基于整车性能要求的CA4DD系列柴油机性能设计及开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越来越严苛的排放法规和整车节能要求不断推进发动机技术提升,针对发动机燃烧技术的创新由于受到种种限制,能够应用到生产环节还不多,基于整车应用特点的发动机性能设计及开发成为发动机节能减排的一个研究热点。整车开发的传统流程中,整车与发动机是由两个部门单独开发的,并且整车的性能验证在发动机开发完成之后,在整车验证过程中,经常会出现发动机不能够满足整车要求而反复改进验证的情况,导致开发周期和开发成本的增加。本文提出了整车开发的“V”字形流程,并建立了整车与发动机联合仿真平台,在发动机性能设计过程中应用仿真平台进行整车目标分解,在性能开发过程中对整车性能进行评价和分析,做到从整车到发动机的正向性能开发。在发动机的性能设计和开发过程中,借助于CAE分析手段,完成由发动机到各个子系统的性能指标分解,并在子系统开发过程中对整机性能进行评价分析,做到了发动机性能的正向开发。应用发动机性能的正向开发流程,完成了CA4DD系列发动机的性能设计及开发,并应用整车的试验数据进行联合仿真平台的有效性评价及误差分析。主要的研究内容和结论总结如下:
     1.介绍了建立整车与发动机性能联合仿真平台所用的GT Suite和Simulink软件,给出了CA4DD系列发动机及其相应的整车边界条件。针对联合仿真的静态受力分析模式、运动学模式和动力学模式分别建立相应的仿真模型并进行模型校正,稳态仿真模型与实测结果误差控制在5%以内。以稳态模型为基础,建立了用于动力学分析的瞬态模型。
     2.通过理论分析,对整车与发动机之间的性能对应关系进行了论述,找出发动机性能对整车动力性和经济性的关键影响因素。提出了从整车到发动机再到各个子系统的正向性能开发“V”字形流程,明确实现正向开发流程的工作方法和手段。
     3.应用联合仿真平台中的静态受力分析模式分别对CA4DD系列的三种机型对应的整车进行模拟,根据模拟分析结果,以整车性能指标要求为目标,进行了三个机型的动力性指标确定;应用运动学模式,对三种机型对应的整车测试循环进行模拟分析,确定三种发动机的排放控制区和常用工况,作为性能设计的重点关注区域。应用StarCD软件进行了缸内流动和燃烧的模拟,提出了燃烧组织概念,进而对供油系统、换气系统和缸内混合提出具体性能要求。子系统应用各自的CAE工具进行了性能设计,包括气道涡流、管系结构、配气相位和凸轮型线、EGR参数及燃烧室等。最终通过性能预测,子系统设计的性能开发方案能够满足发动机性能指标要求。
     4.通过发动机性能试验对燃烧开发方案进行选择,确定三个机型的性能开发方案配置。在定型的开发方案上进行了发动机详细标定,输出的开发结果表明性能设计的指标基本都能够达到。应用联合仿真平台对整车性能进行评价,结果表明,CA4DD1和CA4DD3两个系列发动机开发结果能够满足整车确定的目标,匹配放气阀式增压器的CA4DD2发动机的整车加速性与性能要求相差11.2%。应用联合仿真平台的动力学模式进行了CA4DD2瞬态性能改进,最终达到了开发目标要求,加速性目标比整车性能要求高出2.3%。对匹配CA4DD1的载重卡车进行整车性能试验,应用试验结果对联合仿真平台进行误差分析,对比结果表明,最高车速的模拟误差为2.8%,最高挡80km/h等速油耗和WTVC整车试验循环的综合油耗误差分别为1.4%和1.9%,在5%的误差许可范围内,最高档加速和连续换挡加速的响应时间误差分别为14.3%和4.1%,小于瞬态过程计算控制误差15%。这说明整车与发动机联合仿真平台结果是可信的,应用联合仿真平台及其它发动机CAE工具进行整车和发动机正向开发是切实可行的。
     本文提出了整车和发动机正向开发的“V”字形流程,并建立了整车与发动机联合仿真平台作为实现正向开发流程的重要手段,在CA4DD系列发动机开发中实现了整车和发动机的正向开发流程,做到了针对整车性能的发动机性能设计及开发,能够改变传统流程带来的反复的调整验证的过程,节省开发周期和开发成本,提高产品的竞争力。
Emission regulations and vehicle energy reduction requirements continuouspushed forward engine technological progress, majority innovation of combustiontheory could not be applied to the production due to various constraints, it became afocus of energy saving and emission reduction that engine performance design anddevelopment took aim at vehicle application characteristics. In traditional vehicledevelopment process, vehicle and engine is developed separately by the twodepartments, and vehicle performance test after engine finished its development work,engine result usually could not meet vehicle performance demands in verificationprocess, repeated work must be done in engine performance modification and vehiclevalidation, it was time and costs consuming. This thesis presented a "V " shapedpositive vehicle development process and established a vehicle and engineco simulation platform, it was used to decompose vehicle performance requirement toengine target in performance design process and to evaluate if vehicle performancewas met in engine development process, a positive development process could beachieved, so that engine performance was under control from vehicle point of view. Apositive development process from engine to sub system was built either within CAEsupport, for sub system, works can be done that engine performance decomposed tosub system in design and evaluate engine result in development period. Positivedevelopment process was used for CA4DD series engine performance design andperformance development, vehicle testing datas were taken to evaluation of theeffectiveness co simulation platform. The main research contents and conclusions wassummarized as follows:
     1. Vehicle and engine performance co simulation platform software GT Suiteand Simulink was introduced, Co simulation platform for CA4DD series engine wasestablished and corresponding vehicle boundary conditions was given. Builtsimulation model and calibration work was done with3different simulation modes(static, kinematics and dynamic), Simulation model calibration work was done with3different simulation modes, ensure the error between test and simulation result within5%in stedy state silulation. Transient simulation model was developed base on steadystate model.
     2. Theoretical analysis on corresponding relationship between vehicle and engineperformance was discussed, key factors that affecting performance of engineperformance and vehicle fuel economy was found out. A positive "V" shaped positiveprocess from vehicle to engine and then subsystem was described in detail, defineeither work method or means of the precess.
     3. Vehicles corresponding to CA4DD series engine was simulated usingco simulation platform, static force analysis was done to define engine full load torque and power, kinematic simulation to define emission control and high operatingefficiency area, the area would be performance foucs in engine design anddevelopment. Engine performance parameters were settled down according simulationresults, then combustion and in cylinder flow conditions were simulated using StarCDsoftware, combustion concept was put forward according performance requirements,fuel supply system, gas exchange system and in cylinder combustion organize targetwas defined through engine proformance subdivition. Subsystem include valvetrainparameter, turbocharger, EGR, intake swirl and combustion chamber were work outwithin support of CAE tools, performance prediction result shown that subsystemdesign could satisfy engine performance requirements.
     4. Performance test was carried out to compare and analysis differentdevelopment scheme, combustion development scheme ultimately determined ofCA4DD series3type engines. Detailed calibration was done in stereotypes engineswhich determined by testing, performance results were released finally, results shownthat performance targets could be achieved. Vehicle performance was evaluated usingco simulation platform, results shown that CA4DD1and CA4DD3engines could metvehicle defined target, vehicle corresponding to CA4DD2engine accelerationperformance was not achieved (11.2%worse)with a fixed geometry turbocharger,VGT matching and control strategy optimized using dynamic simulate mode ofco simulation platform, target was reached finally with2.3%higher than target.Performance of vehicle with CA4DD1engine was tested, results shown thatmaximum vehicle speed error was2.8%, fuel consumption error of top gare80km/hand WTVC were respectively1.4%and1.9%, top gare acceleration and shift gareacceleration response time error were14.3%and4.1%. Steady state error between testand simulation within acceptable range5%, transient response time error withinacceptable error range15%. It improved that vehicle and engine co simulationplatform were reliable, realizing vehicle and engine positive development by usingco simulation platform and other engine CAE tool was feasible.
     This paper presented a vehicle and engine positive development "V " shapedprocess, and established a vehicle and engine co simulation platform as an importantmeans to realize this process, realized positive development process in CA4DDengine development project, engine performance could be designed and developedaiming at vehicle performance, disadvantages in traditional process of adjustment andvalidation repeatedly were changed, positive process could saved development timeand costs thus improved product competitiveness.
引文
[1]史绍熙,苏万华.内燃机燃烧研究中的几个前沿问题[J].内燃机学报,1990,8(2):18.
    [2]陈惠芬,张斌.中国石油安全的影响因素及战略选择[J].理论与实践,2010(3):7577.
    [3]徐清军.世界石油储备尚能满足40年消费、天然气能满足60年[EB/OL].中国经济网(20070623)
    [4]王琳,王其文等.我国经济增长与石油进口的因果关系研究[J].西南石油大学学报,2011,13(2):510.
    [5] BP中国. BP世界能源统计年鉴[EB/OL]. London,UK: BP Statistical Review of WordEnergy,2012.http://www.bp.com/statisticalreview
    [6]李雨.我国石油进口及采购问题研究[D].合肥:合肥工业大学,2007:112.
    [7]任忠宝.我国石油进口安全及国际合作潜力[J].天然气技术,2010,4(1):912.
    [8]张抗.石油进口大幅增长对我国经济发展的影响分析[J].中外能源,2009,14(8):1114.
    [9]龚为佳,沈卫东等.世界各国汽车排放法规的发展历程[J].重型汽车,2009(3):4142.
    [10] Matsuo Overview and Future Prospect of Emission Regulation in Japan, National TrafficSafety and EnviroN.ment Laboratory, Japan,2004.2.3.
    [11] Stefan Fischer, Klaus Rusch, SCR Technology to Meet Future Diesel Regulation ofEurope,AVECC2004.
    [12] Michael P. Walsh, Global Trends in Diesel Emission Regulation, NAMVECC2003.
    [13] Merritt P M. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier IINon Road Diesel Engines Operating on Ethanol Diesel Blends[C]. SAE Paper2005012193,2005.
    [14]林晓磊,陆红兵.我国非道路柴油机排放标准现状及挑战[J].工程机械,2004,35(7):4041.
    [15]谭建伟,葛蕴珊,李文祥等.非道路用柴油机与车用重型柴油机排放标准相关性研究[J].车辆与动力技术,2005(4):1518.
    [16] Mori K. Worldwide Trands in Heavy Duty Diesel Engine Exhaust Emission Legislation andCompliance Technologies. SAE Paper970753,1997.
    [17] S.P. Edward, G.R. Fr nkle, K. Binder, F. Wirbeleit. Strategic Analysis of Technologies forFuture Truck Engines[C]. SAE Paper2000013458,2000.
    [18] William.“Bill”Charmley. The Federal GoverN.ment’s Role in Reducing Heavy Duty DieselEmissions [C]. SAE Paper2004012708,2004.
    [19] Peter Wuensche, Franz X. Moser, Rolf Dreisbach and Theodor Sams. Can the Technology forHeavy Duty Diesel Engines be Common for Future Emission Regulations in USA[C]. Japanand Europe SAE Paper2003010344,2003.
    [20]李勤.现代内燃机排气污染物的测量与控制[M].北京:机械工业出版社,1998:9091.
    [21]2006年中国内燃机工业年鉴,上海:上海交通大学出版社,2007.
    [22]刘巽俊.汽车发动机在节能和排放领域的新进展[J].汽车技术,2001(4):14.
    [23]刘莉,韩立波等.交通运输节能标准化发展现状[J].交通节能与环保,2011(3):1622.
    [24]蔡凤田.公路交通运输领域节能减排对策[J].交通节能与环保,2008(2):3644.
    [25]方红燕,王今.对我国汽车行业节能减排战略的思考[J].汽车工业研究,2009(8):26.
    [26]陈礼璠,杜爱民等.汽车节能技术[M].北京:人民交通出版社,2005:181192.
    [27]蔡凤田,谢素华等.汽车节能与环保实用技术[M].北京:人民交通出版社,2002:100119.
    [28] Gaylard, Adrian Philip. The Appropriate Use of CFD in the Automotive DesignProcess[C].SAE Paper2009011162,2009.
    [29]蔡凤田,谢元芒.汽车运行油耗的影响因素与汽车节能技术[J].交通节能与环保,2006(1):2833.
    [30]范例,司利增.影响汽车油耗的因素分析[J].农业技术与装备,2010(2):1822.
    [31] Bachman,L.,A.Erb,C.Bynum. Effect of Single Wide Tires and Trailer Aerodynamics on FuelEconomy and NOx Emissions of Class8Line Haul Tractor Trailers[C]. SAE Paper2005013551,2005.
    [32] Bradley,C., S.Nelson. Truck Tires and Rolling Resistance:Modeling and Impact on FuelConsumption. Presention by Michelin Tire North America to the Committee, February4,2009.
    [33] Klaus Rusch, Rolf Kaiser, Stefan Hackenberg. DPF SCR Combinations Integrated Systems toMeet Future LDV Emission Limits[C]. SAE Paper2006010637,2006.
    [34] Brian Scarnegie. William R. Miller, Bernd Ballmert. Recent DPF/SCR results targetingUS2007and Euro4/5HD emissions[C]. SAE Paper2003010774,2003.
    [35] Paul M Najt, David E Foster. Compression Ignited Homogeneous Charge Combustion[C].SAE Paper830264,1983.
    [36] Zhao Fuquan, Thomas W Asmus, Dennis N Assa nis, et al. Homogenous ChargeCompression Ignition(HCCI) Engine Key Research and Development Issues[M]. Detroit:Society of Automotive Engineers,2002:987991.
    [37] Unger F E, Piock W F, Fraidl G K. The New AVL CSI Engine: HCCI Operation on aMulti cylinder Gasoline Engine[C]. SAE Paper2004010551,2004.
    [38] Tadashi Tsurushima, Akira Harada, Yuki Iwashiro, et al. Thermodynamic Characteristics ofPremixed Compression Ignition Combustions[C]. SAE Paper2001011891,2001.
    [39] Yoshiaki Nishijima, Yasuo Asaumi, Yuzo Aoyagi. Premixed Lean Diesel Combustion(PREDIC) Using Impingement Spray System[C]. SAE Paper2001011892,2001.
    [40] Tomohiro Kanda, Takazo Hakozaki. PCCI Operation with Early Injection of ConventionalDiesel Fuel[C]. SAE Papers2005010378,2005.
    [41] Stefan Simescu, Thomas W. Ryan, Gary D. Neely, et al. Partial Premixed Combustion withCooled and Uncooled EGR in a Heavy duty Hiesel Engine[C]. SAE Papers2002010963,2002.
    [42] Yasutaka Kitamura, Sung Sub Kee, Ali Mohammadi, et al. Study on NOx Control inDirect Injection PCCI Combustion Fundamental Investigation Using a Constant VolumeVessel[C]. SAE Papers2006010919,2006.
    [43] Hiroaki Yonetani, Itaru Fukutanl. Hybrid Combustion Engine with Premixed GasolineHomogeneous Charge and Ignition by Injected Diesel Fuel Effects of Pre combustionChamber Parameters[C]. SAE Paper940267,1994.
    [44] Naoki Shimazaki, Tadashi Tsurushima, Terukazu Nishimura. Dual mode CombustionConcept with Premixed Diesel Combustion by Direct Injection near Top Dead Center[C].SAE Papers2003010742,2003.
    [45] Halim Santoso, Jeff Matthews, Wai K. Cheng. Managing SI/HCCI Dual Mode EngineOperation[C]. SAE Paper2005010162,2005.
    [46] Stefan Simescu, Scott B. Fiveland, Lee G. Dodge. An Experimental Investigation of PCCI DICombustion and Emissions in a Heavy duty Diesel Engine[C]. SAE Paper2003010345,2003.
    [47] Bruno Walter, Bertrand Gatellier. Development of the High power NADI Concept UsingDual mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions[C]. SAEPapers2002011744,2002.
    [48] Benjamin Reveille, Andreas Kleemann, Vincent Knop, Chawki Habchi. Potential of NarrowAngle Direct Injection Diesel Engines for Clean Combustion:3D CFD Analysis[C]. SAEPapers2006011365,2006.
    [49] Stephen A. Ciatti, Jan P. Hessler, Kyeong O. Lee, et al. Investigation of Nano ParticulateProduction from Low Temperature Combustion[C]. SAE Papers2005010128,2005.
    [50] Patrick Merritt, Yiqun Huang, Magdi Khair, Joseph Pan. Unregulated Exhaust Emissionsfrom Alternate Diesel Combustion Modes[C]. SAE Papers2006013307,2006.
    [51] Yutaka Murata, Jin Kusaka, et al. Achievement of Medium Engine Speed and Load PremixedDiesel Combustion with Variable Valve Timing[C]. SAE Papers2006010203,2006.
    [52] Tomohiro Kanda, Takazo Hakozaki, Tatsuya Uchimoto, et al. PCCI Operation with FuelInjection Timing Set Close to TDC[C]. SAE Paper2006010920,2006.
    [53] Gary D. Neely, Shizuo Sasaki, Yiqun Huang, et al. New Diesel Emission Control Strategy toMeet US Tier Emissions Regulations[C]. SAE Papers2005011091,2005.
    [54] Shuji Kimura, Osamu Aoki, Hiroshi Ogawa. New combustion Concept for Ultra clean andHigh efficiency Small DI Diesel Engines[C]. SAE Papers1999013681,1999.
    [55] Hiroshi Ogawa, Shuji Kimura, Masao Koike, Yoshiteru Enomoto. A Study of Heat Rejectionand Combustion Characteristics of a Low temperature and Pre mixed Combustion ConceptBased on Measurement of Instantaneous Heat Flux in a Direct injection Diesel Engine[C].SAE Papers2000012792,2000.
    [56] Shuji Kimura. An Experimental Analysis and Future Trend of Low Temperature andPremixed Combustion for Ultra Clean Diesel[C]. SAE Homogeneous Charge CompressionIgnition System,2005.
    [57] Yong Sun, Rolf D. Reitz. Modelling Diesel Engine NOx and Soot Reduction with OptimizedTwo Stage Combustion[C]. SAE Papers2006010027,2006.
    [58] Takeshi Hashizume, Takeshi Miyamoto, Hisashi Akagawa. Combustion and EmissionCharacteristics of Multiple stage Diesel Combustion[C]. SAE Papers980505,1998.
    [59] Hasegawa R, Yanagihara H. HCCI Combustion in DI Diesel Engine[C]. SAE Paper2003010745,2003.
    [60]金华玉.核心边界条件对柴油机燃烧的影响及优化[D].长春:吉林大学,2008:1116.
    [61]王成焘.汽车摩擦学[M].上海:上海交通大学出版社,2002.
    [62]孙潇,张学义等.车用废气能量回收利用技术现状分析及发展前景[J].拖拉机与农用运输车,2008,36(6):67.
    [63]王军,苏铁熊等.车用柴油机增压匹配数值模拟研究[J].内燃机工程,2007,28(5):4851.
    [64]顾宏中.涡轮增压柴油机性能研究[M].上海:上海交通大学出版社,1998.
    [65]朱大鑫.涡轮增压与涡轮增压器[M].北京:机械工业出版社,1992:321350.
    [66] M.Msotafav J, B.Agnew.Thermodynamic Aanalysis of Charge Air Cooling of Diesel Engineby an Exhaust Gases Operated Absorption Refrigeration Unit Turbocharged Engine withCombined Pre and Intercooling[C]. SAE Paper971805,1997.
    [67] R.Atan. Heat Recovery Equipment Genarator in an Autobile for an AbsorptionAir Conditioning System[C]. SAE Paper980062,1998.
    [68] Andrew Dalthouse. Modern Refrigeration and Air Conditioning[M].彦启森(译).上海:上海交通大学出版社,2001.
    [69] G.Nolas, J.Sharp. Thermoelectric Basic Principles and New Materials Developments[M].NewYork, Springer,2001.
    [70] Haidar J.G, Ghojel J.I. Waste Heat Recovery from the Exhaoust of Low power Diesel EngineUsing Thermoelectric Generators.Proceedings of International Conference on Thermoelectrics(ICT)[C].2001:413418.
    [71] Hammou Z A, Lacroix M. A New PCM Storage System for Managing Simultaneously Solarand Electric Energy[J].Energy and Buildings,2006,38(3):258265.
    [72]倪记民,叶军等.基于整车性能的重型车用发动机优化配置[J].内燃机工程,2005,26(2):7679.
    [73]岳惊涛,廖苓平等.汽车动力系统的合理匹配评价[J].汽车工程,2004,26(1):102106.
    [74] Lattermann, F.,K.Neiss, S.Terwen, et al. The Predictive Cruise Control:Asystem to ReduceFuel Consumption of Heavy Duty Trucks[C]. SAE Paper2004012616,2004.
    [75] Strimer C., D.Carder,M. Gautam, et al. Impact of Vehicle Weight on Truck Behavior andEmissions, Using on board Measurement[C]. SAE Paper2005013788,2005.
    [76] GT Power User’s Manual and Tutorial. Gamma Techmologies,September2009.
    [77] Rapone Mario, Raglone Livia Delta. Experimental Evaluation of Fuel Consumption andEmissions in Congested Urban Traffic SAE Paper952401,1995.
    [78] Regner G, Loibner E, Krammer J, et al. Analysis of Transient Drive Cycles UsingCRUISE BOOST Co Simulation Techniques[C]. SAE Paper2002010627,2002.
    [79]于涛,葛蕴珊.汽车整车性能模拟研究[J].车辆与动力技术,2001(2):1518.
    [80]李伟华.汽车行驶特性仿真与动力总成的匹配优化[D].上海:上海交通大学,2000.
    [81]苏琴.发动机与汽车动力性、燃油经济性匹配的计算机模拟[D].天津:河北工业大学,2000:1519.
    [82]薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [83]王银燕,杜剑维等.基于GT Power与Simulink的发动机及其控制系统仿真[J].系统仿真学报,2002,20(16):43794381.
    [84] Dennis Assanis. Validation and Use of Simulink Integrated, High Fidelity, Engine in VehicleSimulation of the International Class VI Truck[C]. SAE Paper2000010288,2000.
    [85] GT Drive User’s Manual and Tutorial.Gamma Techmologies, March2003
    [86]车用压燃式、气体燃料点燃式发动机与汽车排放污染物排放限值及测量方法(中国III、IV、V阶段)[S](GB176912005)
    [87]轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)[S](GB18352.32005)
    [88]余志生.汽车理论[M].北京:机械工业出版社,2000:3570.
    [89]张俊红,马正颖等.汽车发动机动力性和经济性的优化匹配[J].农业机械学报,2010,41(6):3741.
    [90]何峰,杨宁.汽车动力学[M].贵州:贵州科技出版社,1997.
    [91]何仁,刘星荣.汽车动力传动系统最优匹配的研究和发展[J].江苏理工大学学报,1997,18(1):3741.
    [92] N.Dembski, Y.Guezennec, et al. Analysis and Expermental Refinement of Real WorldDriving Cycles[C]. SAE Paper2002010069,2002.
    [93] Wolfgang Mayer, Jochen Wiedemann. Road load Determination Based on Driving–TorqueMeasurement[C]. SAE Paper2003010933,2003.
    [94] Hans Bruneel. Heavy Duty Testing Cycles Development: A New Methodology[C]. SAEPaper2000011860,2000.
    [95]杜青,杨延相.机动车排放测试循环特性分析及适用性评价[J].内燃机学报,2002,20(5):403407.
    [96]刘军,苏清祖等.基于运行循环的车辆污染控制技术与节能技术[J].农业机械学报,2002,33(4):2224.
    [97] Michal Vojtisek Lom, Douglas C. Lambert et al. Real World Emission from40Heavy DutyDiesel Trucks Recruited at Tulare, CA Rest Area[C]. SAE Paper2002012901,2002.
    [98]中重型商用车辆燃料消耗量测量方法[S](GB/T278402011)
    [99]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001.
    [100] Moser F X, Sams T, Dreisbach R.超低排放是重型柴油机未来的关键[J].国外内燃机,2005(6):4449.
    [101]林学东.发动机原理[M].北京:机械工业出版社,2008.
    [102] H Ando, K Kuwahara. A Keynote on Future Combustion Engines[C].SAE Paper2001010248,2001.
    [103] John B.Heywood. Internal Combustion Engine Fundamentals[M].McGraw HillCompany,1988.
    [104]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,2002.
    [105]周龙保.内燃机学[M].北京:机械工业出版社,2005:3032.
    [106]吴建华.汽车发动机原理[M].北京:机械工业出版社,2005.
    [107] Badih A, Jawad A. Steady State Vehicle Model to Predict Engine and TransmissionPerformance[C]. SAE Paper1999010742,1999.
    [108] Peter Schoeggl. Virtual Optimization of Vehicle and Powertrain Parameters withConsideration of Human Factors[C]. SAE Paper2005011945,2005.
    [109] A W Phillips. Development and Use of a Vehicle Powertrain Simulation for Fuel Economyand Performance Studies[C].SAE Paper900619,1990.
    [110] Marshall Bare. Improving CFD Modelling Using Rapid Prototype Testing[C]. SAE paper,2004013195,2004.
    [111] M. Auriemma. Fluid dynamic analysis of the intake system for a HDDI diesel engine bySTAR CD code and LDA technique[C], SAE paper2003010002,2003.
    [112]郑广勇. CA6DF226柴油机瞬变过程研究[D].长春:吉林大学,2006:1214.
    [113]程健.2.8T型柴油机与轻型越野车传动系统匹配研究[D].长春:吉林大学,2006:2136.
    [114]徐亮.用于车辆动力学仿真的全工况发动机建模[D].长春:吉林大学,2011.
    [115]宁予.基于GT Drive的微型汽车动力传动匹配分析及优化[D].武汉:武汉理工大学,2009:3250.
    [116] Elbert Hendricks,Thomas Vesterholm. The Analysis of Mean Value SI EngineModels[C].SAE Paper920682,1992.
    [117] Elbert Hendricks,Spencer C. Sorenson. Mean Value Modelling of Spark IgnitionEngines[C].SAE Paper900616,1990.
    [118] Chevalier, A,Muller,M.,and Elbert Hendricks. On the Validity of Mean Value Engine ModelsDuring Transient Operation[C].SAE Paper2000011261,2000.
    [119] Ishikawa N, Zhang L. Characteristics of Air EntraiN.ment in a Diesel Spray[C]. SAE Paper1999010522,1999.
    [120] Arturo de Risi, Teresa Donateo and Domenico Laforgia. Optimization of the CombustionChamber of Direct Injection Diesel Engines[C]. SAE Paper2003011064,2003.
    [121] Andrea Bertola, Raffael Schubiger. Characterization of Diesel Particulate Emissions inHeavy Duty Diesel Engines with Common Rail Fuel Injection Influence of InjectionParameters and Fuel Composition[C]. SAE Paper2001013573,2001.
    [122]郑广勇.工作过程计算在发动机开发中的应用[J].汽车技术,2003(9):1621.
    [123]刘秋颖.柴油机两级涡轮增压系统选型与匹配[D].上海:上海交通大学,2011.
    [124] Li Yu feng, Xu Jun feng, et al. Effect of Combination and Orientation of Intake Ports onSwirl Motion in Four Valve DI Diesel Engine[C].SAE Paper2000011823,2000.
    [125] Bianchi G M,Cantore G, Fontanesi S. Turbulence Modelling in CFD Simulation of ICEIntake Flows:The Discharge Coefficient Prediction[C].SAE Paper2002011118,2002.
    [126]任立红,舒歌群等.发动机可变进气系统流动特性模拟分析与试验研究[J].汽车工程,2010,32(5):383387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700