纳米形态铝化合物与辅酶的作用和对相关脱氢酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,不同类型纳米粒子的安全性和毒性在世界范围内引起了广泛的关注。研究证实,纳米铝化合物可以改变有机物的性质,从而成为潜在的环境污染物,同时其生物毒性也引起了各方重视。纳米氧化物及氢氧化物可能是生理条件下环境和生物体系中铝的主要存在形态。本文通过探索合成了纳米铝化合物,并研究腺嘌呤二核苷酸(NAD+)及腺嘌呤二核苷酸磷酸(NADP+)在纳米铝化合物表面的吸附,探讨论了纳米铝化合物的吸附机理及其生物有效性。同时采用电化学方法研究了纳米形态及其他形态铝化合物对依赖于辅酶NAD(H)/NADP(H)的脱氢酶活性的影响,并利用荧光光谱和圆二色谱法研究了影响机制。主要内容如下:
     1、合成了纳米-Al2O3,γ-Al2O3和AIOOH。研究了辅酶I(NAD+)在纳米γ-Al2O3、 α-Al2O3和γ-AlOOH的表面吸附,采用现代光谱分析手段UV-vis、ICP、XRD、TG-DTA、 XPS、ATR-FTIR和荧光光谱相结合进行分析。实验发现,NAD+的吸附量受pH值影响较大,pH值升高,吸附量迅速下降,且吸附作用明显受离子强度的影响,随着离子强度的增大,吸附量骤减。结果表明NAD+在纳米α-Al2O3和γ-AlOOH表面的吸附主要是外层吸附,而XPS和ATR-FTIR证明NAD+在γ-A12O3表面以外层吸附为主的同时存在少量内层配位方式。荧光实验证明,在研究范围内,随着纳米铝化合物用量的增大,改变了NAD+折叠式与展开式的构象平衡。
     2、采用现代光谱分析手段研究了辅酶Ⅱ(NADP+)在纳米γ-Al2O3、α-Al2O3和γ-AlOOH表面的吸附行为。结果显示,NADP+的吸附量随pH值的升高而降低,3     3、概述了多壁碳纳米管和石墨烯修饰电极研究溶液中A1(III)和纳米A113对依赖于辅酶NAD(H)/NADP(H)的相关脱氢酶活性的影响。并采用滴涂法制备了还原型石墨烯CRG/CHIT修饰电极,利用计时电流i-t法,通过检测NADPH和NADH在电极上催化电流的变化情况,研究了纳米形态铝化合物(A12O3和AIOOH)对乙醇脱氢酶(ADH)和谷胱甘肽还原酶(GR)活性的影响。结果显示,CRG修饰电极能有效的降低NADPH和NADH在裸的玻碳电极上的氧化还原电位,纳米A12O3和AIOOH对GR和ADH的活性具有显著的抑制作用。通过Lineweaver Burk双倒数曲线计算了加入不同浓度纳米A12O3和AIOOH时相关脱氢酶的米氏常数,证明A12O3和AIOOH对GR和ADH的作用属于反竞争性抑制机制。同时荧光光谱法和圆二色谱法表明纳米A1203和AlOOH能够引起辅酶和脱氢酶本身的构象变化,从而引起酶活性的改变。实验证明,计时电流i-t法稳定、灵敏、快速有效,可以作为生物体系中酶活性测定的手段。
In recent years, the potential effects of nanoparticles, which cause unforeseen health or environmental hazards to human beings or other animal species, have attracted considerable concerns in the whole world. The interaction between nano-sized aluminum compounds and organics may change the properties of the organism, therefore, nano-aluminum compounds are considered as potential environmental pollutants. Under physiological conditions of biological systems, nano-sized oxides and hydroxides may be the exact species of aluminum. In this study, nano-sized aluminum compounds were synthesized and the adsorption of adenine dinucleotide (NAD+) and adenine dinucleotide phosphate (NADP+) on the synthesis nanoparticles were investigated. The experiments involved the adsorption mechanism and the impact on the biological systems. Meanwhile, electrochemical methods were performed to study the effect of different species of aluminum compounds on the activity of NAD(H)/NADP(H)-dependent dehydrogenases. The fluorescence and circular dichroism spectroscopy were applied to interpret the proposed mechanism. The main results can be concluded as follows:
     1. Nano-sized α-Al2O3, γ-Al2O3and y-AlOOH were synthesized. And the adsorption behavior of NAD+on crystallized nano-sized γ-AlOOH,γ-Al2O3and α-Al2O3were investigated by using batch adsorption experiments and modern analytical methods. The methods included UV-vis, ICP, XRD, TG-DTA, XPS, ATR-FTIR and fluorescence spectroscopy over a range of different NAD+/NADP+concentrations, pH conditions and ionic strength conditions. The results showed that the adsorption capacity exhibited a strong dependence on pH values, that is, the amount of adsorbed coenzymes decreased as the pH values increased. Moreover, the facts indicated that the ligand adsorption also depended on the concentration of ionic-strength, which is the typical property of outer-sphere complex fashion. All observations suggested that NAD+on α-Al2O3and γ-AlOOH were predominantly adsorbed in outer-sphere mode. While in situ ATR-FTIR and XPS spectra of adsorbed NAD+indicated that there was some minor inner-sphere mode coupled with the outer-sphere coating on γ-Al2O3surface. Under the experimental conditions, the conformation of NAD+/NADP+changed with the addition of nanoparticles.
     2. The adsorption behavior of NADP+on nano-sized γ-AlOOH, γ-Al2O3and α-Al2O3were studied by using modern analytical methods. The results showed that the adsorption capacity exhibited a strong dependence on pH values. As3     3. The research of the multi-wall carbon nanotube and graphene modified electrode were studied with the influence of Al(III) and Al13on the activity of the NAD(H)/NADP(H)-dependent dehydrogenases in solutions. The CRG/CHIT modified electrode was prepared and used to monitor the amperometric response of NADH and NADPH, which was applied to detect the activity of alcohol dehydrogenase (ADH) and glutathione reductase (GR). It was found that not only over potential of NADH/NADPH on the bare glassy carbon electrode was reduced, but also nano-sized Al2O3and AlOOH had been identically determined to display inhibition on activity of GR and ADH. According to Lineweaver Burk double reciprocal plot, the values of Michaelis constant Km for related dehydrogenases were calculated under different concentrations of nano-sized Al2O3and AlOOH added to the system. The properties of Km and Vmax indicated that the roles of nano-sized Al2O3and AlOOH in the ADH and GR catalytical system were ascribed as anti-competitive inhibitors. Moreover, fluorescence spectroscopy and circular dichroism (CD) spectra were applied to reveal the fact that nano-sized Al2O3and AlOOH could induce the conformational changes of both coenzymes and the related dehydrogenases, and then the unfavorable structural changes of substrate and enzyme would induce the change of enzyme activity. In a word, the results proved that the amperometric i-t curve could be applied as an effective tool to monitor the enzyme activity in the biological system due to its perfect property of stability, sensitivity and easy operation.
引文
[]Kiss T, Zatta P, Corain B. Interaction of aluminum (Ⅲ) with phosphate-binding sites: biological aspects and implications. Coordination Chemistry Reviews,1996,149: 329-346
    [2]杨小弟,章福平,王先龙,甘宁,邹公伟,毕树平.环境与生物体系中铝形态分析技术的新进展.分析化学,2003,31(9):1131~1138
    [3]Orihuela D, Meichtry V, Pizarro M. Aluminium-induced impairment of transcellular calcium absorption in the small intestine:Calcium uptake and glutathione influence. Journal of Inorganic Biochemistry,2005,99(9):1879-1886
    [4]Zhang F P, Yang L, Bi S P, Liu J, Liu F, Wang X L, et al. Neurotransmitter dopamine applied in electrochemical determination of aluminum in drinking waters and biological samples. Journal of Inorganic Biochemistry,2001,87(1-2):105-113
    [5]杨小弟,毕树平.环境中铝-有机配合物的分析研究进展.无机化学学报,2001,17(2):168~180
    [6]俞元春,丁爱芳.模拟酸雨对酸性土壤铝溶出及其形态转化的影响.土壤与环境,2001,10(2):87~90
    [7]Service R F. Can high-speed tests sort out which nanomaterials are safe? Science, 2008,321(5892):1036-1037
    [8]Gilbert N. Nanoparticle safety in doubt. Nature,2009,460(7258):937-937
    [9]Bi S P, Zhang J, Cheng J J. Call from China for joint nanotech toxicity-testing effort. Nature,2009,461(7264):593-593
    [10]Wilkinson K J, Bertsch P M, Jagoe C H, Campbell G C. Surface complexation of Al on isolated fish gill mcells. Environmental Science and Technology,1993,27(6): 1132-1138
    [1]Oughton D H, Salbu B, Bjornstad H E, Philip D J. Use of an aluminum-26 tracer to study the deposition of aluminum species on fish gills following mixing of limed and acidic waters. Analyst,1992,117:619-621
    [2]Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Science,2001,6(6):273-278
    [3]Kilpin K J, Dyson P J. Enzyme inhibition by metal complexes:concepts, strategies and application. Chemical Science,2013,4:1410-1419
    [4]Exley C. The pro-oxidant activity of aluminum. Free Radical Biology and Medicine, 2004,36(3):380-387
    [5]Flaten T P. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Research Bulletin,2001,55(2):187-196
    [6]Fernando V. Anaemia management in chronic kidney disease patients:An overview of current clinical practice. Nephrology Dialysis Transplantation,2002,17:13-18
    [7]Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, et al. Neurotoxic effects of aluminium among foundry workers and Alzheimer's disease. Neurotoxicology,2002,23(6):761-774
    [8]Malakoff D. Public health-aluminum is put on trial as a vaccine booster. Scince,2000, 288(5470):1323-1324
    [19]Pennington J A. Aluminum content of foods and diets. Food Additives Contaminants, 1988,25(2):161-232
    [20]Fulton B, Jaw S, Jeffery E H. Bioavailability of aluminum from drinking water. Foundmental and Applied Toxicology:Official Journal of the Society of Toxicology, 1989,12(1):144-150
    [2]Gitelman H J. Aluminum exposure and excretion. Science of The Total Environment, 1995,103(1-3):129-135
    [22]Rubini P, Lakatos A, Champmartin D, Kiss T. Speciation and structural aspects of interactions of Al(III) with small biomolecules. Coordination Chemistry Revicws, 2002,228(2):137-152
    [23]Zatta P, Lain E, Cagnolini C. Effects of aluminum on activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. European of Journal of Biochemistry,2000,276(10):3049-3055
    [24]王夔,生命科学中的微量元素.第2版.中国计量出版社,北京,1996
    [25]徐仁扣.有机酸对酸性土壤中铝的溶出和铝离子形态分布的影响.土壤,1998.(4):214~217
    [26]于天仁,季国亮.土壤和水研究中的电化学方法.科学出版社,北京,1991
    [27]Larsen P B, Deganhardt J, Tai C Y, Stenzler L M, Howell S H, Kochian L V. Aluminum-resistant arabidopsis ismutants that exhibit altered paterns of aluminum accumulation and organic acidrelease from root. Plant Physiology,1998,117(1):9-18
    [28]秦瑞君,陈福兴.低分子有机酸离子对降低土壤铝毒的作用.土壤肥料,1996,5:12~14
    [29]Verstraeten S V, Oteiza P I. Effects of Al3+ and related metals on membrane phase state and hydration:Correlation with lipid oxidation. Archives of Biochemistry and Biophysics,2000,375(2):340-346
    [30]田仁生,刘厚田.酸化土壤中铝及其植物毒性.环境科学,1990,11(6):41-46
    [3]Lazof D B, Goldsmith J G, Rufty T W, Linton R W. Rapid uptake of aluminum into cells of intact soybean root tips. Plant Physiology,1994,106:1107-1114
    [32]Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal detoxification mechanism of Al in hydrangea (identification of Al form in the leaves). Plant Physiology,1997,113(4):1033-1039
    [33]Ma J F, Zheng S J, Hiradate S, Matsumoto H. Detoxificaion aluminum with buckwheat. Nature,1997,390:569-570
    [34]Watanabe T, Osaki M, Yoshihara T, Tadano T. Distribution and chemical speciation of aluminum in the Al accumulator plant, melastoma malabathricum L. Plant and Soil, 1998,201(2):165-173
    [35]Nagata T, Hayatsu M, Kosuge N. Identification of aluminum forms in tea leaves by 27A1 NMR. Phytochemistry,1992,31(4):1215-1218
    [36]Liu L N, Yan B Z, Hu G F, Wang M. Determination of aluminum by 27A1 nuclear magnetic resonance spectroscopy. Environmental Chemistry,2005,24(1):108-109 (in Chinese)
    [37]Nagata T, Mukai T, Goto T. Analysis of chemical forms of aluminum in tea infusions by using 27A1-NMR. Nippon Shokuhin Kogyo Gakkaishi,1994,41(2): 120-122
    [38]孙婷,刘鹏,郑人卫,谢忠雷,罗虹.茶树体内铝形态及铝累积特性.作物学报,2009,35(10):1909~1915
    [39]宋金凤.凋落物中的有机酸及其对森林土壤的磷释放效应[D].哈尔滨:东北林业大学,2003
    [40]余健,磷胁迫下林木分泌有机酸及其对土壤磷的活化[D].南京:南京林业大学,2005
    [4]Kataoka T, Nakanishi T M. Aluminium distribution in soybean root tip for a short time Al treatment. Journal of Plant Physiology,2001,158(6):731-736
    [42]Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives,2005,113(7):823-839
    [43]Donaldson K. Resolving the nanoparticles paradox. Nanomedicine(Lond),2006, 1(2):229-234
    [44]Medina C, Santos-Martinez M J, Radomski A, Corrigan O I, Radomski M W. Nanoparticles:Pharmacological and toxicological significance. British Journal of Pharmacology,2007,150(5):552-558
    [45]Linkov I, Satterstrom F K, Corey L M. Nanotoxicology and nanomedicine:Making hard decisions. Nanomedicine,2008,4(2):167-171
    [46]Service R F. Nanomaterial show signs of toxicity. Science,2003,300(5617): 243-249
    [47]Brumfiel G A. Nanotechnology:A little knowledge. Nature,2003,424(17):246-248
    [48]Maynard A, Rejeski D. Too small to overlook. Nature,2009,460(7252):174-181
    [49]Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. The European Respiratory Journal,2009,34: 559-567
    [50]Gilbert N. Chemical-safety costs uncertain. Nature,2009,460(7259):1065-1065
    [5]Nemmar A, Hoet P H M, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts M F, et al. Passage of inhaled particles into the blood circulation in humans. Circulation, 2002,105:411-414
    [52]Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives,2001,109:547-551
    [53]Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology,2004, 16(6-7):437-445
    [54]Block M L, Wu X, Pei Z, Li G., Wang T, Qin L, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons:The role of microglia, phagocytosis, and NADPH oxidase. FASEB Journal,2004,18(13):1618-1620
    [55]Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen L C, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Particle and Fibre Toxicology,2006,3:1-13
    [56]Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines. Jouranl of the American Chemical Society,2003,125(42):1283-1289
    [57]Shvedova A A, Castranova V, Kisin E R, Schwegler-Berry D, Murray A R. Gandelsman, V Z, et al. Exposure to carbon nanotube material:Assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environment Health,2003,66(20):1909-1926
    [58]Joo S H, Feitz A J, Waite T D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environmental Science and Technolgy, 2004,38(7):2242-2247
    [59]Mates J M, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clinical Biochemistry.1999,32(8):595-603
    [60]Hu Y L, Gao J Q. Potential neurotoxicity of nanoparticles. International Journal of Pharmaceutics,2010,394(1-2):115-121
    [6]Win-Shwe T T, Fujimaki H. Nanoparticles and neurotoxicity. Journal of molecular Science,2011,12(9):6267-6280
    [62]Rorter A E, Gass M, Muller K, Skepper J N, Midgley P A, Welland M. Direct imaging of single-walled carbon nanotubes in cell. Nature Nanotschnology,2007, 2(11):713-717
    [63]Maysinger D, Lovrie J, Eisenberg A, Savic R. Fate of micelles and quantum dots in cell. European Journal of Pharmaceutics and Biopharmaceutics,2007,65(3):270-281
    [64]Xia T, Kovochich M, Liong M. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano,2008, 29(1):85-96
    [65]Orr G, Panther D J, Phillips J L, Tarasevich B J, Dohnalkova A, Hu D, et al. Submicrometer and nano-scale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cell. ACS Nano,2007,1(5): 463-475
    [66]Verma A, Uzun O, Hu Y, Han H S, Watson N, Chen S, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Materials,2008,7(7):588-595
    [67]Digne M, Sautet P, Raybaudl P, Toulhoat H, Artacho E. Structure and stability of aluminum hydroxides:A theoretical study. Journal of Physical Chemistry B,2002, 106(20):5155-5162
    [68]Rimaniol A C, Gras G, Verdier F, Capel F, Grigoriev V B, Porcheray F, et al. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type. Vaccine,2004,22(23-24):3127-3135
    [69]赵华章,栾兆坤,苏永渤.A113形态的分离纯化与表征.高等学校化学学报,2002,23(5):751~755
    [70]Teagaradeu D L, Kozlowski J F, White J L. Aluminum chlorohydrate structure studies. Journal of Pharm Aceutical Sciences,1981,70:758-761
    [7]van Bruggen M P B, Donker M, Lekkerkerker H N W, Hughes T L. Anomalous stability of aqueous boehmite dispersions induced by hydrolyzed aluminium poly-cations. Journal of Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,150(1-3):115-128
    [72]Phillips B L, Lee A P, Casey W H. The kinetics of oxygen exchange between sites in the Al3o(aq) molecule and aqueous solution. Geochimica et Cosmochimica Acta, 2003,67(15):2725-2733
    [73]Casey W H. Large aqueous aluminum hydroxide molecules. Chemical Reviews, 2006,106(1):1-16
    [74]Darbre P D. Underarm cosmetics are a cause of breast cancer. Journal of Applied Toxicology,20013,23(2):89-95
    [75]Johansson G, Gullman L O, Kjekshus A, Soderquist R. On the crystal structures of some basic aluminum salts. Acta Chemica Scandinavica,1960,14:771-773
    [76]Parent L, Campbell P G C. Aluminum bioavailability to the green alga chlorella pyrenoidosa in acidified fied synthetic soft water. Environmental Toxicology and Chemistry,1994,13:587-598
    [77]Mertens J, Casentini B, Masion A, Pothig, R, Wehrli B, Furrer G. Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water. Water Research,2012,46(1):53-62
    [78]Furrer G, Trusch B, Muller C. The formation of polynuclear Al13 under simulated natural conditions. Geochimicaet Cosmochimica Acta,1992,56:3831-3838
    [79]Gerard F, Boudot J P, Ranger J. Consideration on the occurrence of the Al13 polycation in natural soil solutions and surface waters. Applied Geochemistry,2001. 16:513-529.
    [80]Hunter D, Ross D S. Evidence for a phytotoxic hydroxyl-aluminum polymer in organic soil horizons. Science,1991,251:1056-1058
    [8]Masion A, Thomas F, Tchoubar D. Chemistry and structure of Al(OH)/organic precipitates as mallangle X-ray scattering study.3. Depolymerization of the Al13 polycation by organic ligands. Langmuir,1994,10:4353-4356
    [82]Furrer G, Phillips B L, Ulrich K U, Pothig R, Casey W H. The origin of aluminum flocs in polluted streams. Science,2002,297(5590):2245-2247
    [83]Rao G. V, Rao K S. Evidence for a hydroxyl aluminum polymer(Al13) in synaptosomers. FEBS Letters,1992,331(1):49-50
    [84]Poleo A B S. Aluminum polymerizati on a mechanism of acute toxicity of aqueous aluminum to fish. Aquatic Toxicology,1995,31(4):347-356
    [85]Parker D R, Kinraide T B, Zelazny L W. On the phytotoxicity of polynuclear hydroxyl-aluminum complexes. Soil Science Society of America Journal,1989,53(3): 789-796
    [86]Birkmayer G D. NADH-the energizing coenzyme. New Canaan:Keats,1998:1-47
    [87]Grazina M, Silva F, Januario C, Oliveira M, Cunha L, Oliveira C. Parkinson's disease and mitochondrial DNA NADH dehydrogenase subunit 1 nucleotides. European Neurology,2003,50(1):60-61
    [88]Murray J, Zhang B, Taylor S W, Oglesbee D, Fahy E, Marusich M F, et al. The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. The Journal of Biological Chemistry,2003,278(16):13619-13625
    [89]Birkmayer G D. All about NADH. NewYork:Avery,2000:1-95
    [90]Urtasun R, Nieto N. Hepatic stellate cells and oxidative stress. Revista Espanola de Enfermedades Digestivas,2008,99(4):223-230
    [9]Lambeth J D. NOX enzymes, ROS nadchronic disease:an example of antagonistic pleiotropy. Free Radical Biology and Medicine,2007,43(3):332-347
    [92]De Paepe B. Mitochondria markers for cancer:Relevance to diagnosis, therapy, and prognosis and general understanding of malignant disease mechanisms. ISRN Pathology,2012,2012:1-15
    [93]Yan T, Feng Y, Zhai Q. Axon degeneration:Mechanisms and implications of a distinct program from cell death. Neurochemistry International,2010,56(4): 529-534
    [94]张珊珊,王彦,李德东,曹永兵,姜远英.NADH和NADPH代谢的功能的研究进展.第二军医大学学报,2011,32(11):1239~1243
    [95]Devaux-Basseguy R, Bergel A, Comtat M. Potential applications of NAD (P)-dependent oxidoreductases in synthesis:A survey. Enzyme and Microbial Technology,1997,20(4):248-258
    [96]Raj C R, Ohsaka T. Electrocatalytic sensing of NADH at an in situ functionalized self-assembled monolayer on gold electrode. Electrochemistry Communications, 2001,3(11):633-638
    [97]Palfi M, Halasz AS, Tabi T, Magyar K, Szoko E. Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase. Analytical Biochemistry,2004,326(1):69-77
    [98]Nguyen L T, Stephenson D G, Stephenson G M M. A direct microfluorometric method for measuring subpicomole amounts of nicotinamide adenine dinucleotide phosphate, glucose, and glycogen. Analytical Biochemistry,1998,259(2):274-278
    [99]Ramacle J, Houbion A, Raes M. Sensitive assay for nicotinamide adenine dinucleotide phosphate and its reduced form based on the bioluminescence method. Analytica Chimica Acta,1985,170:109-116
    [100]Wagner T C, Scott M D. Single extraction method for the spectrophotometric quantification of oxidized and reduced pyridine nucleotides in erythrocytes. Analytical Biochemistry,1994,222(2):417-426
    [101]Nesi M, Chiari M. Capillary electrophoresis of nicotinamide-adenine dinucleotide and nicotinamide-adenine dinucleotide phosphate derivatives in coated tubular columns. Journal of Chromatography A,1994,670(1-2):215-221
    [102]Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America,2005,102:10451-10453
    [103]Saleh F S, Rahman M R, Okajima T, Mao L, Ohsaka T. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Bioelectrochemistry,2011,80(2): 121-127
    [104]Yuan J H, Chen J R, Wu X H, Fang K M, Niu L. A NADH biosensor based on diphenylalanine peptide/carbon nanotube nanocomposite. Journal of Electroanalytical Chemistry,2011,656(1-2):120-124
    [105]Gorton L, Dominguez E. Direct electrochemical oxidation of NAD(P)H. Encyclopedia of Electrochemistry. Wiley-VCH, Weinheim,2002:67-143
    [106]Gorton L, Dominguez E. Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Wiley-VCH, Weinheim,2002:371-392
    [107]Abrahamson J, Wiles P G, Rhoades B L. Structure of carbon fibres found on carbon arc anodes. Carbon,1999,37:1873-1874
    [108]Chakraborty S, Raj C R. Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes-biopolymer nanocomposite. Electroanalytical Chemistry,2007,609(2):155-162
    [109]Wu L, Zhang X, Ju H. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Analytical Chemistry,2007,79(2): 453-458
    [110]You C P, Yan X W, Wang Y, Zhang S, Kong J L, Zhao D Y, et al. Electrocatalytic oxidation of NADH based on bicontinuous gyroidal mesoporous carbon with low overpotential. Electrochemistry Communications,2009,11(1):227-230
    [111]Deng C Y, Chen J H, Chen X L, Xiao C H, Nie Z, Yao S Z. Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochemistry Communications,2008,10(6):907-909
    [112]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696): 666-669
    [113]Shan C S, Yang H F, Song J F. Han D X, Ivaska A, Niu L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry, 2009,81(6):2378-2382
    [114]Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosensors and Bioelectronics,2010,25:1504-1508
    [115]Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Graphen/AuNPs/ chitosan nanocomposites film for gluose biosensing. Biosensors and Bioelectronics, 2010,25(5):1070-1074
    [116]Liu K, Zhang J, Yang G, Wang C, Zhu J J. Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochemistry Communicaitons,2010,12:402-405
    [117]Wu J F, Xu M Q, Zhao G C. Graphene-based modified electrode for the direct electron transfer of cytochromec and biosensing. Electrochemistry Communicaitons, 2010,12:175-177
    [118]Wang Y, Li Y M, Tang L H, Lu J, Li J H. Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communicaitons,2009,11: 889-892
    [119]Li J, Chen J H, Zhang X L, Lu G H, Yang H H. A novel sensitive detection platform for antitumor herbal drug aloe-emodin based on the araphene modified electrode. Talanta,2010,83(2):553-558
    [120]Yin H S, Zhou Y L, Cui L, Liu T, Ju P, Zhu L S, Ai S Y. Sensitive voltammetric determination of rutin in pharmaceuticals, human, serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly (amido amine) dendrimer. Microchim Acta,2011,173:337-345
    [121]Yin H S, Zhou Y L, Meng X M, Shang K, Ai S Y. One-step "green" preparation of graphene nanosheets and carbon nanospheres mixture by electrolyzing graphite rob and its application for glucose biosensing. Biosensors and Bioelectronics,2011,30(1): 112-117
    [122]Yin H S, Zhang Q M, Zhou Y L, Ma Q, Liu T, Zhu L S, Ai S Y. Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochimica Acta,2011,56(6):2748-2753
    [123]Sun J Y, Huang K J, Wei S Y, Wu Z W, Ren F P. A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids and Surfaces B:Biointerfaces, 2011,84(2):421-426
    [124]Huang K J, Niu D J, Sun J Y, Han C H, Wu Z W, Li Y L, Xiong X Q. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids and Surfaces B: Biointerfaces 2011,82(2):543-549
    [125]Fan Y, Liu J H, Lu H T, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloids and Surfaces B:Biointerfaces,2011,85(2):289-292
    [126]Wang Y, Li Z H, Wang J, Lin Y. Graphene and graphene oxide:Biofunctionalization and applications in biotechnology. Trends in Biotechnology,2011,29(5):205-212
    [127]Wang Q X, Zheng M X, Shi J L, Gao F, Gao F. Electrochemical oxidation of native double-stranded NAD on a grapheme-modified glassy carbon electrode. Electroanlysis,2011,23(4):915-920
    [128]Yin H S, Zhou Y L, Ma Q, Ai S Y, Ju P, Zhu L S, Lu L N. Electrochemical oxidation behavior of guanine and adenine on grapheme-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochemistry, 2010,45:1707-1712
    [129]Yin H S, Ma Q, Zhou Y L, Ai S Y, Zhu L S. Electrochemical behavior and voltammetric determination of 4-aminophenol based on grapheme-chitosan composite film modified glassy carbon electrode. Electrochimica Acta,2010,55(23): 7102-7108
    [130]Yin H S, Zhou Y L, Ma Q, Ai SY, Chen Q P, Zhu L S. Electrocatalytic oxidation behavior of guanosine at graphene chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination. Talanta,2010,82:1193-1199
    [131]Zhou M, Zhai Y M, Dong S J. Electrochemial sensing and biosensing platform based on chemically reduced graphene oxide. Analytical chemistry,2009,81(14): 5603-5613
    [132]Li J, Guo S J, Zhai Y M, Wang E K. Nafion-graphene nanocom posite film as enhanced sensing platform for ultrasesitive determination of cadmium. Electrochemistry Communications,2009,11(5):1085-1088
    [133]Zhang W X, Karn B. Nanoscale environmental science and technology:Challenges and opportunities. Envionmental Science and Technology,2005,39 (5):94A-95A
    [134]Alessandro M, Marie-Pierre M, Dominique C. AIMD evidence of inner sphere adsorption of glycine on a stepped (101) boehmite AlOOH surface. Journal of Physical Chemistry C,2012,116(44):23418-23427
    [135]杨敏,豆小敏,张昱,固液界面吸附机制与模型-“坏境水质学前沿专栏序言”.环境科学学报,2006,26(10):1581~1585
    [136]Godeberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science,2001,234(1): 204-216
    [37]Zhao H S, Robert S. Competitive adsorption of phosphate and arsenate on goethite. Environmental Science and Technology,2001,35(24):4753-4757
    [38]王东升,杨晓芳,孙中溪.铝氧化物-水界面化学及其在水处理中的应用.环境科学学报,2007,27(3):353-362
    [139]Hind A R, Bhargava S K, McKinnon A. At the solid-liquid interface:FTIR-ATR-the tool of choice. Advances in Colloid and Interface Science,2001,93 (1-3):91-114
    [140]Fernandez-Garcia M, Martinez-Arias A, Hanson J C, Rodriquez J A. Nanostructured oxides in chemistry:Characterization and properties. Chemical Reviews,2004,104 (9):4063-4104
    [41]Yoon T H, Trainor T P, Eng P J, Bargar J R, Browen G E. Trace element partitioning at polymer film-metal oxide interfaces:Long-period X-ray standing wave study of the partitioning of Pb and As ions at mineral PAA film interfaces. Langmuir,2005,21(9): 4503-4511
    [42]Hug S J, Sulzberger B. In situ Fourier transforms infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir,1994,10(10):3587-3597
    [43]Connor P A, Dobson K D, McQuillan A J. Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir,1999,15(7):2402-2408
    [44]Degenhardt J, McQuillan A J. Mechanism of oxalate ion adsorption on chromium oxide-hydroxide from pH dependence and time evolution of ATR-IR spectra. Chemiacl Physics Letters,1999,311(3-4):179-184
    [145]Duckworth O W, Martin S T. Surface complexation and dissolution of hematite by C1-C6 dicarboxylic acids at pH=5.0. Geochimica et Cosmochimica Acta,2001, 65(23):4289-4301
    [46]Zhang Y, Yang M, Dou X M, He H, Wang D S. Arsenate adsorption on a Fe-Ce bimetal oxide adsorbent:Role of surface properties. Environmental Science and Technology,2005,39(18):7246-7253
    [47]Abel M L, Rattana A, Watts J F. The interaction of gamma-glycidoxy propyltrimethoxysilane with oxidised aluminum substrates:the effect of drying temperature. Journal of Adhesion,2000,73(2-3):313-340
    [148]Peng M S, Xu H Y. Application of synchrotron radiation X-ray absorption spectroscopy in environmental mineralogy. Bulletin of Mineralogy Petrology and Geochemistry,2005,24(3):217-221
    [49]Guan X H, Chen G H, Shang C. ATR-FTIR and XPS study on the structure of complexes formed upon the adsorption of simple organic acids on aluminum hydroxide. Journal of Environmental Sciences (China),2007,19(4):438-443
    [150]Axe K, Persson P. Time-dependent surface speciation of oxalate at the water-boehmite (γ-AlOOH) interface:implications for dissolution. Geochimica et Cosmochimica Acta,2001,65(24):4481-4492
    [151]Hanna K, Boily J F. Sorption of two naphthonic acids to goethite surface under flow through conditions. Environmental Science and Technology,2010,44(23):8863-8869
    [152]Alexander M R, Beamson G, Blomfield C J. Leggett G, Duc T M. Interaction of carboxylic acids with the oxyhydroxide surface of aluminium:poly(acrylic acid), acetic acid and propionic acid on pseudoboehmite. Journal of Electron Spectrospcopy and Pelated Phenomena,2001,121(1-3):19-32
    [153]Yoon T H, Johnson S B, Musgrave C B. Adsorption of organic matter at mineral/water interfaces:I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces. Geochimica et Cosmochimica Acta,2004,68(22):4505-4518
    [154]Wang Z, Ainsworth C C, Friedrich D M, Gassman P L, Joly A G. Kinetics and mechanism of surface reaction of salicylate on alumina in colloidal aqueous suspension. Geochimica et Cosmochimica Acta,2000,64(7):1159-1172
    [155]Gocmez H. The interaction of organic dispersant with alumina:A molecular modelling approach. Ceramics International,2006,32(5):521-525
    [156]Kan H H, Shumbera R B, Weaver J F. Adsorption and abstraction of oxygen atoms on Pd(111):Characterization of the precursor to PdO formation. Surface Science, 2008,602(7):1347-1346
    [157]Johnson B B, Ivanov A V, Antzutkin O N.31P nuclear magnetic resonance study of the adsorption of phosphate and phenyl phosphates on α-Al2O3. Langmuir,2002,18 (4):1104-1111
    [158]Yoon T H, Johnson S B, Brown G E. Adsorption of Suwannee river fulvic acid on aluminum oxyhydroxide surfaces:an in situ ATR-FTIR study.Langmuir,2004,20 (14):5655-5658
    [159]王强,魏世强,刘保峰.铁、锰、铝氧化物固体吸附剂对胡敏酸和富里酸吸附机理研究.土壤学报,2005,42(4):600~608
    [160]赵振国,金明钟.氨基酸在固/水界面的吸附作用.离子交换与吸附,2001,17(5):289~295
    [161]Mercero J M, Fowler J E, Irigoras A, Ugalde J M. Aluminum(Ⅲ) interactions with sulfur-containing amino acid chains. The Journal of Physical Chemistry A,2001, 105(31):7446-7453
    [62]Mercero J M, Fowler J E, Ugalde J M. Aluminum(III) interactions with the acid derivative amino acid chains. The Journal of Physical Chemsitry A,2000,104(31): 7053-7060
    [63]Jan J S, Shantz D F. Helical poly-L-glutamic acid templated nanoporous aluminium oxides. Chemical Communications,2005,16:2137-2139
    [64]al-Shankhshir R H, Regnier F E, White J L, Hem S L. Contribution of electrostatic and hydrophobic interactions to the adsorption of proteins by aluminium-containing adjuvants.Vaccine,1995,13(1):41-44
    [65]Deschaume O, Shafran K L, Perry C C. Interactions of bovine serum albumin with aluminum polyoxocations and aluminum hydroxide. Langmuir,2006,22(24):10078- 10088
    [66]van den B J, Blajiev O, Beentijes P C, Terryn H, de Wit J H. Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy. Langmuir,2004,20(15):6318-6326
    [67]Yang X D, Zhang Q Q, Chen R F. Speciation of aluminum(III) complexes with oxidized glutathione in acidic aqueous solution. Analytical Sciences,2008,24(8): 1005-1012
    [168]Wang X L, Li K, Yang X D. Complexation of Al(Ⅲ) with reduced glutathione in acidic aqueous solutions. Journal of Inorganic Biochemistry,2009,103(5):657-665
    [69]杨小弟,白志平,毕树平,李百秦.铝离子对α-酮戊二酸的催化脱羧作用.无机化学学报,2002,18(10):981~986
    [70]Yang X D, Zhang Q Q, Li L F. Structural features of aluminium(III) complexes with bioligands in glutamate dehydrogenase reaction system-A review. Journal of Inorganic Biochemistry,2007,101(9):1242-1250
    [171]Yang X D, Tang Y Z, Bi S P. Potentiometric and Multi-NMR studies of aluminuim(Ⅲ) complex with L-glutamate in acidic aqueous solutions. Analytical Sciences,2003,19 (1):133-138
    [172]王天成,贾光,王翔.纳米Ti02和纳米A1203对小鼠血清乳酸脱氢酶和α-羟丁酸脱氢酶活力的影响.现代预防医学,2007,34(3):405~406
    [173]Li H H, Liu S Q, Dai Z H, Bao J C, Yang X D. Applications of nanomaterials in electrochemical enzyme biosensor. Sensors,2009,9(11):8547-8561
    [174]Johnson S B, Yoon T H, Kocar B D, Brown G E. Adsorption of organic matter at mineral/water interfaces:II. Outer sphere adsorption on mineral surfaces and implications for dissolution processes. Langmuir,2004,20:4996-5006
    [175]Coleman J G, Johnson D R, Stanley J K, Bednar A J, Weiss C A, Boyd R E, et al. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm. eisenia fetida. Environmental Toxicology and Chemistry,2010,29(7):1575-1580
    [176]Stanley J K, Coleman J G, Weiss C A, Steevens J A. Sdeiment toxicity and bioaccumulation of nano and micron-sized aluminum oxide. Environmental Toxicology and Chemistry,2010,29:422-429
    [77]Pauluhn J. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats:Toxic effeccts are determined by agglomerated, not primary particle size. Toxicological Sciences,2009, 109(1):152-167
    [78]De la Fuente J M, Ramirez-Rodriguez V, Cabrera-Ponce J L, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 1997,276:1566-1568
    [79]Rinella J V, White J L, Hem S L. Treatment of aluminium hydroxide adjuvant to optimize the adsorption of basic proteins. Vaccine,1996,14(4):298-300
    [80]Smith P E. Tanner J J. Conformations of nicotinamide adenine dinucleotide (NAD+) in various environments. Journal of Molecular Recognition,2000,13(1):27-34
    [81]Chen S P, Hosten C M, Vivoni A., Birke R L, Lombardi J R. SERS investigation of NAD+ adsorption on a silver electrode. Langmuir,2002,18(25):9888-9900
    [82]Yang H F, Zhang Z R, Shen G L, Yu R Q. In situ Raman spectra of an NAD+ modified silver electrode at various potentials. Journal of Raman Spectroscopy.2004,35: 190-194
    [83]Peterson J W, Burkhart R S, Shaw D C, Schuiling A B, Haserodt M J, Seymour M D. Experimetal determination of ampicillin adsorption to nanometer-size Al2O3 in water. Chemosphere,2010,80(11):1268-1273
    [84]Janot N, Benedetti M F, Reiller P E. Colloidal α-Al2O3 europium(Ⅲ) and humic substances interactions:a macroscopic and spectroscopic study. Environmental Science and Technology,2011,45(8):3224-3230
    [85]Wedyan M, Preston M R. Isomer-selective adsorption of amino acids by components of natural sediments. Environmental Science and Technology,2005,39:2115-2119
    [86]Martin R B. The chemistry of aluminum as related to biology and medicine. Clinical Chemistry,1986,32(10):1797-1806
    [87]Maynard A D, Aitken R J, Butz T, Colvin V, Donaldson K, Oberdorster G, et al. Safe handling of nanotechnology. Nature,2006,444:267-269
    [188]Nordin J, Persson P, Nordin A, Sjoberg S. Inner-sphere and outer-sphere complexation of a polycarboxylic acid at the water-boehmite (y-AlOOH) interface:A combined potentiometric and IR spectroscopic study. Langmuir,1998,14:3655-3622
    [89]Persson P, Karlsson M, Ohman L O. Coordination of acetate to Al(Ⅲ) in aqueous solution and at the water-aluminum hydroxide interface:a potentiometric and attenuated total reflectance FTIR study. Geochimca et Cosmochimica Acta,1998,62: 3657-3668
    [90]Guan X H, Shang C, Chen G H. ATR-FTIR investigation of the role of phenolic groups in the interaction of some NOM model compounds with aluminum hydroxide. Chemosphere,2006,25:2074-2081
    [91]Hwang Y S, Liu J, Lenhart J J, Hadad C M. Surface complexes of phthalic acid at the hematite/water interface. Journal of Colloid and Interface Science,2007,307: 124-134
    [92]Cai L, Xie Y F, Li L, Li H H, Yang X D, Li S Q. Electrochemical and spectral study on the effects of Al(Ⅲ) and nano-Al13 species on glutamate dehydrogenase activity. Colloids and Surfaces B:Biointerfaces,2010,81:123-129
    [93]Damian A, Omanovic S. Interactive adsorption behavior of NAD+ at a gold electrode surface. Langmuir,2007,23:3162-3166
    [94]Yao K A, Huang D Q.Xu B L, Wang N, Wang Y J, Bi S P. Call from China for joint nanotech toxicity-testing effort. Analyst,2010,135:116-120
    [95]Yang X D, Li L F, Bi S P. Electrochemical studies of the inhibition and activation effects of Al(III) on the activity of bovine liver glutamate dehydrogenase. Sensors, 2005,5:235-244
    [96]Nordin J, Persson P, Laiti E, Sjoberg S. Adsorption of o-phthalate at the water-boehmite (y-AlOOH) interface:Evidence for two coordination modes. Langmuir, 1997,13:4085-4093
    [97]Dubey A, Shiwani S. Adsorption of lead using a new green material obtained from portulaca plant. International Journal of Environmental Science and Technology. 2012,9(1):15-20
    [198]Johnson S B, Yoon T H, Slowey A J, Brown G E. Adsorption of organic matter at mineral/water interfaces:3. Implications of surface dissolution for adsorption of oxalate. Langmuir,2004,20:11480-11492
    [99]Helfferich F. Ion-exchange. McGraw-Hill:New York,1962
    [200]Noren K, Loring J S, Persson P. Adsorption of alpha amino acids at the water/goehite interface. Journal of Colloid and Interface Science,2008,319(2):416-428
    [201]Von open B, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified oecd-guideline 106. Chemosphere,1991,22(3-4):285-304
    [202]李燕,侯万国.类水滑石对低取代度阳离子淀粉的吸附行为.应用化学,2010,27:811-816
    [203]Yue K T, Martin C L, Chen D, Nelson P, Sloan D L, Callender R. Raman spectroscopy of oxidized and reduced nicotinamide adenine dinucleotides. Biochemistry,1986,25(17):4941-4947
    [204]Savoie R, Jutier J J, Prizant L. Beauchamp A L. Raman and infrared spectra of methylmercury complexes of adenine. Spectrochimica Acta Part A,1982,38(5): 561-568
    [205]Iwaki M, Cotton N P J, Quirk P G, Rich P R. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)-hydroperoxo species is a sluggish oxidant. Journal of the American Chemical Society,2006,128(8):2621-2629
    [206]Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S. Detection of DNA hybridization on gold surfaces by polarization modulation infrared reflection absorption spectroscopy. Langmuir.2002,18(11):4460-4464
    [207]Takeuchi H, Murata H, Harada I. Interaction of adenosine 5'-triphosphate with Mg2+: vibrational study of coordination sites by use of 18O-labeled triphosphates. Journal of the American Chemical Society,1988,110(2):392-397
    [208]Bin X M, Zawisza Ⅰ, Goddard J D, Lipkowski J. Electrochemical and PM-IRRAS studies of the effect of the static electric field on the structure of the DMPC bilayer supported at a Au(111) electrode surface. Langmuir,2005,21(1):330-347
    [209]Benedetti E, Bramanti E, Papineschi F. Rossi Ⅰ, Benedetti E. Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy. Applied Spectroscopy,1997, 51(6):792-797
    [210]Guan X H, Shang C, Zhu J, Irwin S, Quinn J P. ATR-FTIR Investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide. Journal of Environmental Science,2006,293:296-302
    [211]Johnson S B,Yoon T H, Kocar B D, Brown G E. Adsorption of organic matter at mineral/ water interfaces:5. Effects of adsorbed natural organic matter analogues on mineral dissolution. Langmuir,2005,21:2811-2821
    [212]Arai Y, Sparks D L. ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. Journal of Colloid and Interface Science,2001,241(2):317-326
    [213]Persson P, Nordin J, Rosenqvist J, Lovgren L, Ohman L O, Sjoberg S. Comparison of the adsorption ofo-phthalate on boehmite (γ-AlOOH), aged γ-Al2O3, and goethite (α-FeOOH). Journal of Colloid and Interface Science,1998,206(1):252-266
    [214]Boily J F, Persson P, Sjoberg S. Benzenecarboxylate surface complexation at the goethite (alpha-FeOOH)/water interface:Ⅱ. Linking IR spectroscopic observations to mechanistic surface complexation models for phthalate, trimellitate, and pyromellitate. Geochimica et Cosmochimica Acta.2000,64(20):3453-3470
    [215]Boily J F, Nilsson N, Persson P, Sjoberg S. Benzenecarboxylate surface complexation at the goethite (α-FeOOH)/water interface:Ⅰ. A mechanistic description of pyromellitate surface complexes from the combined evidence of infrared spectroscopy, potentiometry, adsorption data, and surface complexation modeling. Langmuir,2000,16:5719-5729
    [216]Rosenqvist J, Axe K, Sjoberg S, Persson P. Adsorption of dicarboxylates on nano-sized gibbsite particles:effects of ligand structure on bonding mechanisms. Colloids and Surfaces A,2003,220(1):91-104
    [217]Jonsson C M, Persson P, Sjoberg S, Loring J S. Adsorption of glyphosate on goethite: surface complexation modeling combining spectroscopic and adsorption data. Environmental Science and Technology,2008,42(7):2464-2469
    [218]Li C, Guan X H. Competitive adsorption of three different phosphate species on aluminum hydroxide. Fresenius Environmental Bulletin,2011,20:1936-1941
    [219]Guan X H, Chen G H, Shang C. Adsorption behavior of condensed phosphate on aluminum hydroxide. Journal of Environmental Science-China.2007,19(3):312-318
    [220]Carroll-Webb S A, Walther J V. A surface complexation model for the pH dependence of corundum and kaolinite dissolution rates. Geochimica et Cosmochimica Acta,1988,52(11):2609-2623
    [221]Johnson S B, Brown G E, Healy T W, Scales P J. Adsorption of organic matter at mineral/water interfaces.6. Effect of inner-sphere versus outer-sphere adsorption on colloidal stability. Langmuir,2005,21:6356-6365
    [222]Yoon T H, Johnson S B, Brown G E. Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution. Langmuir,2005,21:5002-5012
    [223]Reddy B S, Saenger W, Miihlegger K, Weimann G. Crystal and molecular structure of the lithium salt of nicotinamide adenine dinucleotide dihydrate (NAD+,DPN+ cozymase, codehydrase Ⅰ). Journal of the American Chemical Society,1981,103: 907-914
    [224]Saenger W, Reddy B S, Miihlegger K, Weimann G. X-ray study of the lithium complex of NAD. Nature,1977,267(5608):225-229
    [225]Hull R V, Conger P S, Hoobler R J. Conformation of NADH studied by fluorescence excitation transfer spectroscopy. Biophysical Chemistry,2001,90(1):9-16
    [226]Ganguly P, Poole W J. In situ measurement of reinforcement stress in an aluminum-alumina metal matrix composite under compressive loading. Materials Science and Engineering:A,2003,352(1-2):46-54
    [227]Sharma H S, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Progress in Brain Research,2007,162:245-273
    [228]Orringer D A, Koo Y E, Chen T, Kim G, Hah H J, Xu H, et al. In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery,2009,64(5):965-971
    [229]Ralph L, Twiss M R. Comparative toxicity of thallium(Ⅰ), thallium(Ⅲ), and cadmium(II) to the unicellular alga chlorella isolated from lake erie. Bulletin of Environmental Contamination and Toxicology,2002,68(2):261-268
    [230]Yang L, Watts D J. Particle suface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters,2005,158(2):122-132
    [231]Sadiq I M, Pakrashi S, Chandrasekaran N, Mukherjee A. Studies on toxicity of aluminum oxide(Al2O3) nanoparticles to microalgae species:Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research,2011,13(8):3287-3299
    [232]Pauluhn J. Retrospective analysis of 4-week inhalation studies in rats with focus on fate and pulmonary toxicity of two nanosized aluminum oxyhydroxides (boehmite) and pigment-grade iron oxide (magnetite):The key metric of dose is particle mass and not particle surface area. Toxicology,2009,259(3):140-148
    [233]袁晓卫,杨骞,刘琦,于丽丽,陈群,徐正.α-Fe2O3空心球的水热法制备及其对苯酚的吸附性能.无机化学学报,2010,26(2):285~292
    [234]Silverio F, dos Reis M J, Tronto J, Valim J B. Adsorption of phenylalanine on layered double hydroxides:Effect of temperature and ionic strength. Journal of Materical Science,2008,43(2):434-439
    [235]Ha J Y, Yoon H, Wang Y G, Musgrave C B, Brown G E. Adsorption of organic matter at mineral/water interfaces:7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles. Langmuir,2008,24(13):6683-6692
    [236]Purgel M, Takacs Z, Josson C M, Nagy L, Andersson I, Banyal I, et al. Glyphosate complexation to aluminum(Ⅲ):An equilibrium and structural study in solution using potentiometry, multinuclear NMR, ATR-FTIR, ESI-MS and DFT calculations. Journal of Inorganic Biochemistry,2009,103(11):1426-1438
    [237]Sheals J, Sjoberg S, Persson P. Adsorption of glyphosate on goethite:molecular characterization of surface complexes. Environmental Sciences and Technology, 2002,36(14):3090-3095
    [238]Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G. Structural and functional diversity of ferredoxin-NADP+ reductases. Archives of Biochemistry and Biophysics, 2008,474(2):283-291
    [239]Yu L. Is the free energy change of adsorption correctly calculated? Journal of Chemical and Engineering Data,2009,54:1981-1985
    [240]Graber E R, Borisover M D. Hydration-facilitated sorption of specifically interacting organic compounds by model soil organic matter. Environmental Science and Technology,1998,32:258-263
    [241]Steinberg S M, Pegnatello J J, Sawhne B L. Persistence of 1,2-Dibromoethane in soils:Entrapment in intraparticle micropores. Environmental Science and Technology, 1987,21:1201-1208
    [242]胡祖美,张艳,王金渠,王胜强.苯在活性炭纤维上吸附等温线的测定及分析.石油学报,2008,24(4):484-487
    [243]Guan X H, Liu Q, Chen G H, Shang C. Surface complexation of condensed phosphate to aluminum hydroxide:An ATR-FTIR spectroscopic investigation. Journal of Colloid and Interface Science,2005,289(2):319-327
    [244]Lee S L, Chau G Y, Yao C T, Wu C W, Yin S J. Functional assessment of human alcohol dehydrogenase family in ethanol metabolsism:Significance of first-pass metabolism. Alcoholism Clinical and Experimental Research,2006,30(7):1132-1142
    [245]Reid M F, Fewson C A. Molecular characterization of microbial alcohol dehydrogenases. Critical Reviews in Microbiology,1994,20(1):13-56
    [246]Goward C R, Nicholls D J. Malate dehydrgenase:A model for structure, evolution and catalysis. Protein Science,1994,3(10):1883-1888
    [247]Jensen, W A; Armstrong J M, De Giorgio J, Hearn M T W. Stability studies on pig heart mitochondrial malate dehydrogenase:The effect of salts and amino acids. Biochimica et Biophysica Acta.1996,1296(1):23-34
    [248]Kolev Y, Uetake H, Takagi Y, Sugihara K. Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer:Association with hypoxia-inducible factor (HIF-1α) pathway, angiogenic factors production and poor prognosis. Annals of Surgical Oncology,2008,15(8):2336-2344
    [249]Miracle A C, Mukherji S K. Conebeam CT of the head and neck, part 2:clinical applications. American Journal of Neuroratdiology,2009,30(7):1285-1292
    [250]Drent M, Cobben N A, Henderson R F, Wouters E F, Van Dieijen-Visser M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. European Respiratory Journal,1996,9(8):1736-1742
    [251]Cohen J A, Brecher M E, Bandarenko N. Cellular source of serum lactate dehydrogenase elevation in patients with thrombotic thrombocytopenic purpura. Journal of Clinical Apheresis,1998,13(1):16-19
    [252]Yao K A, Wang N, Zhuang J Y, Yang Z, Ni H, Xu Q, Sun C, et al. Studies on the effects of Al(III) on the lactate dehydrogenase activity by differential pulse voltammetry. Talanta,2007,73(3):529-533
    [253]Zhuang Q K, Dai H C, Gao X X, Xin W K. Electrochemical studies of the effect of lanthanide ions on the activity of glutamate dehydrogenase. Bioelectrochemistry, 2000,52(1):37-41
    [254]Kirk A D, Porter G B, Rampi Scandola M A. The effect of pressure on the photochemistry of tris (bipyridyl) chromium(III) ion. Inorganica Chimica Acta,1984, 90(3):161-164
    [255]Zhuang Q K, Dai H C. Electrochemical and Raman spectroscopic studies of the effect of lanthanide ions on the activity of mitochondrial malate dehydrogenase. Journal of Electroanalytical Chemistry,2001,499(1):24-29
    [256]Cavaletto M, Pessione E, Vanni A, Giunta C. Improved resistance to transition metals of a cobalt-substituted alcohol dehydrogenasel from Saccharomyces cere6isiae. Journal of Biotechnology,2000,84(1):87-91
    [257]Yang X D, Bi S P, Wang X L, Liu J, Bai Z P. Multimethod characterization the interaction of aluminum ion with α-ketoglutaric acid in acidic aqueous solutions. Analytical Sciences,2003,19:273-279
    [258]Dai Z H, Lu G F, Bao J C, Huang X H, Ju H X. Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode. Electroanalysis, 2007,19(5):604-607
    [259]张楠楠,汤永铮,马菲,李卉卉,陆天虹,杨小弟.电化学研究铝及其纳米Al13对谷胱甘肽还原酶活性的影响.分析化学,2012,40(4):584-588
    [260]Wang X L, Li L, Wang Y P, Xu C Z, Zhao B, Yang X D. Application of reduced graphene oxide and carbon nanotube modified electrodes for measuring the enzymatic activity of alcohol dehydrogenase. Food Chem,2013,138:2195-2200
    [261]Yang X D, Cai L, Peng Y, Li H H, Chen R F, Shen R F. Effects of Al(Ⅲ) and Nano-Al13 species on malate dehydrogenase activity. Sensors,2011,11:5740-5753
    [262]Li L, Zhang N N, Ma X L, Xu C Z, Wei H Y, Yang X J, Yang X D. Effects of Al(Ⅲ) and Nano-Al13 on aldehyde dehydrogenase activity on reduced graphene oxide modified electrode. IEEE Sensors Journal,2013,13(1):314-320
    [263]Bhuiya M W, Sakuraba H, Ohshima T. Imagava T, Katunuma N, Tsuge H. The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from pyrobaculum islandicum. Journal of Molecular Biology,2005,345(2):325-337
    [264]McCarthy A D, Tipton K F. The effects of magnesium ions on the interaction of ox brain and liver glutamate dehydrogenase with ATP and GTP. Biochemistry Journal, 1984,220(3):853-855
    [265]Bell E T, Stilwell A M, Bell J E. Interaction of Zn2+and Eu3+with bovine liver glutamate dehydrogease. Biochemistry Journal,1987,246(1):199-203
    [266]Dai H C, Zhuang Q K, Li N Q, Luo H X, Gao X X. Electrochemical study of the effect of ADP and AMP on the kinetics of glutamate dehydrogenase. Bioelectrochemistry,2000,51(1):35-39
    [267]Guibaud G, Gauthier C. Aluminium speciation in the Vienne river on its upstream catchment (Limousin region, France). Journal of Inorganic Biochemistry,2005,99(9): 1817-1821
    [268]Amonette J E, Russell C K, Carosino K A. Robinson N L, Ho J T. Toxicity of Al to desulfovibrio desulfuricans. Applied and Environmental Microbiology,2003,69: 4057-4066
    [269]李晓莹,王长生.肝醇脱氢酶催化乙醇氧化生成乙醛反应机理的理论研究,催化学报,2010,31(9):1167~1171
    [270]Zhou Z D, Li G Y, Li Y J, Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate-chitosan beads, international. International Journal of Biological Macromolecules,2010,47(1):21-26
    [271]姜萍,乙醇脱氢酶应用与纯化进展.上海化工,2008,33(12):31-33
    [272]张海生,陈锦屏.柿饼加工中脱涩和反涩机理的研究,食品工业科技,2003,24(12):39-40
    [273]Yin G W, Wei W, Xu J, Li Z F, Wang B H, Du W H. Interaction of nickel(II) with yeast alcohol dehydrogenase. Acta physico-Chimica Sinica,2010,26(4),1107-1112
    [274]Wang Y, Wan Y, Zhang D. Reduced graphene sheets modified glassy carbo electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochemistry Communications,2010,12(2):187-190
    [275]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology,2008,3:101-105
    [276]Kang X H, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta,2010,81: 754-759
    [277]Paredes J I, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J M D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir,2009,25(10):5957-5968
    [278]Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lettets,2009, 9(9):3318-3322
    [279]Zhang Z X, Yang W, Wang J, Yang C, Yang F, Yang X R. A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer. Talanta,2009,4-5(78): 1240-1245
    [280]Che G, Lakshmi B B, Fisher E R, Martin C R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature,1998,393:346-349
    [281]Kurganov B I. Analysis of negative cooperativity for glutamate dehydrogenase. Biophysical Chemistry,2000,87(2-3):185-199
    [282]Rahman Q, Lohani M, Dopp E, Pemael H, Jonas L, G. Weiss D G, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in syrian hampster embryo fibroblasts. Environmental Health Perspectives,2002,110(8):797-800
    [283]Renwick L C, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and Applied Pharmacology,2001, 172(2):119-127
    [284]Clausen F, Lorant T, Lewen A, Hillered L. T lymphocyte trafficking:a novel target for neuroprotection in traumatic brain injury. Journal of Neutotrauma,2007,24(8): 1295-1307
    [285]Mark S S, Sandhyarani N, Zhu C, Campagnolo C, Batt C A. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface. Langmuir,2004,20(16):6808-6817
    [286]Wang H, Wich R L, Xing B. Toxicity of nanoparticulate and bulk ZnO, A12O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution,2009,157(4): 1171-1177
    [287]Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chemical Communications,2005(1):121-123
    [288]Jiang W, Mashayekhi H, Xing B S. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental Pollution,2009,157:1619-1625
    [289]Joshi J G, Dhar M, Clauberg M, Chauthaiwale Ⅴ. Iron and aluminum homeostasis in neural disorders. Environmental Health Perspectives,1994,102:207-213
    [290]Exley C. Aluminum and Alzheimer's disease. Journal of Alzheimer's Disease,2001, 3(6):551-552
    [291]Sarma G N, Savvides S N, Becker K, Schirmer M, Schimer R H, Karplus P A. Glutathione reductase of the malarial parasite plasmodium falciparum:Crystal structure and inhibitor development. Journal of Molecular Biology,2003,328(4): 893-907
    [292]Cardoso L A, Ferreira S T, Hermes-Lima M. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2008,151(3):313-321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700