本发生水俣病事件以来,汞污染问题一直受到人们的广泛关注。20世纪80年代后,随着逐年增加的化石燃料燃烧、金属冶炼等人为过程不断向大气环境释放大量的汞,使得全球大气汞浓度逐年增加。由于汞具有特殊的物理性质和长距离传输特性,使国际社会对全球汞污染问题的关注达到了前所未有的高度,被联合国环境规划署等很多国际机构列为全球性优先控制污染物,具有跨国污染的属性,由此引发了新一轮汞污染问题研究的热潮。
     人们在研究汞污染问题时发现,在河流上构筑大坝并形成水库后,水域的环境条件将发生极大的变化。水库内的流速减缓,复氧能力改变,泥沙大量沉积,营养物质滞留,水体的初级生产力提高,氧化还原电位降低。这些物理化学条件的变化和伴随发生的各种复杂过程,将会影响进入水库中汞的浓度及其时空分布,使汞对水生生态环境的影响程度将会加剧。可见水库是一个典型的“汞敏感生态系统”,对水库汞污染问题的研究极为重要。
     三峡水库是目前我国最大,也是举世瞩目的特大型水库。三峡水库面积1084km~2,淹没的陆地面积就达632 km~2。其中,淹没的耕园地(不包含河滩地)为275.1 km~2,这些耕园地大多为三峡库区最肥沃、复种指数最高的农业用地。三峡库区南岸位于西南汞矿化带东缘、川东南高汞背景区,库区上游及支流输入的汞负荷巨大。根据研究预测,三峡水库蓄水后,库区汞活化效应将增强,鱼体对汞元素的生物富集作用加剧,水库鱼体汞含量将增加0.35~1.5倍左右,存在鱼体汞含量超过食品淡水鱼汞含量标准的风险。由此可见,三峡水库汞污染问题是倍受世人关注的重要问题。
     三峡水库属特大型年调节水库。按照规划设计,水库正常蓄水位高程175m,坝顶高程185m,5月底降至防洪限制水位145m。这种水库调度方式使得库周形成垂直高度为30m、面积400多km~2的水库消落带。对大型水库消落带,由于是库区径流的汇集地带,自然也成为环境汞的汇集区。另一方面,消落带土壤作为水库的最后一道缓冲带,它所汇集的汞等污染物最终又会影响到水体质量。因此,对水库而言,消落带既是汞的汇,又是汞的源,是汞的敏感区。三峡水库蓄水运行后,消落带土壤将长期处于干湿交替的变换过程,土壤的性质将会发生一系列变化,从而对汞的迁移转化及库区的水质产生很大的影响。目前库区消落带土壤汞赋存量及对环境的影响如何,对这一方面的系统研究相对缺乏。为此,本研究拟以我国最具特色的周期性干湿交替环境——三峡库区消落带为研究对象,开展消落带土壤汞的形态特征及其汞库存量的研究,并对消落带土壤汞对水环境的影响进行风险评估,对正确认识区域及全球大气汞的来源及释放具有重要意义。
     本研究以三峡库区重庆段消落带土壤为研究对象,对库区各区县消落带范围的土壤进行系统采样,研究整个消落带耕园土壤及不同高程范围土壤汞及其赋存形态与变化特征,并分析影响汞赋存状态的因素,通过分析样品总汞及各形态汞含量,估算区域内耕园土壤汞库中总汞及各形态汞库存量。通过吸附解吸试验,研究不同类型土壤的吸附解吸特征,通过对土壤汞的库存量、汞的赋存状态、吸附解吸特征的分析,评价消落带土壤汞库对水环境带来的风险。主要研究结果如下:
     整个消落带土壤中汞平均含量0.0839mg/kg,为重庆市土壤平均背景值的1.7倍、我国背景值(0.04mg/kg)的2.1倍,表明消落带土壤具有明显的汞富集趋势。土壤汞赋存形态以残留态为主,各形态汞的平均分配系数依此为:残留态(61.4%)>碱溶态(16.1%)>酸溶态(14.0%)>过氧化氢态(6.5%)>水溶态(2.0%)。对土壤理化性质与汞含量及形态的相关分析表明,土壤有机质与土壤总汞含量呈极显著相关(r=0.46**,n=158),而与土壤砂粒、粘粒、CEC呈负相关关系。土壤汞含量与土壤pH呈负相关关系,总汞和绝大部分形态的汞都和粉粒和粘粒含量呈负相关关系。研究表明三峡库区消落带土壤中的汞主要来源于外源性输入。
     在3个水位高程范围总汞含量的变化为145~155m(0.0856mg/kg)>155~165m(0.0804mg/kg)>165~175m(0.0602mg/kg),土壤汞含量与高程呈负相关关系。同一高程范围,除在145~155m范围内右岸总汞平均含量高于左岸外,在其它两个高程层均表现为右岸总汞平均含量高于左岸,两岸平均汞含量随高程变化也表现为总汞相一致。土壤剖面汞及其形态分布存在着显著的差异,并受各种理化性质的影响,各形态汞与有机质含量几乎都表现为正相关,随有机质含量的增加而增加。土壤剖面中总汞、碱溶态汞和残留态汞在土壤各层中的分布大体呈现出高-高-低或高-低-高的变化趋势。在整个消落带土壤汞库中,各层土壤汞的形态比例和消落带表层土壤中各形态汞所占的比例关系基本一致,可以通过土壤中各形态汞的含量比例关系来近似反映土壤汞库中各形态汞的比例关系。
     全市消落带耕园地总汞库存量为14951.65-33492.15kg,平均汞库存量为20615.35kg。其中0-20cm层土壤汞平均库存量为7051.79kg,占总汞库存量的34.20%;20-40cm层土壤汞平均库存量为5172.70kg,占总汞库存量的25.10%;40-60cm层土壤汞平均库存量为8390.86kg,占总汞库存量的40.70%。全市消落带耕园地水溶态汞平均库存量为270.97kg。0-20cm、20-40cm、40-60cm各层土壤水溶态汞平均库存量分别为81.46、113.61和75.90kg。酸溶态汞平均库存量为2995.23kg,土壤各层平均库存量分别为442.19、1276.47和1276.57kg。碱溶态汞平均库存量为3450.45kg,土壤各层平均汞库存量分别为1559.33、1049.26和841.86kg。过氧化氢溶态汞平均库存量为650.16kg,土壤各层平均库存量分别为209.46、233.91和200.11kg。残留态汞平均库存量为13255.52kg,土壤各层平均库存量分别为4759.46、2499.55和5996.51kg。
     土壤pH、有机质、粒径等土壤理化性质对土壤汞吸附解吸有很明显的影响。土壤对汞的最大吸附量顺序为:紫色潮土>中性紫色土>灰棕潮土,对Hg~(2+)的吸附作用力顺序为:中性紫色土>紫色潮土>灰棕潮土。3种土壤吸附汞的速率顺序为灰棕潮土>紫色潮土>中性紫色土。土壤对汞的吸附作用力越大,其解吸率也就越小。根据Langmuir方程拟合得出的最大解吸量顺序为灰棕潮土>紫色潮土>中性紫色土。
     3种土壤对汞的解吸率都不太高,最大解吸率分别为灰棕潮土8.74%,紫色潮土5.85%,中性紫色土2.07%,说明汞容易与土壤结合且比较稳定,在土壤中的移动性比较弱。在三峡水库消落带土壤中,中性紫色土对周边环境地表径流带来的汞的吸持能力最强,即“汇”的作用大,而灰棕潮土对汞的解吸率最大,即“源”的强度高。
     土壤汞释放进入水体后对水体中汞含量的影响非常小,但由于水土流失、土壤汞释放到水体中的汞会通过食物链的富集放大,使长江流域重庆段鱼肉中汞的平均含量达到0.206mg/kg,增幅达43.2%,汞的持续释放会使汞对水体和鱼类潜在风险会进一步增加。通过单因子评价、地累积指数评价和生态潜在污染指数评价,消落带土壤除个别地方受中等影响外,其它地方的汞的环境影响都在安全范围。通过土壤汞的健康风险评价,发现Hg经摄食途径进入人体的健康风险远低于可以接受的水平(10~(-6)),表明消落带土壤汞含量对人体基本不会产生危害。
Mercury is a highly toxic non-essential element with significant features of durable,easy mobility and a high degree of biological enrichment.Since the 20th century,due to,Minamata disease took place in Japan,mercury pollution problem has been the focus of global attention.After 20th century 80s,with the annual increasing of fossil fuel combustion,metal smelting and other anthropogenic processes to keep the atmospheric release of large amount of mercury,the global mercury concentrations increases year after year.Due to the special physical properties and long-distance transmission characteristics of mercury,the international community's concerns about the global mercury pollution have reached an unprecedented height.Furthermore,United Nations Environment Program and many other international organizations categorize mercury as a global priority pollutant,which leads a new round of studies about mercury pollution in the globe.
     While scholar studied the mercury pollution,the dam built in the river and formed reservoirs would radically affect the environmental conditions of this watershed,which caused the sequent results such as slowing down water flow rate,changing reoxygenation,deposition of large number of sediments, retention of nutrient matters,enhancement of primary productivity and lower redox potentials.Thus thses physical-chemical changes occurred with various others complicated processes,made a significant impact on temporal and spatial distribution of mercury in certain reservoir,and intensified the environmental influence of mercury in the aquatic eco-environment.All above indicated the reservoir is a typical mercury-sensitive ecosystem,and it's so necessary to study the mercury pollution problem.
     The Three Gorges Reservoir is the largest,but also world-renowned large reservoirs.The Three Gorges Reservoir area of 1084km~2,submerged land area amount to 632 km~2,which submerged cultivation lands(not including flood lands) are 275.1 km~2 with most high fecundity and multiple-crop index.The south bank of the Three Gorges reservoir area is located in the eastern margin of southwest mineralization zone of mercury,which belongs to high mercury background value zone of southeast of Sichuan province with a large mercury load from reservoir upstream and tributaries.According to research forecasts,the reservoir will increase the activation effect of mercury,which also enhances mercury concentrations by 0.35-1.5 times in fish body through intensified bio-enrichment.There exists a risk that mercury content exceeds food safety standard for fish.Thus it's necessary to focus on the mercury pollution in Three Gorges reservoir.
     The Three Gorges Reservoir is a large reservoir with one year period for adjustment.Accordance with the planning and design,the normal water level of reservoir on operation is 175m,peak height is 185m,and the limitation water level is 145m in lately of march for flood control.Because of this way of reservoir operation,Water level fluctuating zones in the reservoir form with 30m vertical height and more than 400km~2 areas.For the water level fluctuation zones of large reservoir,the reservoir is not only pool for runoff,but also a natural pool for mercury in environment.On the other hand,the lands of water level fluctuation zones are final buffer zones for reservoir,which affect on water quality due to water pool for mercury.Thus,reservoir is so important environmental condition for pollutants and water level fluctuation zones are both pool and source of mercury,which are mercury-sensitive zones.After operation of reservoir,the land(especially soils) of water level fluctuation zones experience the long-term alternation of wet and dry processes,the characteristics of soils will change sequentially,which make a significant impact on transformation and transfer of mercury,as well as water quality in reservoir.Currently,however there is lack of systematical researches about mercury load and inventory,meanwhile few reports presented the corresponding environmental effect.Thus,this research used the water level fluctuation zones of Three Gorges Reservoir,which most typical water fluctuating zone with distinctive alternation of wet and dry processes,as investigated subject.It investigated the forms characteristics and inventory of mercury,also assessed the environmental risk of mercury on soil of water level fluctuation zones,which showed a important significance to currently understand the source and release of mercury in global and regional range.
     In this research,soils from typical water level fluctuation zones were used as investigation subject, and soil of different districts and counties from the zones were sampled systematically.It discussed forms characteristics and transformation of mercury in soil according to different heights in whole crop fields, and then analyzed the factors,which would affect mercury formations in soils.Meanwhile,of analyze the contents of total mercury and various forms mercury,estimation was processed to know the inventory of total and various forms mercury in the investigated fields.Furthermore,it studied the adsorption and desorption characteristics from mercury pool of various types soils on mercury through batch adsorption and desorption experiments in lab.Finally,by the data sourced from all above processes,environmental risk assessment was processed to assess the water quality and environmental risk caused by mercury pool of water level fluctuation zones.The results were all as follows:
     Residual mercury was the dominated form in average concentration of mercury of all water level fluctuation zones soils.The average concentration of mercury in soils is 0.0839mg/kg,the result not only preponderate over 1.7 times of background value of Chongqing,but also preponderate over 2.1 times of China(0.040mg/kg).Also these showed that Mercury enrichment evidence in soils of water fluctuation areas.The average distribution coefficients were as the below order:residual mercury(61.4%)>alkali-soluble mercury(16.1%)>acid-soluble mercury(14.0%)>H_2O_2-soluble mercury(6.5%)>water-soluble mercury(2.0%).By analysis of effect of soil physic-chemistry properties on concentrations and forms of mercury,it indicated soil organic matter and soil total mercury content was highly significantly correlated(r=0.46~(**),n = 158),but with soil sand,clay,CEC negative correlation.In addition,mercury concentration in soil was negatively correlated with soil pH,meanwhile most forms of mercury showed a significant negative correlation with silt and clay content in soil,which further suggested the mercury in water level fluctuation zones,was mainly from exogenous input.
     The changes of total mercury content from three water levers were 145-155m(0.0856mg/kg)>155-165m(0.0804mg/kg)>165-175m(0.0602mg/kg).There was a negative correlation between mercury content in soil and water level.In the same range of water heights,besides that mean mercury contents in right-side bank were higher than left-side in 145-155m,the other water heights showed a significant phenomena that right was higher than left.In both of banks,mean mercury contents changed with the identical trend of total mercury.On the other hand,there was a significant difference between mercury in soil layer and forms distribution.Various forms of mercury showed a positive relationship with organic matters due to different kinds of physic-chemical properties,while mercury increased with increasing of organic matters.In soil profile,total mercury,alkali-soluble mercury and residual mercury in different soil layers showed a high-high-low or high-low-high change trend.In mercury inventory of all water level fluctuation zones investigated,the ratios of different mercury forms in soil layers was identical with ratios of mercury forms in soil surfaces of water level fluctuation zones,which indicated the proportion of different mercury forms in soil mercury inventory by concentrations ratios of various mercury forms in soils.
     Total mercury inventory were 14951.65-33492.15kg in crop lands of water level fluctuation zones of Chongqing,with mean mercury inventory was 20615.35kg.Meanwhile mean soil mercury inventory was 7051.79kg in 0-20cm soil layer,which amounted 34.20%of all inventory.For 20-40cm soil layer,mean mercury inventory was 5172.70kg,which was 25.10%of all inventory.The mean mercury inventory was 8390.86kg,contributed 40.70%of all inventory.On the other hand,data indicated mean water-soluble mercury inventory was 270.97kg,which showed 81.46,113.61and 75.90kg of mean values in 0-20cm, 20-40 and40-60cm respectively.For acid-soluble mercury,mean value was 2995.23kg with 1559.33、1049.26 and 841.86kg respectively in three types soil layers.In addition,mean mercury inventory of alkali-soluble mercury was 3450.45kg,with 1559.33、1049.26and 841.86kg of above mentioned soil layers respectively.For H_2O_2-soluble mercury,in three depths soil layers the mean mercury inventory were 209.46,233.91and 200.11kg respectively,Which showed 650.16kg of total mean value.The rest form mercury was residual mercury,and mean inventory was 13255.52kg,which showed 4759.46、2499.55 and 5996.5 1kg in 0-20cm,20-40cm and 40-60cm soil layers respectively.
     Adsorption and desorption of mercury in soil have been significantly affected by properties of soil,as pH,organic matter and particle size.The maximum adsorption of mercury in soil follow the order of purple alluvial soil>neutral purplish soil>grey-brown alluvial soil.adsorption of Hg~(2+) in soil follow the order of:neutral purplish soil>purple alluvial soil>grey-brown alluvial soil.The adsorption rate of mercury in three soil follow the order of grey-brown alluvial soil>purple alluvial soil>neutral purplish soil.Moreover the desorption rate of mercury in soil gradually decreased with the raise of the adsorption. Meanwhile according to the result described by Langmuir model,the maximum desorption follow the order of grey-brown alluvial soil>purple alluvial soil>neutral purplish soil.
     The mercury desorption rate of the three types of soil were not too high,which the maximum desorption rate were 8.74%for gray-brown tide soil,for purple soil tide 5.85%,2.07%for neutral purple soil,respectively.Thus it indicated the mercury easily bound with soil to form into a steady state,and decreased mobility of mercury in soil.In soils of the investigated areas,neutral purple soil showed the maximum retention capacity of mercury brought by runoff from surrounding environment,which suggested the "sink" role of the soil is strongest,while mercury desorption of gray-brown tide soil mercury was the maximum,which meant the strength of as a "source" was highest.
     Soil mercury released from soil into water contributed a little to mercury concentration in water body. However,because of soil erosion,soil mercury released into water would be enriched and amplified mercury concentrations of water by food chain,which increased 43.2%average mercury concentration to 0.206mg/kg in fish from Chongqing part of Yangtze River.Meanwhile the sustained release of mercury further enhanced the mercury pollution potential risk of water body and fish.Through single-factor assessment,geo-accumulation index assessment and the ecological potential pollution index assessment,it indicated,except for a few places were affect by medium impact,the environmental impact of other parts of places were in safety range.Furthermore,this paper unveiled the health risk of mercury into human body by ingestion was far below the accepted limitation level(10~(-6)),indicating mercury in water level fluctuation zones showed little or no harm on human body.
引文
1. Alves C F, Melo L F, Vieira M J. Influence of medium composition on the characteristics of denitrifying biofilm formed by Alcaligenes denitrificans in a fluidized bed reactor[J]. Process Biochemitry, 2002,37(8):837-845
    
    2. Amyot M, Auciair J C, Poissantl. In situ high temporal resolution analysis of elemental mercury in natural waters[J].Analytical Chemica Acta, 2001,447( 1): 153-159
    
    3. Amyot M, Gillis G A, Morel F M M, et al. Production and loss of dissolved gaseous mercury in coastal seawater[J]. Environment Science and Technoledge. 1997, 31: 3600-3611
    
    4. Amyot M, Mierle G, Lean D, et al. Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes[J], Geochim Cosmochim Acta. 1997, 61: 975-987
    
    5. Anderson M R, Scruton D A, Williams U P, et al. Mercury in fish in the small wood reservoir, Labrador, twenty one years after impoundment[J]. Water, Air and Soil Pollut, 1995,80: 927-93
    
    6. Angelidis M O, Aloupi M. geochemical study of coastal sediments influenced by river-transported pollution: Southern Evoikos Gulf, Greece[J]. Mar Pollut Bull, 2000(40):77-82
    
    7. Baeyens W, Leermakers M. Elemental mercury concentrations and formation rates in the Scheldt Estuary and the North Sea[J].Marine Chemistry, 1998,60:257-266
    
    8. Bailey E A, Gray J E, Theodorakos P M. Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska, USA[J]. Geochemistry: Exploration, Environment, analysis, 2002, 2: 275-285
    
    9. Balcom P H, Hammerschmidt W F, Fitzgerald C H, et al. Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor estuary[J]. Mar. Chem. 2008, 109: 1-17
    
    10. Balogh S J, Nollet Y H, Swain E B. Redox Chemistry in Minnesota Steams during Episodes of Increased Methylmercury Discharge[J]. Environ Sci Technol, 2004, 38: 4921-4927
    
    11. Benoit J M, Mason R P, Gilmour C C, et al. Constants for Mecury Binding by Dissolved Organic Carbon Isolates from the Florida Everglades[J]. Geochim Cosmochim Acta, 2001, 65:4445-4451
    
    12. Bergan T L, Gallardo L, Rodhe H. Mercury in the global troposphere: A three-dimensional model study[J]. Atmospheric Environment, 1999,33:1575-1585
    
    13. Bergan T, Rohde H. Oxidation of elemental mercury in the atmosphere; constraints imposed by global scale modeling[J]. Journal of Atmospheric Chemistry, 2001, 40: 191-212
    
    14. Beucher C, Chung W W P, Richard C, et al. Dissolved gaseous mercury formation under UV irradiation of unamended tropical waters from French Guyana[J]. The Science of the Total Environment. 2002, 290: 131-138
    
    15. Biester H, Christian S. Determination of mercury bindingforms in contaminated soils: mercury pyrolysis versus sequential extraction[J]. Environ Sci Technol, 1997, 31:233-239
    
    16. Bloom N. Determination of pictogram levels of methylmercury by aqueous phase ethylation followed by cryogenicgas. chromatograhpy with cold vapour atomic fluorescence detection[J]. Can. J. Fish. Aquat. Sci. 1989(46):1131-1140
    
    17. Boening D W. Ecological Effects, Transport, and fate of Mercury: A General Review[J]. chemosphere, 2000, 40:1335-1351
    
    18. Boudala F S, Folkins I, Beauchmap S, et al. Mercury flux measurements over air and water in Kejimkujik national park, Nova Scotia[J]. Water, Soil and Air Pollution. 2000, 122: 193-202
    
    19. Brunke E G, Labuschagne C, Slemr F. Gaseous mercury emissions from a fire in the Cape Penisula, South Africa, during January 2000[J]. Geophysical Research Letters, 2001,28:1483-1486
    
    20. Campbell L, Verburg P, Dixon D G, et al. Mercury biomagnification in the food web of Lake Tanganyika (Tanzania, East Africa)[J]. The Science of the Total Environment. 2008,402:184-191
    
    21. Canavan C M, Caldwell C A, Bloom N S. Discharge of methylmercury enriched hypolimnetic water from a stratified reservoir[J]. Sci Tot Environ, 2000,260:159-170
    
    22. Carpi A, Lindberg S E. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge[J]. Environ Sci Technol, 1997, 31: 2085-2091
    
    23. Carpi A, Lindberg S E. Application of a Teflon dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil[J]. Atmospheric Environment. 1998, 32(5):873-882
    
    24. Celo V, Lean D R S, Scott S L. Abiotic methylation of mercury in the aquatic environment[J]. the Science of the Total Environment, 2005, 368(1):126-137
    
    25. Chan H M, Scheuhammer A M, Ferran A, et al. Impacts of Mercury on Freshwater Fish-Eating Wildlife and Humans[J]. Human and Ecological Risk Assessment. 2003,9(4): 867-883
    
    26. Cocking D, Rohrer M, Thomas R, et al. Effects of root morphology and Hg concentration in the soil on uptake by terrestrial vascular plants[J]. Water, Soil and Air Pollut. 1995, 80: 113-116
    
    27. Coelho J P, Pereira M E, Duarte A, et al. Macroalgae response to a mercury contamination gradient in a temperate coastal lagoon (Riade Aveiro, Portugal)[J]. Estuarine, Coastal and Shelf Science. 2005, 65: 492-500
    
    28. Coolbaugh M F, Gustin M S, Rytuba J J. Annual emissions of mercury to the atmosphere from natural sources in Nevada and California[J]. Environ Geol, 2002,42(4): 338-349
    
    29. Costa M, Liss P S. Photoreduction and evolution of mercury from seawater[J]. The Science of the Total Environment. 2000, 261:125-135
    
    30. Costa M, Liss P S. Photoreduction of mercury in sea water and its possible implications for Hg° air-sea fluxes[J]. Marine Chemistry. 1999, 68: 87-95
    
    31. Counter S A, Buchanan L H. Mercury exposure in children: a review[J]. Toxicology and Applied Pharmacology. 2004, 198(2): 209-230
    
    32. Daniel J, Prestbob E, Swartzendruber P, et al. Export of atmospheric mercury from Asia[J]. Atmospheric Environment. 2005, 39: 3029-3038
    
    33. Daniel O, Conen F, Roland V, et al. Estimation of Hg~0 exchange between ecosystems and the atmosphere using ~(222)Rn and Hg concentration changes in the stable nocturnal boundary layer[J]. Atmospheric Environment. 2006, 40: 856-866
    
    34. Dastoor A P, Larocque Y. Global circulation of atmospheric mercury: a modeling study[J]. Atmospheric Environment. 2004, 38(1): 147-161
    
    35. David G. S, Hao J M, Wu Y, et al. Anthropogenic mercury emissions in China[J]. Atmospheric Environment. 2005, 39:7789-7806
    
    36. Dill C, Kuiken T, Zhang H, et al. Diurnal variation of dissolved gaseous mercury (DGM) levels in a southern reservoir lake (Tennessee, USA) in relation to solar radiation[J]. Science of The Total Environment, 2006, 357(1-3): 176-193
    
    37. Eckley C S, Hintelmann H. Determination of Mercury Methylation Potentials in the Wate Column of Lakes Across Canada[J]. The Science of the Total Environment, 2005, 368(1): 111-125
    
    38. Engstrom D, Swain E. Recent declines in atmospheric mercury deposition in the upper Midwest[J]. Environ Sci Technol, 1997, 31: 906-966
    
    39. Ericksen J A, Gustin M S, Schorran D E, et al. Accumulation of atmospheric mercury in forest foliar[J]. Atmospheric Environment, 2003, 37: 1613-1622
    
    40. Ericksen J A, Gustin M S. Foliar exchange of mercury as a function of soil and air mercury concentrations[J]. The Science of the Total Environment. 2004, 324(1-3): 271-279
    
    41. Fang F M, Wang Q C, Li J F. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate[J]. Science of The Total Environment. 2004,330(1-): 159-170
    
    42. FAO/WHO. Joint FAO/WHO expert committee on food additives (JECFA). fifty-thied meeting, Rome, 1999, 1-10 June
    
    43. Fearnside P M. Environmental impacts of Brazil's Tucurui Dam: Unlearned lessons for hydroelectric development in Amazonia[J]. Environ Manag, 2001, 27: 377-396
    
    44. Feng X B, Chen Y C, Zhu W G. Study on Fluxes of soil volatile mercury [J]. Environment Science, 1996,17(2): 20-22
    
    45. Feng X B, Qiu G L, Wang S, et al. Distribution and speciation of mercury in surface waters in mercury mining areas in Wanshan, Southwestern China]]]. Journal de Physique IV, 2003, 107: 455-458
    46.Feng X B,Yan H Y,et al.Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir,Guizhou,China[J].Atmospheric Environment.2004,38:4721-4732
    47.Ferrara R,Maserti B E,Liso D A,et al.Atmospheric mercury emission at Solfatara volcano (Pozzuoli,Phlegraean Fields Italy)[J].Chemosphere,1994,29:1421-1428
    48.Ferrara R,Mazzolai B,Lanzillotta E,et al.Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin[J].The Science of the Total Environment.2000a,259:115-121
    49.Ferrara R,Mazzolai B,Lanzillotta E,et al.Temporal trends in gaseous mercury evasion from the Mediterranean Sea waters[J].The Science of the Total Environment.2000b,259:183-190
    50.Ferrari C P,Pierre A G,Aspmo K,et al.,Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-(?)lesund,Svalbard[J].Atmospheric Environment.2005,39:7633-7645
    51.Fischer R G,Rapsomanikis S,Andreae M O.Bioaccumulation of Methylmercury and Transformation of Inorganic Mercury by Macrofung[J].Environ Sci Technol,1995,29:993-999
    52.Fitzgerald W F,Gill G A,Hewitt A.Air-water cycling of mercury in lakes{A}.In:Watras C J,Huckbee J W.Mercury pollution.Integration an synthesis[M].Lewis Publisher,Arbor,MI,1994
    53.Fitzgerald W F.Is mercury increasing in the atmosphere? The need for an atmosphere mercury network(AMNET)[J].Water Air and Soil Pollution.1995,80:245-254
    54.Fitzgerald W F,Engstrom D R,Manson R.The case for atmospheric mercury contamination in remote areas[J].Environmental Science and Technology.1998,32(1):1-7
    55.Fitzgerald,W F.Cycling of mercury between the atmosphere and oceans[J].Nato Advanced Institute Series.1986,185,363-408
    56.Fleck J A,Grigal D F,Keeler G J.Mercury uptake by trees:an observational experiment[J].Water,Soil and Air Pollut.1998,115:513-523
    57.Fleck J A,Grigal D F,Nater E A.Mercury uptake by trees:An observational experiment[J].Water,Air and Soil Plooution,1999,115:513-523
    58.Fleming E J,Mack E E,Green P G,et al.Mercury Methylation from Unexpected Sources:Molybdate-Inhibited Freshwater Sediments and an Iron-Reducing Bacterium[J].Applied and Environmental Microbiology,2006,72(1):457-464
    59.Friedli H R,Radke L F,Lu J Y,et al.Mercury emission from burning of biomass from the temperate North American forests:laboratory and airborne measurement[J].Atmospheric Environment,2003,37:253-267
    60.Gadfeldt K,Feng X,Sommar J,et al.Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions[J].Atmospheric Environment.2001,35:3027-3038
    61. Galloway M E, Branfireun B A. Mercury Dynamics of A Temperate Forested Wetland[J]. The Science of the Total Environment, 2004,325: 239-254
    
    62. Ganmus A, Byrne A R, Horvat M. Mercury in the Soil-Plant-Deer-Predator food chain of a temperate forest in Slovenia[J]. Environmental Science & Technology, 2000, 34: 3337-3345
    
    63. Garcia E, Poulain A J, Amyot M, et al. Diel variations in photoinduced oxidation of Hg° in freshwater[J]. Chemosphere. 2005a, 59: 977-981
    
    64. Garcia E, Amyot M, Parisa A A. Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands[J]. Geochimica et Cosmochimica Acta. 2005b, 69(8): 1917-1924
    
    65. Gillis A A, Miller D R. Some local environmental effects on mercury emission and absorption at a soil surface[J]. The Science of the Total environment, 2000, 260(1-3): 191-200
    
    66. Gilmour C C, Henry E A, Mitchell R. Slufate Stimulation of Mercury Methylation in Freshwater Sediments[J]. environ Sci technol, 1992, 26:2281-2287
    
    67. Glmour C C, Henry E A. Mercury methylation in aquatic systems affected by acid deposition[J]. Environ Pollut, 1991,71:131-169
    
    68. Grassi S, Netti R. Se water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto(Southern Tuscany-Italy)[J]. Journal of Hydrology, 2000, 237: 198-211
    
    69. Gray J E, Crock J G, Fey D L. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA[J]. applied Geochemistry, 2002,17:1069-1079
    
    70. Gray J E, Greaves I A, Bustos D M, et al. Mercury and methylmercury contents in mine-Waste calcine, water, and sediment collected rrom the Palawan Quicksilver Mine, Philippines[J]. Environmental Geology, 2003,43;298-307
    
    71. Gray J E, Hines M E, Higueras P L, et al. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden mining district, Spain[J]. Environmental science & Technology, 2004, 38: 4285-4292
    
    72. Gray J E, Peter U, Theodorakos M, et al. Distribution, speciation, and transport of mercury in stream-sediment, streanwater, an sifh collected near abandoned mercury mines in southwestern Alaska, USA[J]. Science of the Total Environment, 2000, 260: 21-33
    
    73. Gray J E, Hines M E. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA[J]. Chemical Geology, 2009, 258:157-167
    
    74. Grieb T M, Driscoll C T, Gloss S P, et al. Factors affecting mercury accumulation in fish in the upper Michigan peninsula[J]. Environment Contaminate Toxicology. 1990, 9: 919-930
    
    75. Guentzel J L, Portilla E, Keith K M, et al. Mercury transport and bioaccumulation in riverbank communities of the Alvarado Lagoon System, Veracruz State, Mexico[J].The Science of the total environment, 2007,388: 316-324
    
    76. Guimaraes J R D, Meili M, Hylander L D, et al. Mercury Net Methylation in Five Tropical Flood Plain Regions of Brazil: High in the Root Zone of Floating Macrophyte Mats But Low in Surface Sediments and Flooded Soils[J]. The Science of the Total Environment, 2000,2(61): 99-107
    
    77. Guo Y N, Feng X B, Li Z G, et al. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China[J]. Atmospheric Environment, 2008, 42: 7096-7103
    
    78. Gustin M S, Biester H, Kim C S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates[J]. Atomspheric environment, 2002,36: 3241-3254
    
    79. Gustin M S, Stamenkovic J. Effect of watering and soil moisture on mercury emissions from soils[J]. Biogeochemistry. 2005, 76:215-232
    
    80. Gustin M S, Lindberg S E. Assessing the contribution of natural sources to regional atmospheric mercury budgets[J]. The Science of the Total Environment. 2000,259:61-71
    
    81. Guzzi G, Pigatto P D. More on methyl mercury [J]. Toxicology and Applied Pharmacology. 2005, 206(1): 94
    
    82. Hall B D, Manolopoulos H, Hurley J P, et al. Methyl and total mercury in precipitation in the Great Lakes region[J]. Atmospheric Environment. 2005, 39(39): 7557-7569
    
    83. Hall B D, Rosenberg D M, Wiens A P. Methylmercury in aquatic insects from an experimental reservoir[J]. Can J Fish Aquat Sci, 1998, 55: 2036-2047
    
    84. Hammerschmidt C R, Fitzgerald W F, Lamborg C H, et al. Biogeochemical Cycling of Methylmercury in Lakes and Tundra Watersheds of Arctic Alaska[J]. Environmental Science and Technology- Columbus, 2006, 40(4): 1204-1211
    
    85. Hanson P J, Tabberer T A, Lindberg S E. Emissions of mercury vapor from tree bark[J]. Atmospheric Environment, 1997, 31: 777-780
    
    86. He T R, Feng X B, Guo Y N, et al. The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: A case study from Hongfeng Reservoir, Guizhou, China[J]. Environmental Pollution. 2008, 154(1):56-67
    
    87. He T, Lu J, Yang F, et al. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario[J]. Sci Total Environ. 2007, 386(1-3):53-64
    
    88. Heyer M, Burke J, Keler G.. Atmospheric sources, transport and deposition of mercury in Michigan: Two years of event precipitation[J]. Water, Air and Soil Pollution. 1995, 80: 199-208
    
    89. Heyes A, Moore T R, Rudd J W M. Mercury and methylmercury in decomposing vegetation of a pristine and impounded wetland[J]. J Environ Qual, 1998,27: 591-599
    
    90. Hissler C, Probst J L. Chlor-alkali industrial contamination and riverine transport of mercury: Distribution and partitioning of mercury between water, suspended matter, and bottom sediment of the Thur River, France[J]. Applied Geochemistry, 2006, 21(11): 1837-1854
    
    91. Horvat M, Nolde N, Fajon V, et al. Total mercury, methylmercury and seleniuim in mercury polluted areas in the province Guizhou, China[J]. Science of the Total Environment, 2003, 304:231-256
    
    92. Hung G. A, Chmura, G. L. Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy[J]. Environmental Pollution. 2006, 142: 418-431
    
    93. Hylander L D, Grohn J, Tropp M, et al. Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil[J]. Journal of Environmental Management. 2006, 81:155-166
    
    94. Iglesia-turion S, Febrero A, Jauregui O, et al. Detection and quantification of unbound phytochelatin in plant extracts of Brassica napus grown with different levels of mercury[J]. Plant Physiology, 2006, 142:742-749
    
    95. Ikingura J R, Akagi H. Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania[J]. Sci Tot Environ, 2003, 304: 355-368
    
    96. Jack G C, Lindberg S E. Mechanisms of mercury removal by O_3 and OH in the atmosphere [J]. Atmospheric Environment. 2005, 39: 3355-3367
    
    97. Jane M H, O'Hare A, German T, et al. Blood Mercury Reporting in NHANES: Identifying Asian, Pacific Islander, Native American, and Multiracial Groups[J]. Environmental Health Perspect. 2006, 114:173-175
    
    98. Jiang H M, Feng X B, Dai Q J. Damming Effect on the Distribution of Mercury in Wujiang River[J]. Chinese Journal of Geochemistry, 2005, 24(2): 179-183
    
    99. Johnson T A, Bodaly R A, Mathias J A. Predicting fish mercury levels from physical characteristics of boreal reservoirs[J]. Can J Fish Aquat Sci, 1991, 48: 1468-1475
    
    100. Jockson T A. The problem in recently formed reservoirs of northern Manitoba (Canada): effects of impoundment and other factors on theproduction of methylmercury by microorganisms in sediments [J]. Can J Fish Aquat Sci, 1988, 45 :97-121
    
    101. Kaplan D I, Seine R T, Parker K E, et al. Iodide sorption to subsurface sediments and illitic minerals[J]. Environ. Sci. Technol, 2000, 34: 399-405
    
    102. Katarina G, Sommar J, Ferrara R, et al. Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea[J]. Atmospheric Environment. 2003, 37(1): 73-84
    
    103. Keeler G, Glinsorn G, Pirrone N. Particulate Mercury in the Atmosphere - Its Significance, Transport, Transformation and Sources[J]. Water Air and Soil Pollution, 1995. 80(1/4): p. 159-168.
    
    104. Kerin E J, Gilmour G G, Roden E, et al. Mercury Methylation by Dissimilatory Iron-Reducing Bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12): 7919-1921
    
    105. Kim K H, Kim M Y, Lee G W. The soil-air exchange characteristics of total gaseous mercury from a large-scale municipal landfill area[J]. Atmospheric Environment, 2001, 35: 3475-3493
    106. Kim K H, Kim M Y. Some insights into short-term variability of total gaseous mercury in ruban air[J]. Atmospheric Environment, 2001, 35: 49-54
    
    107. Kim K H, Kim M Y. The exchange of gaseous mercury across soil-air interface in a residential area of Seoul, Korea[J]. Atmospheric Environment, 1999, 33: 3153-3165
    
    108. Kim K H, Lindberg S E, Meyers T P. Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee[J]. Atmospheric Environment, 1995, 29(2): 267-282
    
    109. Kim K H, Lindberg S E. Design and initial tests of a dynamic enclosure chamber for measurements of vaporphase mercury fluxes over soils[J]. Water, Air and Soil Pollution, 1995, 80: 1059-1068
    
    110. Kim K H, Kim M Y. Mercury Emissions as landfill gas from a large-scale abandoned landfill site in Seoul. Atmosphere Environment. 2002, 36: 4919-4928
    
    111. King J K, Kostka J E, Frischer M E, et al. A Quantitative Relationship that Demonstrates Mercury Methylation Rates in Marine Sediments are Based on the Community Composition and Activity of Sulfate-reducing Bacteria[J].Environ Sci Technol, 2001, 35: 2491-2496
    
    112. King J K, Kostka J E, Frischer M E, et al. Sulfate-reducing Bacteria Methylate Mercury at Variable Rates in Pure Culture and Marine sediments[J]. Appl Environ Microbiol, 2000, 66:2430-2437
    
    113. Kinghorn A, Solomon P, Chan H M. Temporal and spatial trends of mercury in fish collected in the English-Wabigoon river system in Ontario, Canada[J]. Science of the Total Environment, 2007,372(2-3): 615-623
    
    114. Kotnik J, Horvat M, Fajion V, et al. Mercury in small freshwater lakes: A case study: Lake Velenje, Slovenia[J].Water, Air and Soil Pollution, 2000,134(14):319-339
    
    115. Kotnik J, Horvat M, Tessier E, et al. Mercury speciation in surface and deep waters of the Mediterranean Sea[J]. Marine Chemistry, 2007,107 (1): 13-30
    
    116. Krabbenhoft D P, Hruley J, Olsonl M L, et al. Diel Variability of mercury phase and species distributions in the Florida Everglades [J]. Biogeochemistry, 1998,40: 311-325
    
    117. Lacerda L C. Global mercury emissions from gold and silver mining[J]. Water Air and Soil Pollution. 1997, 97: 209-221
    
    118. Lamborg D H, Figzgerald W F, O'donell J, et al. A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients[J]. Geochim. Cosmochim. Acta, 2002, 66(7): 1105-1118
    
    119. Landis M S, Keeler G J. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study[J]. Environmental Science & Technology, 2002. 36(21): p. 4518-4524.
    
    120. Lanzillotta E, Frrara R. Daily trend of dissolved gaseous mercury concentration in coastal seawater of the Mediterranean basin[J].Chemosphere.2001,45:935-935
    121.Lepine L,Chambebiand A.Field sampling and analytical intercomparison for mercury and methylmecury determination in natural water[J].Water Air and Soil Pollution,1995,80(14):1247-1256
    122.Li P,Chai T F,Carichael G R,et al.Top-down estimate of mercury emissions in China using four-dimensional variational data assimilation[J].Atmospheric environment,2007,41(13):2804-2819
    123.Li P.Feng X B,Shang L,et al.Mercury pollution from artisanal mercury mining in Tongren,Guizhou,China[J].Applied Geochemistry,2008,23:2055-2064
    124.Lin C J,Pehkonen S O.The chemistry of atmospheric Mercury:a review[J].Atmospheric Environment,1999,33:2067-2079
    125.Lindberg S E,Bullock R,Ebinghaus R,et al.A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J].Ambio 2007,36(1):19-32
    126.Lindberg S E,Hanson P J,Meyers T P,et al.air/surfaces exchange of mercury vapor over forests-The need for a reassessement of continental biogenic mercury emissions[J].Atmospheric Environment,1998,32(5):895-908
    127.Lindberg S E,Zhang H.Air/water exchange of mercury in the everglades Ⅱ:measuring and modeling evasion of mercury form surface water in the Everglades Nutrient Removal Project[J].The Sciences of the Total Environment,2000,259:135-143
    128.Lindberg S E,Wei J D,Chanton J,et al.A mechanism for bimodal emission of gaseous mercuryfrom aquatic macrophytes.Atmospheric Environment.2005,39:1289-1301
    129.Lindberg S E,Stratton W J.Atmospheric mercury speciation:concentrations and behavior of reactive gaseous mercury in ambient air[J].Environmental Science and Technology.1998,32:49-57
    130.Lindberg S E,Kim Y,Meyers T,et al.A micrometeorological gradient approach for quantifying air-surface exchange of mercury vapor:tests over contaminated soils[J].Environmental Science and Technology.1995,29:126-135
    131.Lindberg S E,Meyers T P,Taylor J,et al.Atmosphere-surface exchange of mercury in a forest:results of modeling and gradient approaches[J].Journal of Geophysical Research.1992,97:2519-2528
    132.Lindqvist O,Johansson K,Aastrup M,et al.Mercury in the Swedish environment[J].Water Air Soil Pollut,1991,55:1-261
    133.Lindqvist O,Johansson K,Bringmark L,et al.Mercury in the Swedish environment:Recent Research on Causes,Consequence and Corrective Methods[J].Water,Air and Soil Pollution,1991,55(1-2):23-32
    134. Lindqvist O, Block M, Tjalve H. Distribution and excretion of Cd, mercury, methylmercury and Zn in the predatory beetle Pterostichus Niger[J]. Environmental Toxicologic Chemistry, 1995, 14: 1195-1201
    
    135. Lindqvist Q. Atmospheirc mercury-An review[J]. Tellus. 1985,37B:136-159
    
    136. Lockhart W L, Wilkinson P, Billeck B N, et al. Fluxes of mercury to lake sediments in central and northern Canada inferred from dated sediment cores[J]. Biogeochem, 1998, 40:163-173
    
    137. Lodenius M, Tulisalo E, Gargari A S. Exchange of mercury between atmosphere and vegetation under contaminated conditions[J]. The Science of the Total Environment. 2003, 304(1-3): 169-174
    
    138. Lohman K, Seigneur C, Gustin M, et al. sensitivity of the global atmospheric cycle of mercury to emissions[J]. Applied Geochemistry, 2008, 23:454-466
    
    139. Loseto L L, Siciliano S D, Lean D R S. Methylmercury Rroduction in High Arctic Wetlands[J]. Environ Toxiclo Chem, 2004, 23:17-23
    
    140. Loseto L L, Siciliano S D, Lean D R S. Snowmelt, Wetlands, DOC and climate: Methylmercury Sources in High Arctic Ecosystems[J]. Environ Sci Technol, 2004, 38:3004-3010
    
    141. Lyons W B, Fitzgibbon T O, Welch K A, et al. Mercury geochemistry of the Scioto River, Ohio: Impact of agriculture and urbanization[J]. Applied Geochemistry, 2006, 21(11): 1880-1888
    
    142. Magarelli G, Fostier A H. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon[J]. Atmospheric Environment. 2005, 39(39): 7518-7528
    
    143. Mailman M, Stepnuk L, Cicek N, et al. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review[J]. Science of the Total Environment, 2006, 368:224-235
    
    144. Malcolm E G, Keeler G J, Lawson S T, et al. Mercury and trace elements in cloud wate and Precipitation collected on Mt Mansfield, Vermont[J]. Journal of Environmental Monitoring, 2003, 5:584-590
    
    145. Manomita P, Nildari B, Bandopadyay B, et al Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant system and the development of genetic tolerance[J]. Envrion. Experi. Botany. 2004, Submitted
    
    146. Maramba N, Reyes J, Francisco R A, et al. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a Toxic legacy[J]. Journal of Environmental Management, 2006, 81:135-145
    
    147. Mason R P, Sheu G R. Role of the ocean in the global mercury cycle[J]. Global Biogeochemical cycles, 2002,16: 1093-1106
    
    148. Mason R P, Fitzgerald W F, Morel M M. The biogeochemical cycling of elemental mercury: anthropogenic influences[J]. Geochmi. Cosmochim. Acta. 1994, 58(15):3191-3198
    
    149. Mason R P, Morel F M M, Hemond H F. The role of microorganisms in elemental mercury formation in natural waters[J].Water Air and Soil Pollution.1995,80:775-787
    150.Mauro J B N,Giumaraes J R D,Melamed R.Mercury Methylation in A Tropical Macrophyte:Influence of Abiotic Parameters[J].Appl Organomet Chem,1999,13:631-636
    151.McMurtry M J,Wales D L,Scheider,et al.Relationship of mercury concentrations in lake trout and smallmouth bass to the physical and chemical characteristics of Ontario lakes[J].Can.J.Fish.Aquat.Sci.1989,46:426-434
    152.Miskimmin B M.Effect of Natural Levels of Dissolved Organic Carbon(DOC) on Mehtylmercury Formation and Sediment-Water Partitioning[J].Bull Environ Contain Toxicol,1991,47:743-750
    153.Mitchell B,Richard B.Control of the Methylation process in a mercury-polluted aquatic sediment[J].Environmental Pollution Series B,Chemical and Physical.1986,11:41-53
    154.Mraks R,Beldowska M.Air-sea exchange of mercury vapor over the Gulf of Gdansk and southern Baltic Sea[J].J Marine Systems,2000,27:315-324
    155.Munthe J,Bodaly R A,Branfireun B A,et al.Recovery of Mercury-Contaminated Fisheries[J].Ambio,2007,36(1):33-44
    156.Munthe J,Wangberg I,Pirrone N,et al.Intercomparison for sampling and analysis of atmospheric mercury species[J],Atmos.Environ,2001,35:3007-3017
    157.Munthe J,Xiao Z F,Lindqvist O.The aqueous reduction of divalent mercury by sulfite[J].Water,Air and Soil Pollution.1991,56:621-630
    158.Nazafarin L,Melissa S,David L.Total and methyl mercury patterns in Arctic snow during springtime at Resolute,Nunavut,Canada[J].Atmospheric Environment.2005,39:7597-7606
    159.Nguyen H L,Leermakers M,Kurunczi S,et al.Mercury distribution and speciation in Lake Balaton,Hungary[J].The Science of the Total Environment.2005,340:231-246
    160.Nriagu J O.A global assessment of natural sources of atmospheric traces metals[J].Nature,1989,338:47-49
    161.O'Driscoll N J,Siciliano S D,Peak D,et al.The influence of forestry activity on the structure of dissolved organic matter in lakes:Implications for mercury photoreactions[J].The Science of the Total Environment.2006,366:880-893
    162.Obrist D.Atmospheric mercury pollution due to losses of terrestrial carbon pools[J].Biogeochemistry,2007,85(2):119-123
    163.Ogrinc N,Monperrus M,Kotnik J,et al.Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea[J].Marine Chemistry,2007,107(1):31-48
    164.Oleg T.Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere[J].Atmospheric Environment.2005,39:7541-7548
    165.Pacyna J M,Scholtz T,Pirrone N.Global emissions of anthropogenic mercury to the atmosphere. Barbosa J P, Melanmed R, Villas Boas R. Abstract of the 5th International Conference on Mercury as a Global Pollutant[J], CETEM-Center for Mineral Technology, 1999,126: 23-27
    
    166. Pacyna E G, Pacyna J M, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000[J]. Atmos. Environ. 2006,40: 4048-4063
    
    167. Park J S, Oh S, Shin M Y, et al. Seasonal variation in dissolved gaseous mercury and total mercury concentrations in Juam Reservoir, Korea[J]. Environ Pollut, 2008, 154(1): 12-20
    
    168. Paterson M J, Rudd J W M, St Louis V. Increases in total and methylmercury in zooplankton following flooding of a peatland reservoir[J]. Environ Sci Technol, 1998, 32: 3868-3874
    
    169. Paul C P, Carol L F, Celia Y C, et al. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web[J]. The Science of the Total Environment. 2005, 339: 89-101
    
    170. Pekey H. The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream[J]. Mar Pollut Bull, 2006(52):l 197-1208
    
    171. Peretyazhko T, Charlet L, Mursean B, et al. Formation of dissolved gaseous mercury in a tropical lake (Petit-Saut reservoir, French Guiana)[J]. Science of The Total Environment, 2006,364 (1-3): 260-271
    
    172. Petri P, Matti V. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland[J]. Environmental Pollution. 2003,123: 181-91
    
    173. Philippe G. Methylmercury toxicity and functional programming[J]. Reproductive Toxicology, 2007,23: 414-420
    
    174. Pierre A G, Christophe P, Ferrari, et al. Atmospheric particle evolution during a nighttime atmospheric mercury depletion event in sub-Arctic at Kuujjuarapik/Whapmagoostui, Quebec, Canada[J]. The Science of the Total Environment. 2005, 336: 215-224
    
    175. Pirrone N, Keeler G J, Nriagu J O. Regional differences in worldwide emissions of mercury to the atmosphere[J]. Atmospheric Environment. 1996, 30 (17): 2981-2997
    
    176. Poissant L, Casimir A. Water-air and soil-air exchange rate of total gaseous mercury at background sites[J]. Atmospheric Environment, 1998, 32(5): 883-893
    
    177. Poissant L, Martin P, Conrad B, et al. A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Quebec, Canada[J]. Atmospheric Environment. 2005, 39: 1275-1287
    
    178. Qiu G L, Feng X B, Wang S F, et al. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China[J]. environmental Pollution, 2006, 142: 549-558
    
    179. Qiu G L, Feng X B, Wang S F, et al. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China[J].Applied Geochemistry,2005,20:627-638
    180.Qiu G.L,Feng X B,Wang S F,et al.Mercury and methylmercury in riparian soil,sediments,mine-waste calcines,and moss from abandoned Hg mines in east Guizhou province,southwestern China[J].Applied Geochemistry.2005,20:627-638
    181.Qiu G L,Feng X B,Wang S F,et al.Mercury contaminations from historic mining to water,soil and vegetation in Lanmuchang,Guizhou,southwestern China[J].The Science of the Total Environment.2006,368:56-68
    182.Ramlal P S,Kelly C A,Rudd J W M,et al.Site of methylmercury production in remote Canadian Shield lakes[J].Can J Fish Aquat Sci,1993,50:972-979
    183.Raposo J C,Ozamiz G,Etxebarria N,et al.Mercury biomethylation assessment in the estuary of Bilbao(North of Spain)[J].Environmental Pollution,2008,156:482-488
    184.Rasmussen P E.Current methods of estimating atmospheric mercury fluxes in remote areas[J].Environmental Science and Technology.1994,28:2233-2241
    185.Rea A W,Lindberg S E,Keeler G J.Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall[J].Atmeoslheric Envrionment,2001,35:3453-3462
    186.Revis E.Distribution of mercury species in soil from a mercury contain inated site[J].Water Air soil Pollut,1989,45:105-113
    187.Rosa D A,Sepulveda T V,Solorzano G,et al.Survey of atmospheric total gaseous mercury in Mexico[J].Atmospheric Environment.2004,38(29):4839-4846
    188.Rothschild R F,Duffy L K.Mercury concentrations in muscle,brain and bone of Western Alaskan waterfowl[J].The Science of the Total Environment.2005,349(1-3):277-283
    189.Rytuba J J.Mercury mine drainage and processes that control its environmental impact[J].Science of the Total Environment,2000,260:57-71
    190.Sakata M,Marumoto K.Wet and dry deposition fluxes of mercury in Japan[J].Atmospheric Environment.2005,39(17):3139-3146
    191.Sanei H,Goodarzi F.Relationship between organic matter and mercury in recent lake sediment:The physical-geochemical aspect[J].Geochemistry,2006,11(22):1900-1912
    192.Sanei H,Stasiuk L D,Goodarzi F.Petrological changes occurring in organic matter from recent lacustrine sediments during thermal alteration by Rock-Eval pyrolysis[J].Org.Geochem.,2005,36:1190-1203
    193.Schafera J,Blanc G,Audry S,et al.Mercury in the Lot-Garonne River system(France):Sources,fluxes and anthropogenic component[J].Applied Geochemistry.2006,21:515-527
    194.Scholtz M T,Heyst B J V,Schrodeer W H.Modelling of mercury emissions from background soils[J].The science of the Total Environment,2003,304:185-207
    195.Schroder W H,Munthe J.Atmospheric mercury-an overview[J].Atmospheric Environment,1998,32:809-822
    196.Schwesig D,Krebs O.The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem[J].Plant and Soil,2003,253:445-455
    197.SCOPE CHINA汞工作组.SCOPE CHINA汞污染专题学术讨论会《纪要》,环境化学,1996,15(1):90-91
    198.Seigneur C,Lohman K,Krish V,et al.Contributions of global and regional sources to mercury depositon in New York State[J].Environmental Pollution,2003,123(3):365-373
    199.Sergio A,Coelho S,Jean R D,et al.Mercury methylation and bacterial activity associated to tropical phytoplankton[J].The Science of the Total Environment.2006,364:188-199
    200.Shawn P,Chadwick,Chris L,et al.Influences of iron,manganese,and dissolved organic carbon on the hypolimnetic cycling of amended mercury[J].The Science of the Total Environment.2006,368:177-188
    201.Shia R L,Gallardo L,Rodhe H.Mercury in the global troposhphere:A three-dimensional model study[J].Atmospheric Environment,1999,104:23747-23760
    202.Siciliano S D,Lean D R S.Methyltransferase:An Enzyme Assay for Microbial Methylmercury Formation in Acidic Soils and Sediments[J].Environ Toxicol Chem,2002,21:1184-1190
    203.Slemr F,Brunke E G,Ebinghans R,et al.Worldwide trend of atmospheric mercury since 1977[J].Geophysical Reasearch Letlters,2003,30(10):15-16
    204.Slemr F,Langer E.Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean[J].Nature.1992,355:434-437
    205.Smith F A,Sharma R P,Lynn R I,et al.Mercury and selected pesticide levels in fish and wildlife of Utah:Levels of mercury,DDT,DDE,Dieldrin and PCB in fish.Environ Toxicol Chem,1974,12:218-223
    206.Smith J N,Schafer C T.Sedimentation,bioturbation,and Hg uptake in the sediments of the estuary and Gulf of St.Lawrence[J].Limnol Oceanogr,1999,44(1):207-219
    207.Sohyun P,Mary A J.Awareness of Fish Advisories and Mercury Exposure in Women of Childbearing Age[J].Nutrition Reviews.2006,(Ⅰ):250-256
    208.Sommar J.The atmospheric chemistry of mercury-kinetics,mechanisms and speciation[D].Ph.D.dissertation,Department of Chemistry,G(o丨¨)teborg University,Sweden,2001
    209.Song X X,Heyst B V.Volatilization of mercury from soils in response to simulated precipitation[J].Atmospheric Environment.2005,39:7494-7505
    210.Sorensen J A,Glass G E,Schmidt K W.Regional patterns of wet mercury deposition[J].Environmental Science and Technology.1994,28:2025-2032
    211.Srogi K.Mercury content of hair in dirrerent populations relative to fish consumption[J].Reviews of Environmental Contamination and Toxicology,2007,189:107-130
    212.Stefano C,Raffaella P,Kotnikm J,et al.Behaviour of Hg species in a microtidal deltaic system:The Isonzo River mouth(northern Adriatic Sea)[J].The Science of the Total Environment.2006,368:210-223
    213.St Louis V L,Rudd J W M,Kelly C A,et al.The rise and fall of mercury methylation in an experimental reservoir[J].Environ Sci Technol,2004,38:1348-1358
    214.Sullivan K A,Mason R P.The concentration and distribution of mercury in Lake Michigan[J].Sci.Total Environ,1998,213:213-228
    215.Tan H,He J L,Lindqvist O,et al.Mercury emission from its production in Guizhou province,China[J].Guizhou Science,1997,15:112-117
    216.Tessier A.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851
    217.Thomas D B,Dennis N S,Richard A H,et al.Mercury measurement and its control,what we know,have learned,and need to further investigate[J].Air and Waste Manage Assoc,1999,6:1-99
    218.Torunn B,Eirik F,Steinnes E.Atmospheric mercury in Norway:Contributions from different sources[J].The Science of the Total Environment.2006,368:3-9
    219.Tuncer G,Karaks T,Balkas T,et al.Land based sources of pollution along the Black Sea coast of Turkey:concentrations and annual loads to the Black Sea[J].Mar Pollut Bull,1998(36):409-423
    220.Ullrich S M,Tanton T W.Abdrashitova S A.Mercury in the aquatic environment:a review of factors affetcting methylation[J].Critical Reviews in Environ Sci Technol,2001,31(3):241-293
    221.UNER Global Mercury Assessment(R).United Nations Environmental Programme Inter Organization Programme for the Sound Management of Chemicals((IOMC),2000
    222.UNEP.Report of the global mercury assessment working group on the work of its first meeting[J].Geneva,Switzerland,2002,9:9-13
    223.U S EPA.Exposure factors handbook[S].EPA/600/P-95/002,1997,104-126
    224.U S EPA.Risk assessment guidance for superfund volume I human health evalution manual(Part A)[S].EPA/540/1-89/002,1989,35-52
    225.U S EPA.Superfund public health evaluation manual[S].EPA/540/1-86/060,1986,1-52
    226.vaithiyanathan P.Richardson C J,Kavanaugh R G,et al.relationshipis of Eutrophication to the Distribution of mercury and to the Potential for the Methylmercury Production in the Peat Soils of the Everglades[J].Environ Sci Technol,1996,30:2591-2597
    227.Valbona C,David R S,Lean,et al.Abiotic methylation of mercury in the aquatic environment[J].The Science of the Total Environment.2006,368:126-137
    228.Vale C.Mobility of contaminants in relation to dredging operation in a mesotidal estuary(tagus estuary Portugal)[J].Water Sci Technol,1998,37(6-7):1-8
    229.Vandal G M,Mason R P,Fitzgerald W F.Cycling of volatile mercury in temperate lakes[J].Water Air Soil Pollut,1991,56:791-803
    230.Varekamp J C,Buseck P R.Global mercury flux from volcanic and geothermal sources[J].Applied Geochemistry,1986,1:65-73
    231.Vasiliev O F,Obolenskiy A A,Yagolnitser M A.Mercury as a pollutant in Siberia:sources,fluxes and aregional budget[J].The Science of the Total Environment.1998,213:73-84
    232.Vaupotic J,Gregoric A,Kotnik J,et al.Dissolved radon and gaseous mercury in the Mediterranean seawater[J].J.Environ.Radioactiv,2008,99:1068-1074
    233.Vincent L,Louis S T,John W M,et al.Importance of the forest canopy to flux of methylmercury and total mercury to boreal ecosystems[J].Environmental Science and Technology,2001,35:3089-3098
    234.Wall S D,Kock H H,Schoreder W H.Mechanism and significance of mercury volatilization form contaminated flood plains of the German river Elbe[J].Atmospheric Environment,2000,34:3745-3755
    235.Wang D Y,Shi X J,Wei S Q.Accumulation and transformation of atmospheric mercury in soil[J].The Science of the Total Environment,2003,304:209-214
    236.Wang Y D,Greger M.Clonal differences in mercury tolerance,accumulation,and distribution in willow[J].Journal of Environmental Quality,2004,33:1779-1785
    237.Wang Z W,Zhang X S.Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in B eijing,China[J].Atmospheric Environment.2006,40:2194-2201
    238.Whealey B,Wheatley M A.Merthylmercury and the health of indigenous peoples:a risk management challenge for physical and social sciences and for public health Policy[J].Sci.Total Environ,2000,259:23-29
    239.WHO.Environment health criteria 101 methylmercury,World Health Organization,Generva.1990.http://www.epa.gov/otaq/m10.htm
    240.Windmoller C C,Wilken R D,Jardm W D F.Mercury speciation in contaminated soils by tehermal release analysis[J].Water Air Soil Pollut,1996,89:399-416
    241.World Health Organization(WHO).Mercury-environmental Aspect[R].1989,Geneva,Switzerland
    242.Wu G X,Li L Y.Modeling of heavy metal migration in sand/bentonite and the leach are pH effect[J].Jouranl of Contaminant Hydrology,1998,33:313-316
    243.Xiao Z,Sommar J,Lindqvist O,et al.Atmospheric mercury deposition to grass in South Sweden[J].Science of Total Environment,1998,213:85-94
    244.Yan H Y,Feng X B,Shang L H,et al.The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir,Guizhou province,China[J].Science of the Total Environment,2008,407:497-506
    245.YIN Yunjun.Asdorption of mercury(Ⅱ) by soil:effects of pH,chloride,and organic matter[J].J environmental Qual.1996,25(6):837-844
    246.Young D R,Johnson J N,Soutar A,et al.Mercury concentrations in dated varved marine sediments collected off southern California[J].Nature,1973,244:273-274
    247.YU D,SHEN Z G,ZHANG H Z,et al.Effects on some physiological characters of seedling and germ ination of radish seeds after treated with Hg~(2+)[J].Acta Bot Boreal-Occident Sin,2004,24(2):231-236
    248.Zhang H,Lindberg S E,Barnett M O,et al.Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils.Part 1:simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model[J].Atmospheric Environment.2002,36:835-846
    249.Zhang H,Lindberg S E.Air/water exchange of mercury in the everglades Ⅰ:the behavior of dissolved gaseous mercury in the Everglades Nutrient Removal Project[J].The Sciences of the Total Environment,2000,259:123-133
    250.Zhang H,Poissant L,Xu X H,et al.Explorative and innovative dynamic flux bag method development and testing for mercury air-vegetation gas exchange fluxes[J].Atmospheric Environment.2005,39:7481-7493
    251.白薇扬,冯新斌,孙力,等.贵阳市阿哈湖水体和沉积物间隙水中汞的含量和形态分布初步研究[J].环境科学学报,2006,26(1):91-98
    252.白瑛.汞在土壤-作物系统中残留与吸收[J].中国环境科学,1988,6:18-23
    253.蔡立梅,马瑾,周永章,等.东莞市农田土壤和蔬菜重金属的含量特征分析[J].地理学报,2008,63(9):994-1002
    254.车飞,于云江,胡成,等.沈抚灌区土壤重金属污染健康风险初步评价[J],农业环境科学学报,2009,28(7):1439-1443
    255.陈德兴.美国北卡罗来纳州炼金引起的汞污染[J].地质科技情报,1995,14(4):82-84
    256.陈怀满.土壤圈物质循环系列专著-土壤植物系统中的重金属污染[M].北京:科学出版社,1996
    257.陈静生,邓宝山,陶澍,等.环境地球化学[M].北京:海洋出版社,1990
    258.陈乐恬,刘俊华,佟玉芹,等.北京地区大气中汞污染状况的初步调查[J].环境化学.2000,19(4):357-361
    259.崔瑞平,赵彬彬,满洪界.某汞矿冶炼厂附近环境汞污染调查[J].环境科学,1987,8(3):65-67
    260.戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策[J].地质地球化学,2002,30(4):75-79
    261.单长青,刘汝海,单红仙.胶州湾近岸沉积物-海水汞的释放研究[J].海洋湖沼通报,2006,4:44-51
    262.党民团,刘娟.中国汞污染的现状及防治对策[J].应用化工,2005,34(7):394-396
    263.丁疆华,温琰茂,舒强.土壤汞吸附和甲基化探讨[J].农业环境与发展,2001,1:34-36
    264.丁振华,刘金玲,李柳强,等.中国主要红树林湿地沉积物中汞的分布特征[J].环境科学,2009,30(8):2210-2215
    265.丁振华,王文华,瞿丽雅,等.贵州万山汞矿区汞的环境污染及对生态系统的影响[J].环境科学,2004,25(2):111-114.
    266.丁振华,王文华,庄敏.汞的界面环境地球化学研究进展[J].海洋科学,2005,29(10):54-57
    267.丁中元.重金属在土壤-作物中分布规律研究[J].环境科学,1989,10(5):78-84
    268.方凤满,王起超,郝庆菊.大气汞的来源、形态及环境过程研究现状[J].环境导报,2001,2:18-21
    269.方凤满,王起超,尹金虎.城市地表汞含量及释放通量影响因素分析[J].生态环境,2003,12(3):260-263
    270.冯素萍,沈永,裘娜.腐殖酸对汞的吸附特性与动力学研究[J].离子交换与吸附,2009,25(2):121-129
    271.冯新斌,Sommar J,G(?)rdfeldt k,Lindqvist O.夏季自然水体与大气界面气态总汞的交换通量[J].中国科学(D辑)。2002,32:609-616
    272.冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展,2009,321(2/3):436-457
    273.冯新斌.汞的环境地球化学研究进展[J].地质地球化学,1997,(4):104-108
    274.冯新斌,汤顺林,李仲根,等.生活垃圾填埋场是大气汞的重要来源[J].科学通报,2004,49(23):2475-2479
    275.付学吾,冯新斌,王少锋,等.贵阳市2种不同类型草地的汞释放通量[J].环境科学研究,2007,20(6):33-37
    276.付学吾,冯新斌,王少锋,等.植物中汞的研究进展[J].矿物岩石地球化学通报,2005,24(3):232-238
    277.高大翔,郝建朝,李子芳,等.汞胁迫对水稻生长及幼苗生理生化的影响[J].农业环境科学学报,2008,27(1):58-61
    278.顾惕人,朱步瑶,李外郎.表面化学[M].北京:科学出版社,1999
    279.郭翠花,张红.重工业城市农田生态系统中Hg污染及防治[J].农业环境保护,2000,19(4):245-247
    280.郭晓立,刘晓端,潘小川,等.密云水库水体的地球化学特征[J].岩矿测试,2003,22(1):44-48
    28].郭艳娜,冯新斌,何天容,等.乌江流域大气降雨中不同形态汞的时空分布[J].环境科学学报, 2008,28(7):1441-1446
    282.郭艳娜,冯新斌,闫海鱼,等.梯级水库修建对乌江甲基汞分布的影响[J].环境科学研究,2008,21(2):29-33
    283.国家环保总局.水和废水监测分析方法[M].第四版,北京:中国环境科学出版社,2002
    284.郝春玲,沈英娃.我国水银体温计生产及用汞情况研究[J].环境科学研究,2006,19(1):18-21
    285.何天容,冯新斌,郭艳娜,等.红枫湖水体中活性汞和溶解气态汞的分布特征及其控制因素[J].环境科学研究,2008,21(2):15-17
    286.洪春来,贾彦博,杨肖娥,等.农业土壤中汞的生物地球化学行为及其生态效应[J].土壤通报,2007,38(3):590-596
    287.侯明,钱建平,殷辉安.桂林市土壤汞存在形态的研究[J].土壤通报,2005,36(3):399-401
    288.侯亚敏,冯新斌,王少锋,等.贵阳市及其郊区土壤-大气界面间汞交换通量的初步研究[J].土壤学报,2005,42:52-58
    289.胡月红.国内外汞污染分布状况研究综述[J].环境保护科学,2008,34(1):38-41
    290.黄时达,徐小清,鲁生业,等.三峡工程与环境污染及人群健康[M].北京:科学出版社,1994
    291.黄文辉,李晓军,冯克玉,等.中国煤中的汞[J].中国煤田地质,2002,14(增):37-40
    292.黄永健,周蓉生,张成江,等.大气环境中汞污染的研究进展[J].物探与化探,2002,26(4):296-298,314
    293.姜丽娜,王强,郑纪慈,等.蔬菜产地土壤重金属含量空间分布研究[J].水土保持学报,2008,22(4):174-178
    294.蒋红梅,冯新斌,李广辉,等.乌江流域水库水体中溶解性气态汞季节性变化特征[J].环境科学与技术,2006,29(8):34-35
    295.蒋红梅,冯新斌.水库汞生物地球化学循环研究进展[J].水科学进展,2007,18(3):462-467
    296.蒋红梅.水库对乌江河流汞生物地球化学循环的影响[D].贵阳:中国科学院地球化学研究所博士学位论文,2005
    297.蒋靖坤,郝吉明,吴烨,等.中国燃煤汞排放清单的初步建立[J].环境科学,2005,26(2):34-39
    298.蒋展鹏.环境工程学(第二版)[M].北京:高等教育出版社,2005
    299.金晓丹,王敦球,朱义年,等.大气汞污染及其防治技术的研究进展[J].广西轻工业,2008,9:109-110,131
    300.靳立军,徐小清,刘健康.三峡库区燃煤、土壤和水库底泥中汞含量分布[J].重庆环境科学,1997a,16(4):33-35
    301.靳立军,徐小清.三峡库区地表水和鱼体中甲基汞含量分布特征[J].长江流域资源与环境,1997b,6(4):324-328
    302.康春丽 杜建国.汞的地球化学特征及其映震效能[J].地质地球化学,1999,27(1):79-84
    303.赖启宏,杜海燕,张忠进,等.珠江三角洲土壤汞高含区的形成[J].环境化学,2005,24(2):219-220
    304.李功振,韩宝平,葛冬梅,等.京杭大运河(苏北段)底泥中汞的总量与形态的分布研究[J].中国环境监测,2008,24(1):75-77
    305.李宏伟,阎百兴,徐治国,等.松花江水中总汞的时空分布研究[J].环境科学学报,2006,26(5):840-845
    306.李华斌,王文华,彭安.甲基汞的大气-水-土壤界面交换通量[J].环境科学,2000,21(1):81-83
    307.李平,冯新斌,仇广乐,等.贵州省务川汞矿区土法炼汞过程中汞释放量的估算[J].环境科学,2006,27(5):837-840
    308.李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境,1997,16(1):18-22
    309.李士杏,李波.腐殖酸对土壤汞向植物迁移的影响[J].西南农业大学学报,2002,24(4):378-380
    310.李小青,蒋敬业,叶荣.黄石市城市大气和土壤中汞气污染研究[J].安全与环境工程,2005,12(1):21-23
    311.李延红,张宏伟,薄萍,等.第二松花江治理后渔民体内共蓄积水平的研究[J].劳动医学,2001,18(3):142-144
    312.李英华,孙丽娜.pH值和外加汞浓度对汞在棕土中的吸附-解吸动力学特征[J].农业环境科学学报,2008,27(2):579-582
    313.李永华,王五一,杨林生,等.汞的环境生物地球化学研究进展[J].地理科学进展,2004,23(6):33-40
    314.李永华,杨林生,李海蓉,等.湘黔汞矿区土壤汞的化学形态及污染特征[J].环境科学,2007,28(3):654-658
    315.李仲根,冯新斌,汤顺林,等.封闭式城市生活垃圾填埋场向大气释放汞的途径[J].环境科学,2006,27(1):19-23
    316.梁俊,赵政阳,樊明涛.陕西渭北苹果园土壤中汞、镉污染与分布特征研究[J].农业工程学报,2008,24(3):209-213
    317.梁胜伟,胡新文,段瑞军,等.海马齿对无机汞的耐性和吸附积累[J].植物生态学报,2009,33(4):638-645
    318.廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1992
    319.林春野,周豫湘,呼丽娟,等.松花江水体沉积物汞污染的生态风险[J].环境科学学报,2007,27(3):466-473
    320.林陶,张成,石孝均,等.不同类型紫色土土/气界面汞释放通量及其影响因素[J].环境科学学报,2008,28(10):1955-1960
    321.林陶,张金洋,石孝均,等.三峡水库消落区土壤汞吸附解吸动力学特征[J].环境化学,2007, 26(3):302-306
    322.林陶.汞在水旱轮作系统的释放特征及其影响因素[D].重庆:西南大学博士学位论文,2007
    323.刘碧君,吴丰昌,邓秋静,等.锡矿山矿区和贵阳市人发中锑、砷和汞的污染特征[J].环境科学,2009,30(3):907-912
    324.刘昌岭,张经,于志刚.黄海海域大气气溶胶特征及重金属的大气输入量研究[J].海洋环境科学,1998,17(4):1-6
    325.刘德绍,郭莉萍,青长乐.蔬菜对大气汞和土壤吸收的研究[J].重庆环境科学,2002,24(6):23-25
    326.刘发欣.区域土壤及弄产品中重金属的人体健康风险评估[D],雅安:四川农业大学,2007
    327.刘金玲,丁振华.汞的甲基化研究进展[J],地球与环境,2007,35(3):215-222
    328.刘俊华,王文华,彭安.北京市二个主要工业区汞污染及其来源的初步研究[J].环境科学学报,1998,28(3):331-336
    329.刘俊华,王文华,彭安.土壤中汞生物有效性的研究 J].农业环境保护,2000,19:216-220
    330.刘鹏,吴攀,陶秀珍.贵州丹寨汞矿土壤汞含量的变化趋势[J].环境科学与技术,2005,28(增刊):9-10,46
    331.刘平,仇广乐,商立海.汞污染士壤植物修复技术研究进展[J].生态学杂志,2007,26(6):933-937
    332.刘全友,徐良才,庞淑薇.南迦巴峰地区大气中汞的环境自然背景值[J].环境化学,1984,3(6):62-65
    333.刘汝海,王起超,郝庆菊,等.三江平原湿地土壤汞的分布特征及影响因素分析[J],水土保持学报,2003,17(1):122-124,130
    334.龙新宪,倪吾钟,杨肖娥.菜园土壤锌的吸附-解吸特性研究[J].土壤通报,2002,33(1):51-53.
    335.鲁洪娟,倪吾钟,叶正钱,等.土壤中汞的存在形态及过量汞对生物的不良影响[J].土壤通报,2007,38(3):597-600
    336.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    337.栾文楼,温小亚,崔邢涛,等.石家庄污灌区表层土壤中重金属环境地球化学研究[J].中国地质,2009,36(2):465-473
    338.罗志刚,游植萍,红壤对汞的吸附特性研究[J],农业环境保护,1996,15(5):228-230
    339.吕怡兵,宫正宇,连军,等.长江三峡库区蓄水后水质状况分析[J].环境科学研究,2007,20(1):1-6
    340.马耀华,刘树应.环境土壤学[M].西安:陕西科学技术出版社,1998
    341.孟昭虹,高玉娟.黑龙江生态省土壤重金属分布特征及其生态风险评价[J].安徽农业科学,2008,36(31):13819-13821,13830
    342.孟紫强.环境毒理学[M].北京:中国环境科学出版社,2000
    343.牟树森,青长乐.环境土壤学[M].北京:中国农业出版社,1993
    344.母波,韩善华,张英慧,等.汞对植物生理生化的影响[J].中国微生物学杂志,2007,19(6);582-583
    345.牛凌燕,曾英.土壤中汞赋存形态及迁移转化规律研究进展[J].广东微量元素科学,2008,15(7):1-5
    346.牛志明,解明曙.三峡库区水库消落区水土资源开发利用的前期思考[J].科技导报,1998,4:待61-62
    347.庞奖励,黄长春,孙根年.西安污灌土壤重金属含量及对西红柿影响[J].土壤与环境,2001,10(2):94-97
    348.皮广洁,唐书源.农业环境监测原理与应用[M].成都:成都科技大学出版社,1998
    349.冉祥滨,于志刚,陈洪涛,等.三峡水库蓄水至135m后坝前及香溪河水域溶解无机汞分布特征研究[J].环境科学,2008,29(7):1775-1779
    350.任勇,钱骏,杨有仪,等.亭子口库区水质汞的污染特征及建库后水体中汞的预测[J].四川环境,1996,15(1):57-59
    351.商立海,冯新斌,郑伟,等.贵阳市大气中气态汞形态分布特征的初步研究[J].矿物岩石地球化学通报,2003,22(3):156-158
    352.尚英男,倪师军,张成江,等.成都市河流表层沉积物汞污染及潜在生态风险评价[J].生态环境,2005,24(6):827-829
    353.邵孝侯,侯文华,邢光憙.土壤固相不同组分对镉、锌吸持的研究[J].环境化学,1994,13(4):340-345
    354.邵志国,王起超,刘汝海,等.汞在泥炭上的吸附动力学研究[J].水土保持学报,2004,18(3):183-185,193
    355.沈军,王东启,史贵涛,等,黄浦江水源地水和沉积物中汞的分布[J],环境科学研究,2008,21(2):24-28
    356.舒代宁.环境汞污染与健康[J].乐山师专学报,1998,14(1):28-31
    357.宋文,何天容.贵州盘县煤矸石及其风化土壤中汞的分布特征[J].贵州大学学报(自然科学版),2009,26(1):131-133
    358.苏秋克,祁士华,蒋敬业,等.武汉城市湖泊汞的迁移与富集[J].水资源保护,2007,25(5):44-47,66
    359.苏秋克,祁士华,蒋敬业,等.武汉市湖泊汞的环境地球化学评价[J].地球化学,2006,35(3):221-226
    360.孙春燕,石学根,魏幼璋,等.汞污染对植物品质指标的影响[J].浙江大学学报(工学版),2007,41(12):2087-2092
    361.孙宏飞,李永华,姬艳芳,等,湘西汞矿区土壤中重金属的空间分布特征及其生态环境意义[J], 环境科学,2009,30(4):1159-1165
    362.孙卫玲,倪晋仁.泥沙吸附汞研究中的若干关键问题[J].泥沙研究,2002,12(6):54-55
    363.孙向彤,何锦林,谭红.红枫湖水面挥发性汞释放通量的测定[J].湖泊科学,2001,13(1):89-92
    364.汤顺林,冯新斌,李仲根,等.城市生活垃圾填埋场释放汞的形态初步研究[J].地球与环境,2004,32(2):6-11
    365.唐将,王世杰,付绍红,等.三峡库区土壤环境质量评价[J].土壤学报,2008,45(4):601-607
    366.唐永鉴.刘育民.环境学导论[M].北京:高等教育出版社,1987
    367.田金,李超,宛立,等.海洋重金属污染的研究进展[J].水产科学,2009,28(7):413-418
    368.涂从,青长乐.四川紫色土对铜的吸附特性及其与铜中毒临界值的关系[J].重庆环境科学,1989,11(4):52-57
    369.王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性[J].重庆环境科学,1998,20(5):22-25
    370.王定勇.汞在酸沉降地区陆地生态系统中的分布与行为[D].重庆:西南农业大学博士论文,2001
    371.王济,王世杰,欧阳自远.贵阳市表层土壤中汞的环境地球化学基线及污染研究[J].农业环境科学学报,2007,26(4):1417-1421
    372.王夔.生物无机化学[M].北京:清华大学出版社,1989
    373.王岚,王亚平,许春雪,等.不同粒级土壤中镉铅汞的吸附特性[J].岩矿测试,2009,28(2):119-124
    374.王荔娟,胡恭任.土壤/沉积物中汞污染地球化学及污染防治措施研究[J].岩石矿物学杂志,2007,26(5):453-461
    375.汪琳琳,方凤满,蒋炳言.中国菜地土壤和蔬菜重金属污染研究进展[J].吉林农业科学,2009,34(2):61-64
    376.王培基,辜永河,黎道洪.百花水库水体汞现状评价的探讨[J].贵州师范大学学报(自然科学版),1992,10(2):29-32
    377.王平安.干湿交替环境土壤汞赋存形态及其动态变化[D].重庆:西南大学硕士学位论文,2007
    378.王起超,沈文国,麻状伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321
    379.王起超,方凤满,李志博.长春市汞界面交换通量的研究[J].中国环境科学,2005,25(4):475-479
    380.王少锋,冯新斌,仇广乐,等.大气汞的自然来源研究进展[J].地球与环境,2006,34(2):1-11
    381.王少锋,冯新斌,仇广乐,等.贵州红枫湖地区冷暖两季士壤/大气界面间汞交换通量的对比[J].环境科学,2004,25(1):123-127
    382.王少锋,冯新斌,仇广乐,等.贵州滥木厂汞矿区士壤与大气间气态汞交换通量及影响因素研 究[J].地球化学,2004,33(4):405-413
    383.王少锋,冯新斌,仇广乐,等.万山汞矿区地表与大气界面间汞交换通量研究[J].环境科学,2006b,27(8):1487-1494
    384.王少锋,冯新斌,仇广乐,等.夏季红枫湖地区农田土壤-大气界面汞交换通量的初步研究[J].矿物岩石地球化学通报,2004,23(1):19-23
    385.王文义.三峡库区蓄水前重庆段鱼类中重金属含量水平调查[J].水资源保护,2008,24(5):34-37
    386.王新,梁仁禄.土壤外源汞污染对大豆幼苗生长的影响研究[J].农业环境保护,2001,210(2):74-77
    387.王新,周启星.土壤汞污染及修复技术研究[J].生态学杂志,2002,21(3):43-46
    388.王亚平,潘小菲,岑况,等.汞和镉在土壤中的吸附和运移研究进展[J].岩矿测试,2003,22(4):277-283
    389.王应刚,辛晓云,郭翠花.太原市土壤汞污染及成因研究[J].生态学杂志,2003,22(5):40-42
    390.文军,骆东奇,罗献宝,等.千岛湖底泥汞污染的生态风险评价[J].水土保持研究,2006,13(1):11-14
    391.文雪琴,迟清华.中国汞的地球化学空间分布特征[J].地球化学,2007,36(6):633-637
    392.夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社,2001
    393.萧蕴英,李青,张瑞娟,等.污灌对农作物含汞量的影响[J].甘肃环境研究与监测,1997,10(4):18-20
    394.徐阿生.三峡库区土地人口承载量及移民环境容量探究[J].人民长江,1995.26(5):47-51
    395.徐小清,邓冠强,惠嘉玉.长江三峡库区江段沉积物的重金属污染特征[J].水生生物学报,1999,23(1):1-8
    396.徐小清,丘昌强,邓冠强,等.三峡库区汞污染的化学生态效应[J].水生生物学报,1999a,23(3):197-203.
    397.徐小清,张晓华,靳立军,等.三峡水库汞活化效应对鱼汞含量影响的预测[J].长江流域资源与环境,1999b,8(2):198-204
    398.徐小清,丘昌强,邓冠强,等.长江水系河流与水库中鲤鱼的元素含量特征[J].长江流域资源与环境,1998,7(3):267-273
    399.徐蕴,程欣.环境汞污染对人体健康的影响[J].江苏预防医学,2006,17(3):85-86
    400.许烽.汞污染对工人健康影响的调查[J].职业与健康,2006,22(5):737-738
    401.闫双堆,卜玉山,刘利军,等.不同腐殖酸物质对土壤中汞的固定作用及植物吸收的影响[J].环境科学学报,2007,27(1):101-105
    402.杨海,李平,仇广乐,等.世界汞矿区汞污染研究进展[J].地球与环境,2009,37(1):80-85
    403.杨梅,刘洪斌,武伟.重庆三峡库区耕地土壤重金属含量的空间变异性研究[J],中国生态农业 学报,2006,14(1):100-103
    404.杨士林,赵哲,杨红.水体中汞的转化与毒性[J],环境研究,2002,1:33-34
    405.杨燕娜,温小乐.土壤汞污染及其治理措施的研究综述[J].能源与环境,9-11
    406.杨永奎,王定勇.大气汞的时空分布研究进展[J].四川环境,2006,25(6):91-95
    407.姚爱军,青长乐,牟树森.腐殖酸对矿物结合汞挥发活性的影响(Ⅰ)[J].土壤学报,1999,36(4):477-483
    408.余海洋,廖梦霞,邓天龙.水环境中痕量、超痕量元素汞的形态分析技术进展[J].世界科技研究与发展,2006,28(4):52-56
    409.袁兰,钟崇林.甲基汞在土-水-气体系中迁移及转化规律的研究[J].农业环境保护,1996,15:58-61
    410.翟平阳.甲基汞在水生生物体内富集倍数的研究[J].水资源保护,1996,3:1-9
    411.张翠,陈振楼,毕春娟,等.黄浦江上游饮用水源地水及沉积物中汞、砷的分布特征[J].环境科学学报,2008,28(7):1455-1462
    412.张金洋,王定勇,胡玉娟.水库汞污染研究进展[J].四川环境,2005,24(1):57-60
    413.张磊,王起超.松原市区居民发汞水平及影响因素分析[J].微量元素与健康研究,2008,25(2):11-13
    414.张磊,周震峰.青岛市不同功能区常见绿化植物及土壤汞污染特征[J].生态环境,2008,17(2):802-806
    415.张书海,沈跃文.污灌区重金属对土壤的危害[J].环境监测管理与技术,2000,1292):22-24
    416.张秀梅,唐以剑,章申.白洋淀地区土壤-植物系统污染物含量与变化规律研究[J].地理科学进展,1998,16(2):61-69
    417.章明奎,符娟林,顾国平,等.长三角和珠三角土壤中汞的化学形态、转化和解吸特性[J].安全与环境学报,2006,6(2):1-5
    418.赵金艳,王金生,孙福丽,等.pH值对包气带土壤吸附铅和汞的影响实验[J],水文地质工程地质,2005,(6):16-19
    419.郑海龙,陈杰,邓文婧,等.城市边缘带土壤汞空间变异及其污染评价[J].土壤学报,2006,43(1):39-45
    420.周怀东,袁浩,王雨春,等.长江水系沉积物中重金属的赋存状态[J].环境化学,2008,27(4):515-519
    421.周宜开,刘雯君.土壤汞污染人群健康风险评价[J].公共卫生与预防医学,2008,19(1):1-5
    422.朱小翠,青长乐,皮广洁.土壤汞形态及其影响因素研究[J].土壤学报,1996,33(1):94-100
    423.朱志勤,孙宏飞,王五一,等.土壤中重金属的形态及其生物有效性[J].现代农业科技,2008,12:178-180
    424.邹发生,杨琼芳,李艳红,等.广州黄埔区夜鹭和池鹭体内汞浓度和分布特性[J].应用生态学报,2005,16(2):390-392

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700