抗原呈递元件基因甲基化对哈萨克族食管鳞癌发生的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:食管癌是较常见的恶性肿瘤之一,我国食管癌的发病率和死亡率居世界第一,每年约有16~20万人死于此病。新疆是食管癌高发区之一,其中哈萨克族发病率最高,比其他少数民族高2~3倍,病死率在全国少数民族中占第一位。食管癌作为新疆的常见病和多发病,已严重影响了本地区各族人民的身体健康。哈萨克族生活习惯及居住环境特殊,是较好的研究人群。利用新疆哈萨克族食管癌疾病资源,开展食管癌的基础研究,建立肿瘤分子标志物体系,结合临床研究来明确食管癌发病原因,对于新疆食管癌的预防、诊断及临床治疗具有重大意义。食管癌的病因复杂,目前普遍认为食管癌是多因素作用、多基因参与、多阶段发展的疾病,然而其发生和发展的确切机制仍不太清楚。在对哈萨克族食管癌高发区流行病学调查工作中,发现哈萨克族食管癌具有家族聚集现象,并且遗传免疫因素在食管癌的发生中起着一定的作用。大量研究表明,人类白细胞抗原Ⅰ类分子(human leukocyte antigenclass Ⅰ,HLA-Ⅰ)表达低下或缺失,可导致肿瘤细胞逃逸宿主免疫监视,从而与肿瘤发生密切相关。HLA-Ⅰ类分子是机体免疫应答信息产生和传递的基础,主要功能是将细胞内源性抗原肽呈递到细胞表面,实现CD8+T细胞对自身抗原的识别和免疫监视。而此内源性抗原肽呈递过程必须在抗原呈递元件(antigen processing machinery,APM)的协助下才能完成。APM成员蛋白是一组抗原呈递相关蛋白,负责协助HLA-Ⅰ类分子组装、负载和提呈内源性抗原肽,介导抗肿瘤的T细胞免疫功能。APM成员蛋白表达下调可影响正常的抗原呈递过程,使肿瘤逃避免疫监视而增加肿瘤发生和发展的风险。DNA甲基化是肿瘤表观遗传学调控的一个重要方式,肿瘤细胞基因组整体水平低甲基化和启动子区高甲基化是已被公认的肿瘤表观遗传性机制。APM基因启动子区的异常甲基化可引发基因表达沉默,导致功能蛋白的表达下调或缺失,从而促进肿瘤的发生和发展,在宫颈癌、膀胱癌、头、颈部肿瘤中已有报道,但有关食管癌的研究很少。本研究拟从表观遗传学角度,以HLA-Ⅰ和APM成员基因为候选基因,利用新疆哈萨克族食管癌病变资源,从基因表达调控层次,分析APM成员基因启动子区异常甲基化与哈萨克族食管鳞癌发生之间的关系。方法:(1)采用亚硫酸氢盐测序PCR(bisulfate sequeneing PCR,BSP)法检测人食管鳞癌ECa109细胞DNA中基因启动子区甲基化位点。利用在线数据库提供的人类基因组计划资源,对HLA-B、TAP1、TAP2、LMP2、LMP7、ERAP1,Tapasin和ERp57等8种基因启动子区设计特异性PCR引物,经基因启动子区目的CpG岛片段的PCR扩增、克隆和测序,获得基因启动子区甲基化相关的序列和CpG位点信息。(2)收集新鲜哈萨克族食管癌及癌旁正常食管组织标本50例,提取组织DNA。选取前一步研究中筛选出来的HLA-B、TAP2、LMP7、Tapasin和ERp57等5种基因,利用MassARRAY甲基化检测技术,对候选基因启动子区CpG岛甲基化水平进行定量分析,明确食管癌和癌旁正常组织中总体及单个CpG位点甲基化水平的差异。(3)采用免疫组织化学SP法,检测LMP7、Tapasin、ERp57和HLA-Ⅰ蛋白在食管癌组织中的表达水平。使用SPSS16.0统计分析软件包对数据进行处理,采用非参数秩和检验分析以上4种蛋白表达水平与食管癌患者临床病理特征的关系。采用Spearman等级相关分析检验LMP7、Tapasin、ERp57与HLA-Ⅰ蛋白表达水平的相关性,采用方差分析检验LMP7、Tapasin、ERp57基因甲基化和蛋白表达水平的关系。P值取双侧,以a=0.05为临界值。结果:(1)在人食管鳞癌ECa109细胞DNA中,HLA-B、TAP2、LMP7、Tapasin和ERp57等5种基因启动子区的目的CpG岛均发生了不同程度的甲基化,发生甲基化的CpG位点占所有CpG位点的比例分别为10/14、8/8、2/22、5/12和18/18。而TAP1、LMP2、ERAP1等3种基因启动子区没有发现甲基化位点。(2)根据MassARRAY技术对50例哈萨克族食管癌及癌旁正常组织中的甲基化定量检测结果,发现LMP7、Tapasin和ERp57基因在食管癌中的甲基化水平高于癌旁组织(P<0.05),HLA-B和TAP2基因在食管癌和癌旁组织中的甲基化水平无差异(P>0.05)。进行单个CpG位点甲基化水平分析显示:LMP7基因启动子区CpG_5、CpG_9、CpG_20、CpG_21、CpG_22位点;Tapasin基因启动子区CpG_1、CpG_6位点;ERp57基因启动子区CpG_1位点的甲基化水平在食管癌和癌旁正常组织之间存在统计学差异(P<0.05)。对3种基因甲基化水平与肿瘤临床病理特征进行分析,发现LMP7和ERp57基因甲基化与食管癌患者TNM分期有关,Ⅰ期+ⅠⅠ期组的甲基化水平高于ⅠⅠⅠ期+ⅠV期组;LMP7、ERp57基因甲基化与肿瘤分化程度有关,中、低分化组的甲基化水平高于高分化组;ERp57基因甲基化与肿瘤的血管侵袭性有关,侵袭血管生长组的甲基化水平高于不侵袭血管生长组,以上差异均有统计学意义(P<0.05)。(3)免疫组化结果显示:食管癌组织中HLA-Ⅰ、Tapasin、LMP7和Erp57蛋白均有明显的表达下调或缺失,与癌旁正常组织相比有统计学意义(P<0.05)。HLA-Ⅰ蛋白表达下调与肿瘤分化程度、肿瘤侵润深度密切相关;LMP7蛋白表达下调与肿瘤分化程度、肿瘤侵润深度、肿瘤血管侵袭性生长、淋巴结转移、TNM分期密切相关;Tapasin蛋白表达下调与肿瘤分化程度、肿瘤侵润深度密切相关;ERp57蛋白表达下调与淋巴结转移、肿瘤血管侵袭性生长、肿瘤侵润深度、TNM分期密切相关,以上差异均有统计学意义(P<0.05)。在食管癌组织中,HLA-Ⅰ与LMP7、Tapasin、ERp57蛋白表达水平呈正相关(r值分别为0.823、0.721、0.378,P值均<0.05)。LMP7、ERp57基因在不同甲基化水平之间的蛋白表达水平差异有统计学意义(P<0.05),随着基因启动子区甲基化水平的增高,相应蛋白的表达水平降低。而Tapasin基因在不同甲基化水平食管癌组织中的蛋白表达水平没有统计学差异(P>0.05)。结论:(1)在人食管鳞癌ECa109细胞中,HLA-B、TAP2、LMP7、Tapasin和ERp57等5种基因启动子区的CpG岛均发生了不同程度的CpG位点甲基化,可能是导致人食管鳞状上皮细胞癌变的重要原因。(2)在新疆哈萨克族食管癌组织标本中,LMP7、Tapasin和ERp57基因甲基化水平异常增高,并与肿瘤的临床病理特征密切相关,是导致哈萨克族食管癌发生的高危因素。LMP7基因启动子区的CpG_5、CpG_9、CpG_20、CpG_21、CpG_22位点;Tapasin基因启动子区的CpG_1、CpG_6位点;ERp57基因启动子区的CpG_1位点与基因的甲基化密切相关,可能是调控相应基因启动子区甲基化的关键位点。(3)在新疆哈萨克族食管癌组织标本中,HLA-Ⅰ、LMP7、Tapasin和Erp57蛋白出现明显的表达下调和缺失,并与食管癌的临床病理特征密切相关,说明HLA-Ⅰ及APM成员蛋白协同参与了食管鳞状上皮的免疫应答,可以防止食管癌的发生,对机体有保护作用。APM成员LMP7、ERp57基因启动子区甲基化,可以抑制基因蛋白表达,影响HLA-Ⅰ分子的组装和呈递,造成HLA-Ⅰ在肿瘤细胞表面的下调或缺失,使肿瘤细胞逃避了机体的免疫监视和杀伤,导致了肿瘤的发生,可能是新疆哈萨克族食管癌发生的表观遗传学机制。
Aim of study: Esophageal cancer is one of the most common malignancies. Thereare about16~20million people died of the disease each year in china, morbidity andmortality ranking the first in the world. Xinjiang is one of the high-risk areas foresophageal squamous cell carcinoma (ESCC), in which Kazakh people have the highestincidence of2to3times higher than other minorities. The mortality of Kazakh ESCCoccupied the first place in all minorities and was2.3times higher than the nationalaverage rate. As a common and frequently occurring disease in Xinjiang, ESCC hasseriously affected the quality of life in people who live in the region. Because kazakhpeople live in a distinctive environment and have unique living habits, so the populationis a good object for study. To investigate the reason of ESCC and establish tumormolecular marker system is very important for diagnosis, clinical treatment andprevention of ESCC in Kazakh population. Taking Xinjiang Kazakh ESCC resources tocarry out basic research of ESCC is of great significance. Epidemiological studiesrevealed that the incidence of ESCC was associated with multiple factors, many geneswere involved in the different carcinoma development stage. Investigations found thatthere was a familial aggression phenomenon in high-incidence people and the immunefactors played a important role in the incidence of ESCC. However, the definitemechanism is still not clear. Numerous studies show that low expression or absence ofhuman leukocyte antigen class I (HLA-I) can cause tumor cells escaping the host immunesurveillance, which is closely related with tumor development. Human leukocyte antigenclass I is the basis of the immune response system generation and transmission. It’sprimary function is deriving antigen peptides from tumor cells and presenting it to cytotoxic T lymphocytes, by which realizing self antigens recognition and immune surveillance.This endogenous antigen peptide presenting process must be assisted by antigenprocessing machinery (APM) components to achieve the normal function of the HLA-I.Antigen processing machinery components are a group of antigen presenting proteinsresponsible for assisting the HLA-I molecular assembly, loading and presentingendogenous antigen peptide. Defects in antigen processing machinery componentsexpression may provide tumor cells with a mechanism to escape from recognition anddestruction by HLA class I antigen-restricted tumor antigen-specific cytotoxic T cells.DNA methylation is an important mechanism in silencing the expression of genes. Thefunctional relevance and potential clinical significance of these epigenetic alterationshave been addressed. More recently, epigenetic events associated with tumordevelopment and progression have been found to underlie changes in HLA antigen, APMcomponent, co-stimulatory molecule expression in malignant cells, including cervicalcancer, bladder cancer, head and neck cancer. However, expression and functionalproperties of HLA-I antigens and APM components in malignant cells of ESCC havebeen investigated in a limited extent. To overcome the limitation in the present study, wehave selected Xinjiang Kazakh ESCC species, investigated the methylation level ofhuman leukocyte antigen class I and antigen-processing machinery components (TAP1,TAP2, LMP2, LMP7, ERAP1, Tapasin, and ERp57) as well as functional proteinexpression in25primary esophageal squamous cell carcinomas and in25matchedhealthy esophageal tissues. We want to find out the association of APM componentsmethylation and development of ESCC in Xinjiang Kazakh people through epigeneticangle. Methods:(1)ECa109cells were treated with bisulfate sequeneing PCR (BSP)analysis to evaluate the CpG island methylation status of HLA-B, TAP1, TAP2, LMP2,LMP7, ERAP1, Tapasin and ERp57gene. Using the resources of the online database ofthe human genome project, genetic information was obtained from the genbank database,and specific PCR primers of CpG island fragment were designed through specializedsoftware scanning gene promoter regions. The methylation status of specific target geneswas gained by PCR amplification, cloning and sequencing.(2)50cases of fresh KazakhESCC species and matched healthy esophageal tissues were collected and the DNA wasextracted. HLA-B TAP2LMP7Tapasin and ERp57genes were choosed as candidategenes screened out from the previous step study. MassARRAY technology was employedto analyze the methylation levels of methylated CpG sites in the gene promoter fragmentsbetween ESCC and normal control.(3)The HLA-I, LMP7, Tapasin, and ERp57antigens were detected by immunohistochemical SP method in50cases of esophageal species.The association between the downregulated expression of HLA-I, LMP7, Tapasin,ERp57antigens and clinicopathological features of ESCC was analyzed by theKruskal-waillis test. Correlation of LMP7, Tapasin, ERp57genes promoter methylationlevels with protein expression levels was identified by the Spearman rank correlationcoefficient. The data was processed by SPSS16.0statistical analysis software,“P” valuewith bilateral, signincance at a=0.05. Results:(1) CpG islands in promoter region werehypermethylated in the Eca109cells, methylated CpG sites were found to differentdegrees in HLA-B, TAP2, LMP7, Tapasin and Rp57genes. The proportion of methylatedCpG sites in all CpG sites of each gene were10/14,8/8,2/22,5/12,18/18respectively.No methylated CpG site was found in TAP1, LMP2, ERAP1gene promoterregions.(2)According to MassARRAY methylation level detecting, the methylationlevels of LMP7,Tapasin and ERp57genes in ESCC species were higher than matchedhealthy esophageal tissues (P<0.05), while there were no significant difference inHLA-B and TAP2genes (P>0.05). Single CpG sites methylation level analysis showedthat: CpG_5, CpG_9, CpG_20, CpG_21, CpG_22in the LMP7gene promoter region;CpG_1, CpG_6in the Tapasin gene promoter region; CpG_1in the ERp57gene promoterregion were statistically different between ESCC and adjacent normal tissues. Analysisbetween LMP7, Tapasin, ERp57gene methylation levels and clinicopathological featuresfound that: LMP7, ERp57genes promoter methylation levels in stage I and stage II grouppatients are higher than stage III and stage IV group; LMP7, ERp57genes methylationlevels in moderately and poorly differientied carcinomas are higher than welldifferientied tissues; ERp57gene methylation level in tumor vascular invasion group ishigher than without vascular invasion group (P<0.05, respectively).(3)The expressionof HLA-I, LMP7, Tapasin and ERp57antigens were reduced in tumor lesions comparedwith matched healthy tissues, the difference was statistically significant respectively(P<0.05). Downregulated expression of HLA-I is closely associated with tumordifferentiation, depth of tumor invasion; Downregulated expression of LMP7is closelyassociated with tumor differentiation, lymph node metastasis, depth of tumor invasion,vascular invasion, TNM staging; Downregulated expression of Tapasin is closelyassociated with tumor differentiation, depth of tumor invasion; Downregulatedexpression of Erp57is closely associated with lymph node metastasis, depth of tumorinvasion, vascular invasion, TNM staging (P<0.05, respectively). Analysis by theSpearman rank correlation coefficient showed that LMP7, Tapasin and ERp57protein expression level were significantly correlated with that of HLA-I (r=0.823, r=0.721andr=0.378, P<0.05, respectively). The methylation levels of LMP7and ERp57genepromoters were negatively correlated with protein expression levels (P<0.05,respectively). Conclusion:(1)The CpG islands in promoter fragments of HLA-B, TAP2,LMP7, Tapasin and Rp57genes existed different degrees of mehthylation in Eca109cellline. This may be specific epigenetic changes in esophageal squamous cell carcinoma. Itprovides a important mechanism for esophageal cancer development.(2)In XinjiangKazakh ESCC tissue specimens, the methylation levels of LMP7, Tapasin and ERp57genes enhanced abnormally and are closely associated with clinicopathological features.It should be noted as high risk factors of ESCC development in Xinjiang Kazakhpopulation. Aberrant hypermethylation of CpG islands (CpG_5, CpG_9, CpG_20,CpG_21, CpG_22in the LMP7gene promoter region; CpG_1, CpG_6in the Tapasingene promoter region; CpG_1in the ERp57gene promoter region) may be the key sitesof regulating the gene methylation. These CpG sites can affect multiple cellular functionsby silencing transcriptional process.(3)HLA-I, LMP7, Tapasin and ERp57antigens playthe critical role in tumor cell immune surveillance and killing, they can prevent theoccurrence of esophageal cancer and produce a protective effect on the body. Themethylated CpG sites in LMP7and ERp57gene promoter can affect the level of proteinexpression, which play a significant role in hindering HLA-I molecules assembly andpresenting, the latter changes result in the HLA-I down or missing in the surface of tumorcells. The whole process cause tumor cells escape from body's immune surveillance andlead to carcinoma development. This maybe is the epigenetic mechanism of XinjiangKazakh ESCC.
引文
[1] Pisani P, Parkin DM, Ferlay J. Estimate of the worldwide mortality from eighteenmajor cancers in1985:implications for prevention and projection of futureburden[J]. Int J Cancer,1993,55:891-903.
    [2] Munoz N. Epidemiological aspects of oesophageal cancer[J]. Endoscopy,1993,25:609-612.
    [3] Li JY. Epidemiology of esophageal cancer in China[J]. Natl Cancer Inst Monogr,1982,62:113-120.
    [4]居来提·艾尼瓦尔,李德生,张力为,等.新疆2005~2008年伊犁地区食管癌患病情况调查研究[J].新疆医学,2011,41(10):112-114.
    [5] Keeney S, Bauer TL. Epidemiology of adenocarcinoma of the esophagogastricjunction[J]. Surg Oncol Clin N Am,2006,15(4):687-96.
    [6] Whelan SL. Cancer Incidence in Five Continents. Coding practices[J]. IARC SciPubl,1992,120:31-38.
    [7]夏书香.延边朝鲜族地区恶性肿瘤发病情况分析[J].天津医药,2011,134(11):1077.
    [8]张月明.新疆食管癌的分布[J].新疆医学院学报,1988,11(2):139-145.
    [9]徐致祥.农肥、污水与食管癌[M].北京:科学出版社,2003:56-74
    [10]雷燕,栾荣生,周超,等.生活习惯对农村食管癌影响的病例对照研究[J].现代预防医学,2006,33(5):755-756.
    [11]王兆一,严霞,高建国,等.食管癌高发区粮食防霉实验[J].中国环境科学1996,16(1):31-33.
    [12] Freedman ND, Abnet CC, Leitzmann MF, et al. A prospective study of tobacco,alcohol, and the risk of esophageal and gastric cancer subtypes[J]. Am J Epidemiol,2007,165:1424-1433.
    [13]刘伯齐,姜晶梅,陈铮鸣,等.中国103个地区吸烟与食管癌风险研究:死因调查中的病例对照方法学研究[J].中华医学杂志,2006(6),86:380-385.
    [14] Wu M, Zhao JK, Hu XS, et al. Association of smoking, alcohol drinking and dietaryfactors with esophageal cancer in high and low-risk areas of Jiangsu Province,China[J]. World J Gastroenterol,2006,12:1686-1693.
    [15]汪求真,周晓彬,滕洪松.中国人群饮食因素与食管癌Meta分析[J].中国肿瘤2007;16(1):3-7.
    [16] Lin K, Shen W, Shen Z, et al. Dietary exposure and urinary excretion of totalN-nitroso compounds, nitrosamino acids and volatile nitrosamine in inhabitants ofhigh-and low-risk areas for esophageal cancer in southern China[J].Int J Cancer,2002,102:207-211.
    [17] Kristal AR, Blount PL, Schenk JM, et al. Low-fat, high fruit and vegetable diets andweight loss do not affect biomarkers of cellular proliferation in Barrett esophagus[J].Cancer Epidemiol Biomarkers Prev,2005,14:2377-2383.
    [18] Engel LS, Chow WH, Vaughan TL, et al. Population attributable risks of esophagealand gastric cancers[J]. Natl Cancer Inst,2003,95:1404-1413.
    [19]王秀梅,杰恩斯,马彦清,等.新疆哈萨克族食管癌危险因素病例对照研究[J].中国公共卫生,2007,23(6):737-738.
    [20] Farhadi M, Tabmasebi Z, Merat S, et al. Human papilloma virus in squamous cellcarcinoma of esophagus in a high-risk population[J]. World J Gastroenterol,2005,11(8):1200-1203.
    [21]卢晓梅,林仁勇,张亚楼,等.新疆哈萨克族食管癌组织中乳头瘤病毒16型E6E7基因的研究[J].地方病通报,2003,18(4):26-28.
    [22] Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genometegrates intrinsic and environmental signals[J].Not Rev Genet,2003,33(3):245-254.
    [23]杨国涛,闫召华,周玉汀,等.mmP10FHIT基因在食管癌中的表达及临床意义[J].山东大学学报(医学版),2005,43(12):1159-1162.
    [24]李卉,姜孝芳,李惠武.食管癌发生早期相关基因研究进展[J].地方病通报,2008,23(4):14-17.
    [25]李卉,卢晓梅,赵学信,等. Survivin、CyclinD1基因在哈萨克族食管癌中表达及其意义的研究[J].新疆医科大学学报,2007,30(6):560-562.
    [26] Li Q, Verma IM. NF-κB regulation in the immune system[J]. Nature ReviewsImmunology,2002,2(10):725-734.
    [27] Sailhamer EA, Li Y, Smith EJ, et al. Acetylation:a novel method for modulation ofthe immune response following trauma/hemorrhage and inflammatory second hit inanimals and humans[J].Surgery,2008;144(2):204-216.
    [28] Moretta L, Bottino CPende D, Vitale M, et al. Human natural killer cells:molecularmechanisms controlling NK cell activation and tumor cell lysis[J]. Immunol Lett,2005,100:7-13.
    [29] Hanson EM, Clements VK, Sinha P, et al. Myeloid-derived suppressor cellsdown-regulate L-selectin expression on CD4+and CD8+T cells. J Immunol,2009,183(6):937-944.
    [30] Day CL, Kiepiela P, Leslie AJ, et al. Proliferative capacity of epitope-specific CD8T-cell responses is inversely related to viral load in chronic human immunodefici-ency virus type1infection[J]. Journal of Virology,2007,81(1):434-438.
    [31] Campoli M, Chang CC, Oldford SA, et al. HLA antigen changes in malignanttumors of mammary epithelial origin:molecular mechanisms and clinicalimplications[J].Breast Dis,2004,20:105-125.
    [32] Cabrera T, López-Nevot MA, Gaforio JJ,et al.Analysis of HLA expression in humantumor tissues[J]. Cancer Immunol Immunother,2003(1),52:1-9.
    [33]齐翠花,潘晓琳.HLA多态性与宫颈癌的相关性研究进展[J].农垦医学,2008,30(4):307-310.
    [34] Mehran G, Omeed M, Moein F, et al. Induction of cytotoxic T lymphocytes primedwith Tumor RNA-loaded Dendritic Cells in esophageal squamous cell carcinoma:preliminary step for DC vaccine design[J]. BMC Cancer,2010,10:261.
    [35]吴静,马燕花.HLA-II等位基因多态性及其与食管癌的相关性[J].中国肿瘤临床与康复,2004,11(5):475-478.
    [36] Berntsen A, Brimnes MK, Straten PT, et al. Increase of circulating CD4+CD25highFoxp3+regulatory T cells in patients with metastatic renal cell carcinoma duringtreatment with dendritic cell vaccination and low-dose in-terleukin-2[J]. JImmunother,2010,33(7):425-34.
    [37] Aptsiauri N, Cabrera T, Mendez R, et al. Role of altered expression of HLA class Imolecules in cancer progression[J]. Adv Exp Med Biol,2007,601:123-131.
    [38] Mizukami Y, Kono K, Maruyama T, et al. Downregulation of HLA Class I moleculesin the tumour is associated with a poor prognosis in patients with esophagealsquamous cell carcinoma[J]. Cancer,2008,99(9):1462-1467.
    [39] Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown andtumor growth[J]. Immunol Today,2000,21:455-464.
    [40] Schmidt N, Gonzalez E, Visekruna A,et al.Targeting the proteasome:partialinhibition of the proteasome by bortezomib or deletion of the immunosubunitLMP7attenuates experimental colitis[J]. Gut,2010,59(7):896-906.
    [41] Khan AN, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors induce TAP,LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells[J].Cancer Immunol Immunother,2008,57:647-654.
    [42] Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression[J].Science,2003,301:798-802.
    [43] Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by shortinterfering RNAs in human cells[J]. Nature,2004,431:211-217.
    [44] Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis:epigenetics joinsgenetics[J]. Trends Genet,2000,16(4):168-174.
    [45] Bird AP. CpG-rich islands and the function of DNA methylation[J]. Nature,1986,321(6):209-213.
    [46] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer[J]. NatRev Genet,2002,3(6):415-428.
    [47] Shin CM, Kim N, Park JH, et al. Prediction of the risk for gastric cancer usingcandidate methylation markers in the non-neoplastic gastric mucosa[J]. J Pathol,2012,226(4):654-665.
    [48] Rockett JC, Darnton SJ, Crocker J, et al. Expression of HLA-A B C, HLA-DR andintercellular adhesion molecule in oesophageal carcinoma[J]. Clin Pathol,1995,48(6):539-544.
    [49] Sumiyoshi K, Kuwano H, Watanabe M, et al. HLA-DR antigen expression insquamous epithelial dysplasia and squamous cell carcinoma of the esophagus:animmunohisto chemical study[J]. Oncol Rep,1999,6(2):301-306.
    [50] Lin J, Deng CS, Jie S, et al. HLA-DRB1allete polgmophisms in gengtic susceptibil-ity to esophageal carcinoma[J]. World J Gastroeneterol,2003,9(3):412-416.
    [51] Sadanaga N, Kuwano H, Watanabe M, et al. Local immune response to tumorinvasion in esophageal squamous cell carcinoma:the expression of human leukocyteantigen-DR and lymphocyte infiltration[J]. Cancer,1994,74(2):586-591.
    [52] Liu Q, Hao C, Su P, et al. Down-regulation of HLA class I antigen-processingmachinery components in esophageal squamous cell carcinomas:Association withdisease progression[J]. Gastroenterology,2009,44(8):960-969.
    [53] Cathro HP, Smolkin ME, Theodorescu D, et al. Relationship between HLA class Iantigen processing machinery component expression and the clinicopathologiccharacteristics of bladder carcinomas[J]. Cancer Immunol Immunother,2010,59:465-472.
    [54] Ayshamgul H, Hong M, Ilyar S, et al. Association of defective HLA-I expressionwith antigen processing machinery and their association with clinicopathologicalcharacteristics in Kazak patients with esophageal cancer[J]. Chinese MedicalJournal2011,124(3):341-346.
    [55] Seliger B. Molecular mechanisms of MHC class I abnormalities and APMcomponents in human tumors[J]. Cancer Immunol Immunother,2008,57(11):1719-1726.
    [56] Akash M, Mehta Y, Ekaterina S, et al. Association of antigen processing machineryand HLA class I defects with clinicopathological outcome in cervical carcinoma[J].Cancer Immunol Immunother,2008,57(2):197-206.
    [57] Meissner M, Reichert TE, Kunkel M, et al. Defects in the human leukocyte antigenclass I antigen processing machinery in head and neck squamous cell carcinoma:association with clinical outcome[J]. Clin Cancer Res,2005,11:2552-2560.
    [58] Kageshita T, Hirai S, Ono T, et al. Down-regulation of HLA class Iantigen-processing molecules in malignant melanoma:association with diseaseprogression[J]. Am J Pathol,1999,154:745-754.
    [59] Fatemi M, Pao MM, Jeong S, et al. Footprinting of mammalian promoters:use of aCpG DNA methyltransferase revealing nucleosome positions at a single moleculelevel[J]. Nucleic Acids Res,2005,33(20):176-181.
    [60] Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides inthe human genome distinguishes two distinct classes of promoters[J]. Proc NatlAcad Sci,2006,103(5):1412-1417.
    [61] Feil R, Berger F. Convergent evolution of genomic imprinting in plants andmammals[J]. Trends in Genetics,2007,23(4):165-170.
    [62]左伋.医学分子细胞生物学[M].上海:复旦大学出版社,2005:132-138.
    [63]王秀琴,肖枫,王明荣等.两个人食管癌细胞系的建立及染色体分析[J].中华肿瘤杂志,1998,20(1):5-8.
    [64] Ushijima T, Nakajima T, Maekita T. DNA methylation as a marker for the past andfuture[J]. J Gastroenterol,2006,41(5):401-407.
    [65] Satish S, Vinay S T, Anand K, et al. High Resolution Methylome Map of RatIndicates Role of Intragenic DNA Methylation in Identification of CodingRegion[J]. PLoS One,2012,7(2):31-36.
    [66] Thompson RF, Fazzari MJ, Niu H, et al. Experimental intrauterine growth restrictioninduces alterations in DNA methylation and gene expression in pancreatic islets ofrats[J]. J Biol Chem,2010,285:15111-15118.
    [67] Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR:a novel PCRassay for methylation status of CpG islands[J]. Proc Natl Acad Sci USA,1996,93(18):9821-9826.
    [68] Lu ZM, Zhou J, Wang X, et al. Nucleosomes Correlate with In Vivo ProgressionPattern of De Novo Methylation of p16CpG Islands in Human GastricCarcinogenesis[J]. PLoS One,2012,7(4):359-364.
    [69] Herman JG, Merlo A, Mao L, et al. Inactivation of CDKN2/pl6/MTS1gene isfrequently associated with aberrant DNA methylation in all common humancancers[J]. Cancer Res,1995,20(55):4525-4530.
    [70] Fujiwara S, Noguchi T, Takeno S, et al. Hypermethylation of p16gene promotercorrelates with loss of p16expression that results in poorer prognosis in esophagealsquamous cell carcinomas[J]. Dis Esophagus,2008,21(2):125-131.
    [71] Kim HC, Kim CN, Yu CS, et al. Methylation of the hMLH1andhMSH2promoter inearly-onset sporadic colorectal carcinomas with microsatelliteinstability[J]. Int JColorectal Dis,2003,18:196-202
    [72] Vasiliki P, Chryssoula K, Nikolaos T, et al. Promoter methylation status of hMLH1,MGMT, and CDKN2A/p16in colorectal adenomas[J]. World J Gastroenterol,2010,16(28):3553-3560.
    [73]陈新军,袁先厚,吴勉云,等.人脑胶质瘤U251细胞中hMLH1hMSH2基因启动子区的甲基化状态研究[J].中华实验外科杂志,2007,24(51):1300-1302.
    [74] Sandoval J, Esteller M. Cancer epigenomics:beyond genomics[J]. Curr Opin GenetDev,2012,22(1):50-55.
    [75] Eads CA, Lord RV, Wickramasinghe K, et al. Epigenetic patterns in the progressionof esophageal adenocarcinoma[J]. Cancer Res,2001,61(8):3410-3418.
    [76] Dulai GS, Guha S, Kahn KL, et al. Preoperative prevalence of Barrett's esophagus inesophageal adenocarcinoma: a systematic review[J]. Gastroenterology,2002,122(1):26-33.
    [77] Guo M, Ren J, Brock MV, et al. Promoter methylation of HIN-1in the progressionto esophageal squamous cancer[J]. Epigenetics,2008,3(6):336-341.
    [78] Li LW, Yu XY, Yang Y, et al. Expression of esophageal cancer related gene4(ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitoryeffect on the tumor growth in vitro and in vivo[J]. Int J Cancer,2009,125(7):1505-1513.
    [79] Demanet C, Mulder A, Deneys V, et al. Down-regulation of HLA-A and HLA-Bw6,but not HLA-Bw4, allospecificities in leukemic cells:an escape mechanism fromCTL and NK attack?[J] Blood,2004,103:3122-3130.
    [80] Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class I antigenand NK cell-activating ligand changes in malignant cells: current challenges andfuture directions[J]. Adv Cancer Res,2005,93:189-234.
    [81] Mehling M, Simon P, Mittelbronn M, et al. WHO grade associated downregulationof MHC class I antigen-processing machinery components in humanastrocytomas:does it reflect a potential immune escape mechanism?[J]. ActaNeuropathol,2007,114:111-119.
    [82] Ferrone S, Marincola FM. Loss of HLA class I antigens by melanomacells:molecular mechanisms, functional significance and clinical relevance[J].Immunol Today,1995,16:487-494.
    [83] Mehta AM, Jordanova ES, Kenter GG, et al. Association of antigen processingmachinery and HLA class I defects with clinicopathological outcome in cervicalcarcinoma[J]. Cancer Immunol Immunother,2008,57:197-206.
    [84] Ayshamgul H, Mangnishahan A, Reshalaiti A, et al. Post-Transcriptional andEpigenetic Regulation of Antigen Processing Machinery(APM)Components andHLA-I in Cervical Cancers from Uighur Women[J]. PLoS One,2012,7(9):186-193.
    [85] Alessandra F, Paolo C, Fulvia C, et al. MHC Class I-Related Antigen-ProcessingMachinery Component Defects in Feline Mammary Carcinoma[J]. Transl Oncol,2012,5(1):48-55.
    [86] Liu Y, Komohara Y, Domenick N, et al. Expression of Antigen Processing andPresenting Molecules in Brain Metastasis of Breast Cancer[J]. Cancer ImmunolImmunother,2012,61(6):789-801.
    [87] Suárez-Alvarez B, Rodriguez RM, Calvanese V, et al.Epigenetic MechanismsRegulate MHC and Antigen Processing Molecules in Human Embryonic andInduced Pluripotent Stem Cells[J]. PLoS One,2010,5(4):101-107.
    [88]武立鹏,朱卫国. DNA甲基化的生物学应用及检测方法进展[J].中国检验医学杂志,2004,27(7):468-474.
    [89]张松法,叶枫,陈怀增,等.基因组CpG岛甲基化检测技术研究进展[J].国际遗传学杂志,2006,29(3):201-203.
    [90]张艳,陈彬,陈敏,等. DNA甲基化PCR引物的设计[J].第三军医大学学报,2008,30(3):268-269.
    [91]库热西·玉努斯,王丽容,斯坎德尔·白克力,等.新疆哈萨克族食管癌p16抑癌基因缺失及其表达的研究[J].新疆医科大学学报,2000,23(1):10-12.
    [92]李海燕,李惠武,陈艳,等. MTA1及nm23H1基因在新疆哈萨克族食管癌组织中的表达及临床意义[J].新疆医科大学学报,2008,31(8):943-945.
    [93]伊利亚尔·夏合丁,李卉,霍奇,等.基质金属蛋白酶-7在哈萨克族食管癌中的表达及其意义[J].地方病通报,2008,23(4):7-9.
    [94] Shirahata A, Sakuraba K, Kitamura Y, et al. Detection of vimentin methylation in theserum of patients with gastric cancer[J]. Anticancer Res,2012,32(3):791-794.
    [95] Leal MF, Lima EM, Silva PN, et al. Promoter hypermethylation of CDH1, FHIT,MTAP and PLAGL1in gastric adenocarcinoma in individuals from NorthernBrazil[J]. World J Gastroenterol,2007,13(18):2568-2574.
    [96]李卉,刘玲,王洪江,等.高分辨熔解曲线法检测哈萨克族食管癌患者癌组织中FHIT CDKN2A启动子区甲基化水平及临床意义[J].科技导报,2011,29(31):59-63.
    [97] Deng G, Chen A, Hong J, et al. Methylation of CpG in a small region of the hMLH1Promoter invariably Correlates with the absence of gene expression[J]. Caneer Re,1999,59(9):2029-2033.
    [98] Nie Y, Yang G, Song Y, et al. DNA hypemethylatio is a mechanism for loss ofexpression of HLA class I genes in human esophageal squamous cell carcinoma[J].Careiliogenesis,2001,22(10):1615-1623.
    [99] Morimoto Y, Toyota M, Satoh A, et al. Inactivation of class II transactivator byDNA methylation and histone deacetylation associated with absence of HLA-DRinduction by interferon-gamma in haematopoietic tumour cells[J]. Br J Cancer,2004,90:844-852.
    [100]朱应超,田辉,岳韦名,等. CHFR基因CpG岛甲基化对食管癌Eca109细胞增殖和凋亡的影响.中国肿瘤生物治疗杂志[J].中国肿瘤生物治疗杂志,2011,18(2):139-143.
    [101]郭艳丽,郭炜,邝钢,等. SRY-box17基因在食管鳞状细胞癌中异常甲基化及表达的研究[J].肿瘤,2012,32(4):269-273.
    [102]王文福.肿瘤学(教材)[M].北京:人民军医出版社,2002:65-83.
    [103]白丽荣,时丽冉.表观遗传学及其相关研究进展[J].安徽农业科学,2007,35(20):6056-6057.
    [104]Ehrich M, Nelson MR, Stanssens P, et al. Quantitative high-throughput analysis ofDNA methylation patterns by base-specific cleavage and mass spectrometry[J]. NatlAcad,2005,102:15785-15790.
    [105]Schatz P, Dietrich D, Schuster M. Rapid analysis of CpG methylation patterns usingRNase T1cleavage and MALDI-TOF[J]. Nucleic Acids Res,2004;32(2):101-106..
    [106]Gut IG. DNA analysis by MALDI-TOF mass spectrometry[J]. Hum Mutat,2004,23(5):437-441.
    [107]Zeinab B, Ramin R, Qing L, et al. Methylation signature of lymph node metastasesin breast cancer patients[J]. BMC Cancer,2012,12:244-246.
    [108]Coolen MW, Statham AL, Gardiner-Garden M, et al. Genomic profiling of CpGmethylation and allelic specificity using quantitative high-throughput massspectrometry:critical evaluation and improvements[J]. Nucleic Acids Res,2007,35(18):e119.
    [109]Zhong X Y, Holzgreve W. MALDI-TOF MS in Prenatal Genomics[J]. TransfusMed Hemother,2009,36(4):263-272.
    [110]赵小刚,田辉.食管鳞状细胞癌HLA-I抗原基因启动子甲基化与其临床病理学特点的实验研究.山东大学博士学位论文,2012:22-29.
    [111]Syed M, Malini R. Mechanisms of function of tapsin, a critical MCH classIassembly factor[J]. Traffic,2010,11(3):332-347.
    [112]Marincola FM, Jaffee EM, Hicklin DJ, et al. Escape of human solid tumors fromT-cell recognition: molecular mechanisms and functional significance[J]. AdvImmunol,2000,74:268-273.
    [113]赵亮,范丽安. Tapasin对HLA-E细胞表面表达的影响[J].中国免疫学杂志,2002,31(2):32-36.
    [114]杨英,陈怀增,叶大风,等. Tapasin和HLAI类分子在人卵巢癌中的表达及相关性[J].中国肿瘤,2005,21(3):24-27.
    [115] Vigneron N, Peaper DR, Leonhardt RM, et al. Functional significance of tapasinmembrane association and disulfide linkage to ERp57in MHC class Ipresentation[J]. Eur J Immunol,2009,39(9):2371-2376.
    [116]BarreraV, Peinado MA. Evaluation of single CpG sites as proxies of CpG islandmethylation states at the genome scale[J]. Nucleic Acids Res,2012,40(22):11490-11498.
    [117] Fradin D, Le Fur S, Mille C, et al. Association of the CpG Methylation Pattern ofthe Proximal Insulin Gene Promoter with Type1Diabetes[J]. PLoS One,2012,7(5):362-368.
    [118]王巍伟,刘东,刘春霞,等.新疆哈萨克族食管鳞癌miR-20315甲基化与HPV16感染关系探讨[J].农垦医学,2010,35(2):97-102.
    [119]刘曙正,戴涤新,连士勇,等.林州市1983~2002年食管癌发病率分析[J].中国肿瘤,2008,17(4):278-280.
    [120]杜灵彬,余传定,汪祥辉,等.浙江省4个肿瘤登记地区2004年恶性肿瘤发病资料分析[J].中国肿瘤,2008,17(4):270-273.
    [121]邹小农,陈万青,张思维,等.中国部分县市1989-2002年食管癌发病与死亡[J].中国肿瘤,2007,16(3):142-146.
    [122]肖志平,刘冉,许婧,等. DNA修复酶基因MGMT启动子区异常甲基化与食管癌的关系[J].癌变畸变突变,2009,21(2):56-59.
    [122]Lee EJ, Lee BB, Kim JW, et al. Aberrant methylation of Fragile Histidine Traidgene is associated with poor prognosis in early stage esophageal squamous cellcarcinoma.[J]. Euro J Cancer,2006,2(7):972-980.
    [123]Ishi H, Dumon KR, Vecchione A, et al. Potential cancer therapy with the fragilehistidine triad gene:review of the preclinical studies[J]. AMA,2001,286(19):2445-2449.
    [124]Tzao C,Tung HJJin JS,Sun GH, et al. Prognostic significance of global histonemodificat-ions in resected squamous cell carcinoma of the esophagus[J]. ModPathol,2009,22(2):252-260.
    [125]田子强,李勇,刘俊峰,等.食管癌新鲜肿瘤组织中MT-3基因CpG岛甲基化的临床意义[J].中国肿瘤临床,2008,35(2):1180-1183.
    [126]周素丽,凌志强,毛伟敏.食管癌患者血浆hMSH2基因启动子区域5'-CpG岛甲基化的检测及临床意义[J].临床检验杂志,2011,29(4):257-259.
    [127]刘盼,董稚明,董玉然,等.食管癌TBRI和TBRII基因甲基化及mRNA表达的相关性研究[J].中华肿瘤防治杂志,2010,17(15):1199-1202.
    [128]程蕾,凌志强,毛伟敏.食管癌组织APC基因启动子区5'-CpG岛甲基化模型的研究[J].中华肿瘤防治杂志,2011,18(3):200-204.
    [129]张功员,刘秋亮,乐晓萍,等.食管癌组织hMSH2mRNA的表达和启动子区甲基化[J].第四军医大学学报,2007,28(11):1027-1029.
    [130] Williams CS, Zhang B, Smith JJ, et al. BVES regulates EMT in human corneal andcolon cancer cells and is silenced via promoter methylation in human colorectalcarcinoma[J]. J Clin Invest,2011,121(10):4056-4069.
    [131] Yu F, Jiao Y, Zhu Y, et al. MicroRNA34c Gene Down-regulation via DNAMethylation Promotes Self-renewal and Epithelial-Mesenchymal Transition inBreast Tumor-initiating Cells[J]. Biol Chem,2012,287(1):465-473.
    [132] DesRochers TM, Shamis Y, Alt-Holland A, et al. The3D tissue microenvironmentmodulates DNA methylation and E-cadherin expression in squamous cellcarcinoma[J]. Epigenetics,2012,7(1):34-46.
    [133] Ulazzi L, Sabbioni S, Miotto E, et al. Nidogen1and2gene promoters areaberrantly methylated in human gastrointestinal cancer[J]. Mol Cancer,2007,6(1):7-15.
    [134]Fonsatti E, Sigalotti L, Coral S, et al. Methylation-regulated expression of HLAclass I antigens in melanoma[J]. Int J Cancer,2003,105:430-431.
    [135]Wright KL, Ting JP. Epigenetic regulation of MHC-II and CIITA genes[J]. TrendsImmunol,2006,27(9):405-412.
    [136]Sigalotti L, Fratta E, Coral S, et al.Intratumor heterogeneity of cancer/testis antigensexpression in human cutaneous melanoma is methylation regulated and functionallyreverted by5-aza-2'-deoxycytidine[J].Cancer Res,2004,64(24):9167-9171.
    [137]Morris AC, Beresford GW, Mooney MR, et al. Kinetics of a gamma interferonresponse: expression and assembly of CIITA promoter IV and inhibition bymethylation[J]. Mol Cell Biol,2002,22:4781-4791.
    [138]Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated withmethylation-induced gene silencing in cancer cells: correlation of accessibility,methylation, MeCP2binding and acetylation[J]. Nucleic Acids Res,2001,29(22):4598-4606.
    [139]Kass SU, Pruss D, Wollffe AP. How does DNA methylation repress transcription[J].Trends Genet,1997,13(11):444-449.
    [140]Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: fromimmunosurveillance to tumor escape[J]. Nat Immunol,2002,3:991-998.
    [141]Campoli M, Ferrone S, Zea AH, et al. Mechanisms of tumor evasion[J]. CancerTreat Res,2005,123:61-88.
    [142] Zhang B, Kracker S, Yasuda T, et al. Immune Surveillance and Therapy ofLymphomas Driven by Epstein-Barr-Virus Protein LMP1in a Mouse Model[J].Cell,2012,148(4):739-751.
    [143]梅家转,周健,郭坤元.自然杀伤细胞与肿瘤细胞之间的免疫编辑[J].中国肿瘤生物治疗杂志,2008,15(1):86-89.
    [144]李晓曦,郭宁,曹雪涛.肿瘤相关巨噬细胞促进肿瘤生长与转移的研究现状[J].中国肿瘤生物治疗杂志,2008,15(1):78-81.
    [145]刘英.肿瘤抗原特异性细胞毒T细胞和肿瘤免疫治疗[J].中国实验血液学杂志,2004,12(2):244-248.
    [146]Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects inmalignant lesions[J]. Cancer Immunol Immunother,2007,56:227-36.
    [147]Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance toimmune escape[J]. Immunology,2007,121:1-14.
    [148] Mehta AM, Jordanova ES, Kenter GG, et al. Association of antigen processingmachinery and HLA class I defects with clinicopathological outcome in cervicalcarcinoma[J]. Cancer Immunol Immunother,2008,57(2):197-206.
    [149]Ghosh N, Gyory I, Wright G, et al. Positive regulatory domain I binding factor1silences class II transactivator expression in multiple myeloma cells[J]. J Biol Chem,2001,276:15264-15268.
    [150]Kanaseki T, Ikeda H, Takamura Y, et al. Histone deacetylation, but nothypermethylation, modifies class II transactivator and MHC class II geneexpression in squamous cell carcinomas[J]. Immunol,2003,170:4980-4985.
    [151]Satoh A, Toyota M, Ikeda H, et al. Epigenetic inactivation of class IItransactivator(CIITA) is associated with the absence of interferon-gamma-inducedHLA-DR expression in colorectal and gastric cancer cells[J]. Oncogene,2004,23:8876-8886.
    [152]Eramo A, Pallini R, Lotti F, et al. Inhibition of DNA methylation sensitizesglioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediateddestruction[J]. Cancer Res,2005,65:11469-11477.
    [153]缪凤琴,张建琼,单军等.食管癌组织HLA-I类抗原及相关分子的表达及意义[J].南京师大学报(自然科学版),2004,27(4):76-79.
    [154] Suchikawa TT, Ikeda H, Cho Y, et al. Association of CD8+T cell infiltration inesophageal carcinoma lesions with human leucocyte antigen (HLA) class I antigenexpression and survival [J]. Clin Exp Immunol,2011,164(1):50–56.
    [155] Mizukami Y, Kono K, Maruyama T, et al. Downregulation of HLA Class Imolecules in the tumour is associated with a poor prognosis in patients withoesophageal squamous cell carcinoma[J]. Br J Cancer,2008,99(9):1462–1467.
    [156]Chang CC, Campoli M, Ferrone S. HLA class I defects in malignant lesions: whathave we learned?[J]. Keio J Med,2003,52(4):220-229.
    [157]Levin I, Klein T, Goldstein J, et al. Expression of class I histocompatibility antigensin transitional cell carcinoma of the urinary bladder in relation to survival[J]. Cancer,1991,68(12):2591-2594.
    [158]Grandis JR, Falkner DM, Melhem MF, et al. Human leukocyte antigen class I allelicand haplotype loss in squamous cell carcinoma of the head and neck:clinical andimmunogenetic consequences[J]. Clin Cancer Res,2000,6(7):2794-802.
    [159]Rodríguez T, Méndez R, Campo AD, et al. Distinct mechanisms of loss ofIFN-gamma mediated HLA class I inducibility in two melanoma cell lines[J]. BMCCancer,2007,7:34-39.
    [160]李玉,师恩,杨广育,等.食管癌HLA A, B, C基因抗原表达下调机理的研究[J].中国医科大学学报,2001,30(5):347-348.
    [161]Marsman M, Jordens I, Griekspoor A, et al. Chaperoning antigen presentation byMHC class II molecules and their role in oncogenesis[J]. Adv Cancer Res,2005,93:129-158.
    [162]Creswell P, Guest E. Antigen processing and presentation[J]. Immunol Rev,2005,207:5-7.
    [163]Wright KL, Ting JP. Epigenetic regulation of MHC-II and CIITA genes[J]. TrendsImmunol,2006,27(9):405-412.
    [164]Reith W, Leibund S, Waldburger JM. Regulation of MHC class II gene expressionby the class II transactivator[J]. Nat Rev Immunol,2005,5(10):793-806.
    [165] van den Elsen P J, van der Stoep N, Vietor HE, et al. Lack of CIITA expression iscentral to the absence of antigen presentation functions of trophoblast cells and iscaused by methylation of the IFN-gamma inducible promoter(PIV)of CIITA[J].Hum Immunol,2000,61(9):850-862.
    [166] van der Stoep N, Biesta P, Quinten E, et al. Lack of IFN-gamma-mediatedinduction of the class II transactivator(CIITA)through promoter methylation ispredominantly found in developmental tumor cell lines[J]. Int J Cancer,2002,97(4):501-507.
    [167]Satoh A, Toyota MH, Morimoto Y, et al. Epigenetic inactivation of class IItransactivator(CIITA)is associated with the absence of interferon-gamma-inducedHLA-DR expression in colorectal and gastric cancer cells[J]. Oncogene,2004,23(55):8876-8886.
    [168]Thomas BT, William GM, A Nazmul H Khan. Epigenetic regulation of immuneescape genes in cancer[J]. Cancer Immunol Immunother,2006,10:1159-84.
    [169]Serrano A, Tanzarella S, Lionello I, et al. Reexpression of HLA class I antigens andrestoration of antigen-specific CTL response in melanoma cells following5-aza-2'-deoxycytidine treatment[J]. Int J Cancer,2001,94:243-251.
    [170]Setiadi AF, David MD, Seipp RP, et al. Epigenetic control of the immune escapemechanisms in malignant carcinomas[J]. Mol Cell Biol,2007,27:7886-7894.
    [171]Campoli M, Ferrone S. A fresh look at an old story:revisiting HLA class II antigenexpression by melanoma cells[J]. Expert Review of Dermatology,2006,1:737-755.
    [172]Campoli M, Chang CC, Oldford SA, et al. HLA antigen changes in malignanttumors of mammary epithelial origin:molecular mechanisms and clinicalimplications[J]. Breast Dis,2004,20:105-25.
    [173]Magner WJ, Kazim AL, Stewart C, et al. Activation of MHC class I, II, and CD40gene expression by histone deacetylase inhibitors[J]. Immunol,2000,165:7017-7024.
    [174]Guo ZS, Hong JA, Irvine KR, et al. De novo induction of a cancer/testis antigen by5-aza-2'-deoxycytidine augments adoptive immunotherapy in a murine tumormodel[J]. Cancer Res,2006,66(2):1105-1113.
    [175]Sigalotti L, Fratta E, Coral S, et al. Intratumor heterogeneity of cancer/testisantigens expression in human cutaneous melanoma is methylation-regulated andfunctionally reverted by5-aza-2'-deoxycytidine[J]. Cancer Res,2004,64(24):9167-9171.
    [176]Fonsatti E, Nicolay HJ, Sigalotti L, et al. Functional up-regulation of humanleukocyte antigen class I antigens expression by5-aza-2'-deoxycytidine incutaneous melanoma: immunotherapeutic implications[J]. Clin Cancer Res,2007,13(11):3333-3338.
    [177]Wijermans P, Lubbert M, Verhoef G, et al. Low-dose5-aza-2'-deoxycytidine, aDNA hypomethylating agent, for the treatment of high-risk myelodysplasticsyndrome:a multicenter phase II study in elderly patients[J]. J Clin Oncol,2000,18(5):956-962.
    [178]Coral S, Sigalotti L, Covre A, et al.5-aza-2'-deoxycytidine in cancerimmunotherapy:a mouse to man story[J]. Cancer Res,2007,66:1105-1113.
    [179]Sigalotti L, Altomonte M, Colizzi F, et al.5-Aza-2'deoxycytidine (decitabine)treatment of hematopoietic malignancies:a multimechanism therapeutic approach[J].Blood,2003,101(11):4644-4646.
    [180]Schrump DS, Fischette MR, Nguyen DM, et al. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus,or pleura[J]. Clin Cancer Res,2006,12(19):5777-5785.
    [181]Gollob JA, Sciambi CJ, Peterson BL, et al. Phase I trial of sequential low-dose5-aza-2'-deoxycytidine plus high-dose intravenous bolus interleukin-2in patientswith melanoma or renal cell carcinoma[J]. Clin Cancer Res,2006,12(15):4619-4627.
    [1] Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting:from immunosurveillanceto tumor escape[J]. Nat Immunol,2002,3:991-998.
    [2] Campoli M, Ferrone S, Zea AH, et al. Mechanisms of tumor evasion[J]. Cancer TreatRes,2005,123:61-88.
    [3] Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects inmalignant lesions[J]. Cancer Immunol Immunother,2007,56:227-36.
    [4] Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance toimmune escape[J]. Immunology,2007,121:1-14.
    [5] Gromme M, Neefjes J. Antigen degradation or presentation by MHC class Imolecules via classical and non-classical pathways[J]. Mol Immunol,2002,39(3-4):181-102.
    [6] Maio M, Coral S, Fratta E, et al. Epigenetic targets for immune intervention in humanmalignancies[J]. Oncogene,2003,22(42):6484-6488.
    [7] Germenis AE, Karanikas V. Immunoepigenetics:the unseen side of cancerimmunoediting[J]. Immunol Cell Biol,2007,85(1):55-59.
    [8] Di Croce L, Raker VA, Corsaro M, et al. Methyltransferase recruitment and DNAhypermethylation of target promoters by an oncogenic transcription factor[J].Science,2002,295(5557):1079-1082.
    [9] Herman JG, Baylin SB. Gene silencing in cancer in association with promoterhypermethylation[J]. New Engl J Med,2003,349(21):2042-2054.
    [10] Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression[J].Science,2003,301:798-802.
    [11]范丽安,周光炎.人类基因组MHC测序及其免疫学意义[J].上海免疫学杂志,1999,19(6):321-324.
    [12]邓建强,赖淑苹. HLA和疾病的相关性[J].西安医科大学学报,1998,19(4):650-652.
    [13]尤强,葛海良. HLA和肿瘤[J].上海免疫学杂志,2001,21(1):57-59.
    [14] Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression[J].Science,2003,301:798-802.
    [15] Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by shortinterfering RNAs in human cells[J]. Nature,2004,431:211-217.
    [16] Bedford MT, Richard S. Arginine methylation:an emerging regulator of proteinfunction[J]. Mol Cell,2005,18(3):263-272.
    [17] Chuikov S, Kurash JK, Wilson JR, et al. Regulation of p53activity through lysinemethylation[J]. Nature,2004,432(7015):353-360.
    [18] Fraga MF, Esteller M. Towards the human cancer epigenome: a first draft of histonemodifications[J]. Cell Cycle,2005,4(10):1377-1381.
    [19] Sims RJ, Nishioka K, Reinberg D. Histone lysine methylation: a signature forchromatin function[J]. Trends Genet,2003,19(11):629-639.
    [20] Favole A, Cascio P, Cerruti F, et al. MHC Class I-Related Antigen-ProcessingMachinery Component Defects in Feline Mammary Carcinoma[J]. Transl Oncol,2012,5(1):48-55.
    [21] Raffaghello L, Nozza P, Morandi F, et al. Expression and functional analysis ofhuman leukocyte antigen class I antigen-processing machinery inmedulloblastoma[J]. Cancer Res,2007,67(11):5471-5478.
    [22] Turrini R, Merl A, Dolcetti R, et al. Differential down-modulation of HLA class Iand II molecule expression on human tumor cell lines upon in vivo transfer[J].Cancer Immunol Immunother,2011,60(11):1639–1645.
    [23] Mizukami Y, Kono K, Maruyama T, et al. Downregulation of HLA Class I moleculesin the tumour is associated with a poor prognosis in patients with esophagealsquamous cell carcinoma[J]. Cancer,2008,99(9):1462-1467.
    [24] Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class I antigenand NK cell-activating ligand changes in malignant cells:current challenges andfuture directions[J]. Adv Cancer Res,2005,93:189-234.
    [25] Marsman M, Jordens I, Griekspoor A, et al. Chaperoning antigen presentation byMHC class II molecules and their role in oncogenesis[J]. Adv Cancer Res,2005,93:129-158.
    [26] Ferrone S, Marincola FM. Loss of HLA class I antigens by melanomacells:molecular mechanisms, functional significance and clinical relevance[J].Immunol Today,1995,16:487-494.
    [27] Ogino T, Shigyo H, Ishii H, et al. HLA class I antigen down-regulated in primarylaryngeal squamous cell carcinoma lesions as a poor prognostic marker[J]. CancerRes,2006,66(18):9281-9289.
    [28] Lin A, Yan WH, Xu HH, et al. HLA-G expression in human ovarian carcinomacounteracts NK cell function[J]. Ann Oncol,2007,18(11):1804-1809.
    [29]王飞,李辉,温泽清. HLA-G与肿瘤细胞的免疫逃逸[J].中华肿瘤防治杂志,2007,14(22):1751-1754.
    [30] Campoli M, Chang CC, Oldford SA, et al. HLA antigen changes in malignanttumors of mammary epithelial origin:molecular mechanisms and clinicalimplications[J]. Breast Dis,2004,20:105-125.
    [31] Chang CC, Campoli M, Ferrone S. HLA class I defects in malignant lesions:whathave we learned?[J]. Keio J Med,2003,52(4):220-229.
    [32] Levin I, Klein T, Goldstein J, et al. Expression of class I histocompatibility antigensin transitional cell carcinoma of the urinary bladder in relation to survival[J]. Cancer,1991,68(12):2591-2594.
    [33] Grandis JR, Falkner DM, Melhem MF, et al. Human leukocyte antigen class I allelicand haplotype loss in squamous cell carcinoma of the head and neck:clinical andimmunogenetic consequences[J]. Clin Cancer Res,2000,6(7):2794-802.
    [34] Rockett JC, Darnton SJ, Crocker J, et a. l Expression of HLA-A B C, HLA-DR andintercellular adhesion molecule in oesophageal carcinoma[J]. Clin Pathol,1995,48(6):539-544.
    [35]缪凤琴,张建琼,单军等.食管癌组织HLA-I类抗原及相关分子的表达及意义[J].南京师大学报(自然科学版),2004,27(4):76-79.
    [36] Ruiter DJ, Mattijssen V, Broecker EB, et al. MHC antigens in human melanomas[J].Sem Cancer Biol,1991,2:35-45.
    [37] Drexler HG, Gignac SM, Brenner MK, et al. Differential expression of MHC class IIantigens in chronic B-cell disorders[J]. Clin Exp Immunol,1988,71:217-223.
    [38] Lecchi M, Lovisone E, Genetta C, et al. Gamma-IFN induces a differentialexpression of HLA-DR, DQ and DP antigens on peripheral blood myeloid leukemicblasts at various stages of differentiation[J]. Leuk Res,1989,13:221-226.
    [39] Cabrera T, Ruiz-Cabello F, Garrido F. Biological implications of HLA-DRexpression in tumours[J]. Scand J Immunol,1995,41(4):398-406.
    [40] Sumiyoshi K, Kuwano H, Watarable M, et al. HLA-DR antigen expression insquamous epithelial dysplasia and squamous cell carcinoma of the esophagus:animmunohisto chemical study[J]. Oncol Rep,1999,6(2):301-306.
    [41] Sadanaga N, Kuwano H, Watanabe M, et al. Local immune response to tumorinvasion in esophageal squamous cell carcinoma: the expression of humanleukocyte antigen-DR and lymphocyte infiltration[J]. Cancer,2004,74(2):586-591.
    [42]林军,邓长生,朱尤庆,等. HLA-DRB1、-DQ Bl基因多态性与食管鳞癌遗传关联性[J].中华消化杂志,2002,12:726-729.
    [43] Khosravi F, Amirzargar A, Sarafnejad A, et al. HLA class II allele and haplotypefrequencies in Iranian patients with leukemia[J]. Iran J Allergy Asthma Immunol,2007,6(3):137-142.
    [44] Pistoia V, Morandi F, Wang X, et al. Soluble HLA-G: Are they clinicallyrelevant?[J]. Semin Cancer Biol,2007,17(6):469-479.
    [45] Rouas-Freiss N, Moreau P, Menier C,et al. Expression of tolerogenic HLA-Gmolecules in cancer prevents antitumor responses[J]. Semin Cancer Biol,2007,17(6):413-421.
    [46] Rouas-Freiss, Moreau P, Menier C,et al.Expression of tolerogenic HLA-G moleculesin cancer prevents antitumor responses [J]. Semin Cancer Biol,2007,17(6):436-443.
    [47] Duncker K, Schlaf G, Bukur J, et al. Expression and regulation of non-classicalHLA-G in renal cell carcinoma[J]. Tissue Antigens,2008,72(2):137-148.
    [48] Ye SR, Yang H, Li K, et al. Human leukocyte antigen G expression:as a significantprognostic indicator for patients with colorectal cancer[J]. Mod Pathol,2007,20(3):375-383.
    [49] Yie SM, Yang H, Ye SR, et al. Expression of human leukocyte antigenG(HLA-G)correlates with poor prognosis in gastric carcinoma[J]. Ann Surg Oncol,2007,14(10):2721-2729.
    [50] Wischhusen J, Waschbisch A, Wiendl H. Immune-refractory cancers and their littlehelpers-an extended role for immunetolerogenic MHC molecules HLA-G andHLA-E?[J]. Semin Cancer Biol,2007,17(6):459-468.
    [51] Lee N, Geraghty DE. HLA-F surface expression on B cell and monocyte cell lines ispartially independent from tapasin and completely independent from TAP[J]. JImmunol,2003,171(10):5264-5271.
    [52] Khan AN, Magner WJ, Tomasi TB, et al. An epigenetically altered tumor cellvaccine[J]. Cancer Immunol Immunother,2003,53(8):748-754.
    [53] Chou SD, Khan ANH, Magner WJ, et al. Histone acetylation regulates the cell typespecific CIITA promoters, MHC class II expression and antigen presentation intumor cells[J]. Int Immunol,2005,17(11):1483-1494.
    [54] Deng G, Chen A, Hong J, et al. Methylation of CpG in a small region of the hMLH1Promoter invariably Correlates with the absence of gene expression[J]. Caneer Re,1999,59(9):2029-2033.
    [55] Morimoto Y, Toyota M, Satoh A, et al. Inactivation of class II transactivator byDNA methylation and histone deacetylation associated with absence of HLA-DRinduction by interferon-gamma in haematopoietic tumour cells[J]. Br J Cancer,2004,90:844-852.
    [56] Rodríguez T, Méndez R, Campo AD, et al. Distinct mechanisms of loss ofIFN-gamma mediated HLA class I inducibility in two melanoma cell lines[J]. BMCCancer,2007,7:34.
    [57] Nie Y, Yang G, Song Y, et al. DNA hypemethylatio is a mechanism for loss ofexpression of HLA class I genes in human esophageal squamous cell carcinoma[J].Careiliogenesis,2001,22(10):1615-1623.
    [58]李玉,师恩,杨广育,等.食管癌HLA A, B, C基因抗原表达下调机理的研究[J].中国医科大学学报,2001,30(5):347-348.
    [59] Ogretmen B, McCauley MD, Safa AR. Molecular mechanisms of loss of beta2-microglobulin expression in drug-resistant breast cancer sublines and itsinvolvement in drug resistance[J]. Biochemistry,1998,37(33):11679-11691.
    [60] Suárez-Alvarez B, Rodriguez RM, Calvanese V, et al. Epigenetic MechanismsRegulate MHC and Antigen Processing Molecules in Human Embryonic andInduced Pluripotent Stem Cells[J]. PLoS One,2010,5(4):101-107.
    [61] Cathro HP, Smolkin ME, Theodorescu D, et al. Relationship between HLA class Iantigen processing machinery component expression and the clinicopathologiccharacteristics of bladder carcinomas[J]. Cancer Immunol Immunother,2010,59:465-472.
    [62] Seliger B. Molecular mechanisms of MHC class I abnormalities and APMcomponents in human tumors[J]. Cancer Immunol Immunother,2008,57(11):1719-1726.
    [63] Akash M. Mehta E, Jordanova G, et al. Association of antigen processing machineryand HLA class I defects with clinicopathological outcome in cervical carcinoma[J].Cancer Immunol Immunother,2008,57(2):197-206.
    [64] Meissner M, Reichert TE, Kunkel M, et al. Defects in the human leukocyte antigenclass I antigen processing machinery in head and neck squamous cellcarcinoma:association with clinical outcome[J]. Clin Cancer Res,2005,11:2552-2560.
    [65] Kageshita T, Hirai S, Ono T, et al. Down-regulation of HLA class Iantigen-processing molecules in malignant melanoma: association with diseaseprogression[J]. Am J Pathol,1999,154:745-754.
    [66] Serrano A, Tanzarella S, Lionello I, et al. Reexpression of HLA class I antigens andrestoration of antigen-specific CTL response in melanoma cells following5-aza-2'-deoxycytidine treatment[J]. Int J Cancer,2001,94:243-251.
    [67] Setiadi AF, David MD, Seipp RP, et al. Epigenetic control of the immune escapemechanisms in malignant carcinomas[J]. Mol Cell Biol,2007,27:7886-7894.
    [68] Ayshamgul H, Hong M, Ilyar S, et al. Association of defective HLA-I expressionwith antigen processing machinery and their association with clinicopathologicalcharacteristics in Kazak patients with esophageal cancer[J]. Chinese MedicalJournal,2011,124(3):341-346.
    [69] Campoli M, Ferrone S. A fresh look at an old story:revisiting HLA class II antigenexpression by melanoma cells[J]. Expert Review of Dermatology,2006,1:737-755.
    [70] Campoli M, Chang CC, Oldford SA, et al. HLA antigen changes in malignanttumors of mammary epithelial origin:molecular mechanisms and clinicalimplications[J]. Breast Dis,2004,20:105-25.
    [71] Magner WJ, Kazim AL, Stewart C, et al. Activation of MHC class I, II, and CD40gene expression by histone deacetylase inhibitors[J]. Immunol,2000,165:7017-7024.
    [72] Creswell P, Guest E. Antigen processing and presentation[J]. Immunol Rev,2005,207:5-7.
    [73] Marsman M, Jordens I, Griekspoor A, et al. Chaperoning antigen presentation byMHC class II molecules and their role in oncogenesis[J]. Adv Cancer Res,2005,93:129-158.
    [74] Wright KL, Ting JP. Epigenetic regulation of MHC-II and CIITA genes[J]. TrendsImmunol,2006,27(9):405-412.
    [75] van den Elsen P J, van der Stoep N, Vietor HE, et al. Lack of CIITA expression iscentral to the absence of antigen presentation functions of trophoblast cells and iscaused by methylation of the IFN-gamma inducible promoter(PIV) of CIITA[J].Hum Immunol,2000,61(9):850-862.
    [76] Reith W, Leibund S, Waldburger JM. Regulation of MHC class II gene expressionby the class II transactivator[J]. Nat Rev Immunol,2005,5(10):793-806.
    [77] Morimoto Y, Toyota M, Satoh A, et al. Inactivation of class II transactivator byDNA methylation and histone deacetylation associated with absence of HLA-DRinduction by interferon-gamma in haematopoietic tumour cells[J]. Br J Cancer,2004,90(4):844-852.
    [78] Satoh A, Toyota M, Ikeda H, et al. Epigenetic inactivation of class IItransactivator(CIITA) is associated with the absence of interferon-gamma-inducedHLA-DR expression in colorectal and gastric cancer cells[J]. Oncogene,2004,23(55):8876-8886.
    [79] Zika E, Greer SF, Zhu XS, et al. Histone Deacetylase1/mSin3A Disrupts GammaInterferon-Induced CIITA Function and Major Histocompatibility Complex Class IIEnhanceosome Formation[J]. Mol Cell Biol,2003,23(9):3091-3102.
    [80] Kanaseki T, Ikeda H, Takamura Y, et al. Histone deacetylation, but nothypermethylation, modifies class II transactivator and MHC class II geneexpression in squamous cell carcinomas[J]. J Immunol,2003,170(10):4980-4985.
    [81] Takamura Y, Ikeda H, Kanaseki T, et al. Regulation of MHC class II expression inglioma cells by class II transactivator(CIITA)[J]. Glia,2004,45(4):392-405.
    [82] Yu J, Angelin-Duclos C, Greenwood J, et al. Transcriptional repression byblimp-1(PRDI-BF1) involves recruitment of histone deacetylase[J]. Mol Cell Biol,2000,20(7):2592-2603.
    [83] Chang CC, Murphy SP, Ferrone S. Differential in vivo and in vitro HLA-Gexpression in melanoma cells:potential mechanisms. Hum Immunol[J]. HumImmunol,2003,64(11):1057-1063.
    [84] Morandi F, Levreri I, Bocca P, et al. Human neuroblastoma cells trigger animmunosuppressive program in monocytes by stimulating soluble HLA-G release.Cancer Res[J]. Hum Immunol,2007,67(13):6433-6441.
    [85] Rouas-Freiss N, Moreau P, Menier C, et al. Expression of tolerogenic HLA-Gmolecules in cancer prevents antitumor responses[J]. Semin Cancer Biol,2007,17(6):413-421.
    [86] Sebti Y, Maux A, Gros F, et al. Expression of functional soluble human leucocyteantigen-G molecules in lymphoproliferative disorders[J]. Br J Haematol,2007,38(2):202-212.
    [87] Wang E, Panelli MC, Marincola FM. Understanding the response to immunotherapyin humans[J]. Springer Semin Immunopathol,2005,27(1):105-117.
    [88] Guo ZS, Hong JA, Irvine KR, et al. Denovo induction of a cancer/testis antigen by5-aza-2'-deoxycytidine augments adoptive immunotherapy in a murine tumormodel[J]. Cancer Res,2006,66(2):1105-1113.
    [89] Sigalotti L, Fratta E, Coral S, et al. Intratumor heterogeneity of cancer/testis antigensexpression in human cutaneous melanoma is methylation-regulated and functionallyreverted by5-aza-2'-deoxycytidine[J]. Cancer Res,2004,64(24):9167-9171.
    [90] Fonsatti E, Nicolay HJ, Sigalotti L, et al. Functional up-regulation of humanleukocyte antigen class I antigens expression by5-aza-2'-deoxycytidine incutaneous melanoma:immunotherapeutic implications[J]. Clin Cancer Res,2007,13(11):3333-3338.
    [91] Wijermans P, Lubbert M, Verhoef G, et al. Low-dose5-aza-2'-deoxycytidine, aDNA hypomethylating agent, for the treatment of high-risk myelodysplasticsyndrome:a multicenter phase II study in elderly patients[J]. J Clin Oncol,2000,18(5):956-962.
    [92] Coral S, Sigalotti L, Covre A, et al.5-aza-2'-deoxycytidine in cancer immunotherapy:a mouse to man story[J]. Cancer Res,2007,66:1105-1113.
    [93] Sigalotti L, Altomonte M, Colizzi F, et al.5-Aza-2'-deoxycytidine (decitabine)treatment of hematopoietic malignancies:a multimechanism therapeutic approach[J].Blood,2003,101(11):4644-4646.
    [94] Schrump DS, Fischette MR, Nguyen DM, et al. Phase I study of decitabine-mediatedgene expression in patients with cancers involving the lungs, esophagus, orpleura[J]. Clin Cancer Res,2006,12(19):5777-5785.
    [95] Gollob JA, Sciambi CJ, Peterson BL, et al. Phase I trial of sequential low-dose5-aza-2'-deoxycytidine plus high-dose intravenous bolus interleukin-2in patientswith melanoma or renal cell carcinoma[J]. Clin Cancer Res,2006,12(15):4619-4627.
    [96] Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects forepigenetic therapy[J]. Nature,2004,429(6990):457-463.
    [97] Li H, Wu X. Histone deacetylase inhibitor, trichostatin A, activates p21WAF1/CIP1expression through down regulation of c-myc and release of the repression of c-mycfrom the promoter in human cervical cancer cells[J]. Biochem Biophys ResCommun,2004,324(2):860-867.
    [98] Fang JY, Lu J, Chen YX, et al. Methylation on expression of tumor suppressor genesand proto-oncogene in human colon cancer cell lines[J]. World J Gastroenterol,2003,9(9):1976-1980.
    [99] Bovenzi V, Le NL, Cote S, et al. DNA methylation of retinoic acid receptor in breastcancer and possible therapeutic role of5'-aza-2'CdR[J]. Anticancer Drugs,1999,10(5):471-476.
    [100]Lucas DM, Davis ME, Parthun MR, et al. The histone deacetylase inhibitor MS-275induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemiacells[J]. Leukemia,2004,18(7):1207-1214.
    [101]Florenes VA, Skrede M, Jorgensen K, et al. Deacetylase inhibition in malignantmelanomas:impact on cell cycle regulation and survival[J]. Melanoma Res,2004,14(3):173-181.
    [102]Moore PS, Barbi S, Donadelli M, et al. Gene expression profiling after treatmentwith histone deacetylase inhibitor trichostatin A reveals altered expression of bothpro-and anti-apoptotic genes in pancreatic adenocarcinoma cells[J]. BiochemBiophys Acta,2004,1693(3):167-176.
    [103]Eramo A, Pallini R, Lotti F, et al. Inhibition of DNA methylation sensitizesglioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediateddestruction[J]. Cancer Res,2005,65(24):11469-11477.
    [104]Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases inducetumor-selective apoptosis through activation of the death receptor pathway[J]. NatMed,2005,11(1):71-76.
    [105]Natoni F, Diolordi L, Santoni C, et al. Sodium butyrate sensitises human pancreaticcancer cells to both the intrinsic and the extrinsic apoptotic pathways[J]. BiochimBiophys Acta,2005,1745(3):318-329.
    [106]Mann BS, Johnson JR, Cohen MH, et al. FDA approval summary:vorinostat fortreatment of advanced primary cutaneous T-cell lymphoma[J]. Oncologist,2007,12(10):1247-1252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700