关于内燃机润滑系统网络法设计理论和方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从传统上来说,在内燃机设计和使用中对润滑系统的基本要求是供给摩擦副充分的润滑油和润滑系统不出故障,以保障内燃机可靠工作。然而,当代社会的经济发展对内燃机润滑系统设计提出了更新的要求:在继续满足和进一步改善传统要求的同时,还需满足不断提高的排放限制等环保性、节能性要求。环保性方面,有关试验研究证实,润滑油颗粒排放的形成与内燃机润滑油消耗有很大的关系。节能性方面,试验表明,一台中速内燃机每年的机油费用约占燃油费用的4%。同时,润滑系统中机油泵的驱动功率也具备有降低燃油耗的一种潜力。传统的经验方法和单一工况下的研究已经不能满足对现代内燃机润滑系统设计的要求,需要有一个更完善的理论分析方法用于对润滑系统的工作特性进行全面考察。论文针对目前国际上采用的内燃机润滑系统网络法设计中的几个关键问题进行了探讨,并结合样机,利用改进的网络化分析方法和试验研究对润滑系统多工况下的工作特性进行了考察。
     论文首先将润滑系统网络法分析中各种简化的轴承流量特性计算方法分别作了阐述。在此基础上,提出了一种新的表达方法用于描述轴承润滑油流量与压降关系。通过实例计算将这些方法得到的结果同流体动力润滑分析得到的结果进行了比较研究。同时,还以某内燃机主轴承为例,阐述了一种计入热变形影响时的内燃机主轴承热流体动力润滑分析方法,并进行数值仿真计算。通过对考虑和不考虑热变形因素影响时得到的分析结果进行比较研究,探讨了热变形对内燃机主轴承热流体动力润滑性能的影响。论文还对径向滑动轴承在启动和运行过程中加速、加载时轴承温度变化的历程特性进行了试验研究。
     结合润滑油在内燃机管道中流动的实际情况,研制了用于测量管道内润滑油流动特性的专用试验装置。并根据相应的试验结果数据,对目前润滑系统网络法分析中用于描述润滑油在内燃机管道内流动特性的几种计算方法进行了对比分析。同时,还通过试验考察了管径、管长和油温等因素对润滑油在管道中流动特性的影响情况。
     分别对样机机油泵、机油滤清器和冷却器等典型部件的流量特性进行了试验研究,并利用BP神经网络的非线性映射建模功能,结合相关试验数据建立了表达内燃机机油泵供油特性以及滤清器、冷却器流量特性的仿真模型,探讨了神经网络模型建立过程中训练样本的选择等问题,并通过试验验证了所建模型的正确性。
     对于所建立的内燃机润滑系统网络模型,利用质量守恒、能量守恒原理,建立了各网络节点上的流压关系:提出了利用基于最小二乘算法的最优化方法来求解网络法润滑系统分析中建立的非线性方程组,并结合样机进行实例仿真分析,重点考察了内燃机工作过程中润滑系统流量分配以及压力分布状况。
     论文最后,结合内燃机多工况下的试验研究对润滑系统网络模拟法的应用情况进行了检验。论文对样机的磨合试验和多工况下的示功图测试工作进行了阐述,并对测试结果进行了分析;结合示功图测试数据,完成了多工况下内燃机轴承载荷的计算和分析工作。论文还将几种轴承流量计算方法分别应用于润滑系统的网络法模拟分析过程中,并结合试验对各个模拟分析结果进行了对比研究,分析了各种轴承流量计算方法对润滑系统设计中机油泵选择的影响;通过网络模拟分析,结合试验测试结果,论文重点考察了多工况下内燃机转速、负荷和润滑油温度等因素对润滑系统主油道压力特性的影响情况,以及多工况下内燃机缸内润滑油消耗情况。
     论文的创新点主要有,将目前网络法润滑系统分析中各种轴承流量特性的计算方法进行了对比分析,提出了一种计入热变形因素影响的轴承润滑分析方法,并分析了各种轴承流量计算方法对润滑系统设计中机油泵选择的影响。研制了用于测量管道内润滑油流动特性的试验装置,对目前润滑系统网络法分析中的各种管道内润滑油流动特性计算方法进行了试验检测。建立了表达内燃机机油泵供油特性以及滤清器、冷却器流量特性的BP神经网络仿真模型,并提出可以通过采用正交设计法选取机油泵神经网络模型的训练样本来提高部件建模效率。提出一种利用Pro/E提供的Mechanism模块和Matlab软件对内燃机轴承载荷进行联合仿真求解的简便有效方法。提出了利用基于最小二乘算法的优化方法来求解网络法分析中表达样机润滑系统网络模型的非线性方程组,实现了对润滑系统网络化仿真分析方法的改进应用。针对样机,对润滑系统在全负荷、部分负荷等多工况下的工作特性进行了网络法仿真分析,并结合主油道压力特性试验结果对仿真结果进行了检验,证明了润滑系统改进网络化分析方法的可行性和正确性。
Basic demands for lubrication system in traditional designing process of internal combustion engine (ICE) is to supply sufficient lubricant to friction parts and to work without failure in order to make sure that ICE can operate credibly. However, the development of modern society have put forward more new demands on the design of ICE' lubrication system. Requirements from environmental protection and energy saving area such as emission control regulations should be resolved when traditional one continues to be fulfilled and improved. On environmental protection, results from experimental study show that there's strong connection between the formation of particle emission and oil consumption from lubrication system. In the energy saving area, there's experimental study which show that the oil fee consumed by a mean ICE in one year is about 4 percent of the fuel fee. And same time, there's potential to reduce fuel consumption within pump's driving power in lubrication system. Traditional method with experiences and research in single operating condition can not satisfy the demands of modern design of ICE's lubrication system. There should have a more perfect theory used to review the operating property of ICE's lubrication system. Several key points in the process of network analyzing with lubrication system were discussed in this paper. Combining with a model engine, a improved network analysis method was used to analyze the property of lubrication system in multiple operating conditions.
     Several kinds of simplified methods for flow characteristic of oil in bearing are described firstly in this paper. And a new idea was also put forward. By analyzing with an example, all those methods have been compared with the method by hydrodynamic lubricating analysis. A research on the lubrication of ICE's main bearing considering thermal deformation effects are presented combining with a model engine's main bearing. Through comparing the results from analysis by with and without considering thermal deformation effects, effects from thermal deformation factors on the thermal hydrodynamic analysis of ICE's main bearing were discussed. An experimental study on the temperature of journal bearing during start-up and operation process with variation of working condition was also carried out in this paper.
     Combining with the true state of oil that flowing in lubrication system's pipe, a special equipment used to test the character of oil flowing in pipe was constructed. With the results from test, several measures that currently used to describe the character of oil flowing in pipe were analyzed by comparing. And effects on the character of oil flowing in pipe from many factors, such as diameter of pipe, length of pipe and oil temperature, were studied by this test.
     Working characters of oil pump, oil filter and cooler were investigated separately by experiments. And these characters were modeled by using the function of modeling nonlinearly of BP neural net combining with the results from test. How to choose learning samples in the process of modeling with neural network was discussed here and was also examined by the test.
     With theories of conversation of energy and mass, relationships of drop-flowing on each net node were established for network model of sample engine's lubrication system. Optimization method based on least-squares algorithm was put forwarded to solve the nonlinearly equations that constructed in the network analysis of lubrication system. And a simulation analysis on model engine was presented to review emphatically the distributions of oil pressure and flowing of lubrication system in ICE's operation conditions.
     In the end of this paper, application of network simulation method on lubrication system was examined combining with the experimental research under multiple operating condition of ICE. Running-in tests and indicator diagram tests under multiple operating condition of ICE. were presented, and all results of these tests have been analyzed. Calculations and analysis of bearing loads under multiple operating condition of ICE were done with the results of indicator diagram tests. Simplified methods for flow characteristic of oil in bearing were applied in the process of network analysis of lubrication system. Through comparing with test results, influences of these simplified methods on the selection of oil pump in the process of ICE's lubrication system design process were analyzed. Effects on the pressure property of main oil gallery from those factors such as rotate speed, load and oil temperature were examined emphatically under multiple operating condition of ICE. And oil consumption under multiple operating condition of ICE was also discussed here.
     Innovative points of this paper can be summarized as following. Several kinds of simplified methods used to describe flow characteristic of oil in bearing are compared firstly. And influences of these simplified methods on the selection of oil pump in the design process of ICE's lubrication system were investigated. Research on the lubrication of ICE's main bearing considering thermal deformation effects are presented. A special equipment used to test the character of oil flowing in pipe was constructed. Several measures that currently used to describe the character of oil flowing in pipe were analyzed by comparing test results. Working characters of oil pump, oil filter and cooler were modeled by using the function of modeling nonlinearly of BP neural net. An efficient way to calculate bearing loads by union application of mechanism module in Pro/E and Matlab software was introduced. Optimization method based on least-squares algorithm was put forwarded to solve the nonlinearly equations that constructed in the network analysis of lubrication system. Network analysis on property of lubrication system of sample engine was carried out under both full load condition and part load condition. And by the experimental study on the pressure property of main oil gallery, feasibility of improved network method was testified.
引文
[1] 张向军,桂长林,温诗铸.内燃机摩擦学综合设计决策研究[J].摩擦学学报,2003,23(3):258-264.
    [2] Gergel W C, Riester J E. Diesel Engine Oil Consumption Studies[C]. SAE Paper 740525, 1974.
    [3] Schwaderlapp M,Dohmen J,Haubner F等.减少摩擦的节油设计措施(一)[J].国外内燃机,2007(1):28-32.
    [4] Soiehi I,Kohei N,Keiichi U,et a1.The Designs of Piston Ring to Reduce Lubricating Oil Flow into the Combustion Chamber[C].SAE Paper 1999-01-3316/JSAE 9938071.
    [5] 农迅,吴锋.内燃机润滑系统管道压力分析与模拟[J].车用发动机,2001,135(5):24-26.
    [6] Koch F,Maassen F,Gelger U.现代发动机润滑系统的开发[J1.国外内燃机,1999,1:43-48.
    [7] 陈华.内燃机机油滤清系统设计与评价方法的研究[C1.华东地区内燃机学会第六界联合学术年会论文,1997.10.
    [8] 王晓力,温诗铸,桂长林.内燃机轴承润滑设计的研究及展望[J].内燃机工程,1998,19(4):20-25.
    [9] Wang W Q ,Wang J. Dynamic Simulation Study of Friction and Lubrication on ICE Bearings[J]. Journal of Beijing Institute of Technology, 2000, 9(4):459-464
    [10] 左正兴.柴油机润滑系统仿真模拟的技术探讨[J].车用发动机,1997(6):35-37.
    [11] Tao W, Resh W F, Szewczyk J E Engine Lubrication System Optimization[R/OL]. http://www.sightnacorp.com/download/iSIGHTSolutionCD/Auto/20O3Auto/O9_DCX_WeiTanpdf. 2004-2-15.
    [12] 桂长林,杨杰等.发动机摩擦学设计理论和方法的研究[R].机械工业技术发展基金项目研究报告.1999.
    [13] Robert S L. Digital Simulation of Engine Lubrication Systems[C]. SAE Paper 710205, 1971
    [14] Neu E A, Wade J A, Chu A C. Simulating the lubrication System of a Diesel Engine[C]. SAE Paper 770032, 1977.
    [15] Chun S M, Park Y H, Jang S. A Study on Engine Lubrication System by Optimized Network Analysis—PartⅡ: Parametric Study[C]. SAE Paper 2000-01-2923.
    [16] Chun S M, Young Hwan Park and Siyoul Jang. A Study on Engine Lubrication System by Optimized Network Analysis—PartⅠ: Case Study[C]. SAE Paper 2000-01-2921.
    [17] Chun S M. Network analysis of an engine lubrication system[J]. Tfibology International ,2003 (36) :609-617.
    [18] 胡燕平,彭佑多,吴根茂.液阻网络系统学[M].北京:机械工业出版社,2002.12.
    [19] 史小平,伞冶.网络的一种类比仿真建模方法[J].系统仿真学报,2001,13(1):34-36.
    [20] Felix Klingebiel, Uwe Kahlstorf. Simulating Engine Lubrication Systems with I-D Fluid Flow Models [C]. SAE Paper 2000-01-0284.
    [21] 朱仙鼎.中国内燃机工程师手册[M].上海:上海科学技术出版社,2000,8.
    [22] 张健航,储期祯,傅则明.分析与评价润滑系统的一种方法——用外部特性线法判别故障与匹配状况[J].内燃机工程,1982(4):10-20.
    [23] 陈锦华.内燃机润滑系统设计技术的研究.上海内燃机研究所资料(910006),硕士研究生论文,1991.
    [24] 张健航,储期祯.润滑系统的现状及其研究.上海内燃机研究所资料(850002),1985.
    [25] J.E.Burnett. Relationship between oil consumption, deposit formation and piston ring motion for single-cylinder diesel engines [C]. SAE 920089.
    [26] 王煊军,郭和军,刘祥萱.润滑系统对发动机有害物排放的影响[J].润滑与密封,2002,3:40-42.
    [27] 尹琪,韩娜,邬静川.应重视发动机机油耗对颗粒排放的影响[J].中国内燃机学会第六届学术年会论文集,上海三联出版社,2004.
    [28] 沈言谨.柴油发动机颗粒排放物的组分研究[J].车辆与动力技术,2005,4:12.14.
    [29] 刘圣华.缸套壁面润滑油膜及其对未燃碳氢排放影响的研究[D].博士学位论文.西安交大,1995.
    [30] 刘圣华,赵慧,周龙保等.缸套壁面润滑油膜对汽车机未燃碳氢排放影响的研究[J].内燃机学报,1997,15(2):185-191.
    [31] J.Parks, J. Armfield, J. Storey, T. Barber and E. Wachter. In situ measurement of fuel absorption into the cylinder wall oil film during engine cold start[C]. SAE981054.
    [32] 新啓一郎.润滑油消耗量的降低[J].国外内燃机,1995(3):9-19.
    [33] Takashi.汽车发动机变工况机油耗的研究[J].国外内燃机,1996(2):16-19.
    [34] 仲志全,李华宇,尹琪.发动机运行工况对机油耗影响的试验研究[J].内燃机工程,2004,25(5):69—71
    [35] 贾锡印.内燃机的润滑与磨损[M].北京:国防工业出版社,1988.1.
    [36] 陈建明.影响单缸柴油机机油耗的因素及分析[J].内燃机,1999,(4):19-21
    [37] Eisenmann s,Harle C,Schreiber B.内燃机各种润滑油泵系统的比较[J].国外内燃机,1995(1):45-51.
    [38] Schwadedapp M,Dohmen J,Haubner F等.降低内燃机摩擦改善其燃油耗[J].国外内燃机,2003(5):41-46.
    [39] 王晓力,温诗铸,桂长林.内燃机轴承润滑设计的研究现状及展望[J].内燃机工程,1998,19(4):20-25.
    [40] 何芝仙.内燃机曲轴-轴承系统动力学摩擦学刚度和强度耦合研究[D]合肥工业大学博士学位论文,2006,11.
    [41] SUN J, GUI C L. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation[J]. Tribology International,2004,37:841-848.
    [42] 段芳莉,韦云隆.弹性变形对径向滑动轴承弹流润滑性能的影响[J].润滑与密封,2000,6:9-10.
    [43] ROHIT S, HAN T. A study of the thermohydrodynamic performance of steadily loaded journal bearings[J]. Tribology Transactions,1994,37(4):679-690.
    [44] BOUYER J, FILLON M. On the significance of thermal and deformation effects on a plain journal bearing subjected to sever operating conditions[J]. Journal of Tribology,2004,126: 819-822.
    [45] 王晓力,温诗铸,桂长林.计入表面粗糙度效应的动载轴承的润滑分析[J].机械工程学报,2000,36(1):27-3 1.
    [46] OKAMOTO Y, HANAHASHI M, KATAGIRI T. Effects of housing stiffness and bearing dimension on engine bearing performance by elastohydrodynamic lubrication analysis[J]. Journal of Tribology, 2000,122:697-704.
    [47] MOES H, HOEVE B, VAN J. Thermal effects in dynamically loaded flexible journal bearings[J]. Journal ofTribology,1989,111:49-55.
    [48] 王晓力,温诗铸,桂长林.动载轴承的非稳态热流体动力润滑分析[J].清华大学学报(自然科学版,1999,39(8):30-33.
    [49] PIFFETEAU S, SOUCHET D, BONNEAU D. Influence of thermal and elastic deformations on connecting-rod big end bearing lubrication under dynamic loading[J]. Journal of Triboiogy,2000,122: 181-191.
    [50] KIM B J, KIM K W. Thermo-elastohydynamic analysis of connecting rod bearing in internal combustion engine[J]. Journal of Tribology,2001,123:444-454.
    [51] Boncompain R, Fillon M, Frene J. Analysis of thermal effects in hydrodynamic bearings[J]. Journal of Tribology, 1986,108:219-224.
    [52] Khonsari M M. A review of thermal effects in hydrodynamic bearings—PartⅡ: Journal Bearings[J]. ASLE TRANSACTIONS,1986,30(1):26-33.
    [53] Khonsari M M, Wang S H. Notes on transient THD effects in a lubricating film[J]. TRIBOLOGY TRANSACTIONS, 1992,35(1): 177-183.
    [54] 孙大成.润滑力学讲义[M].北京:中国友谊出版公司,1991:217-222.
    [55] Gethin D T, Medwell J O. An experiment investigation into the thermohydrodynamic behavior of a high speed cylindrical bore journal bearing[J]. ASME Trans., J. Trib., 1985, 107: 538-543.
    [56] Mitsui J, Hod Y, Tanaka M. An experimental investigation on the temperature distribution in circular journal bearings[J]. ASME Trans., J. Trib., 1986, 108: 621-628.
    [57] Ma M T, Taylor C M. An Experiment investigation of thermal effects in circular and elliptical plain journal bearings[.1].Tfibology International, 1996,29(1): 19-26.
    [58] Kucinschi B, Fillon M. An Experimental study of transient thermal effects in a plain journal bearing[J]. Journal of Tfibology, 1999,121:327-332
    [59] Khonsari M M, Beaman J J. Thermohydrodynamic analysis of laminar incompressible journal bearings[J]. ALSE TRANSACTIONS, 1986, 29(2): 141-150.
    [60] 富彦丽,朱均,马希直.径向轴承启动过程瞬态热效应的研究[J].摩擦学学报,2003,23(2):136-140.
    [61] 陈伯贤,裘祖千,张惠生.流体润滑理论及其应用[M].北京:机械工业出版社,1991.
    [62] 李震.内燃机曲轴-轴承系统摩擦学动力学耦合研究[D].合肥工业大学博士学位论文,2005.10.
    [63] Klingebiel F, Kahlstorf U. Simulating Engine Lubrication Systems with I-D Fluid Flow Models [C]. SAE Paper 2000-01-0284.
    [64] FLOWMASTER On-line Reference Help. 2006.
    [65] Tran P, Yamamoto T, Baba Y, et al. An Analysis of Lubricating System of Automobile Gasoline Engine[C]. SAE Paper 871659, 1987.
    [66] Mian M A. Design and Analysis of Engine Lubrication System[C]. SAE Paper 970637, 1997.
    [67] 周全保.内燃机活塞环组润滑特性的综合分析[J].内燃机学报,199l,9(3):227-232.
    [68] Yang Qingmin. A numerical study of piston ring lubrication in internal combustion engines[D]. The University of Toledo,1995,3.
    [69] 刘焜,桂长林,谢友柏.活塞环组摩擦及润滑特性的综合分析[J].摩擦学学报,1998(18):32-38.
    [70] Han D C, Lee J S. Analysis of the piston ring lubrication with a new boundary condition[J]. Tribology International,1998,31(12):753-760.
    [71] 张勇,罗马吉,陈国华等.活塞环—缸套摩擦副的二维润滑分析[J].机械工程学报,1999,35(6):21-24.
    [72] Harigaya Y, Suzuki M, Takiguehi M. Analysis of Oil Film Thickness on a Piston Ring of Diesel Engine-Effect of Oil Film Temperature. Transaction of the ASME,2003,125:596-603.
    [73] 王伟,刘焜,焦明华等.活塞环—缸套液固二相润滑研究[J].内燃机学报,2005,23(2):176-181.
    [74] 谈建,王斌,左承基.汽油机机油消耗量的试验与分析.内燃机与动力装置[J],2006,95(5):4-7.
    [75] 仲志全,尹琪,张光辉等.发动机缸内机油消耗途径及影响因素分析[J].车用发动机,2001,147(5):16-18.
    [76] 傅国兰.活塞第一道环对润滑油消耗的影响[J].内燃机配件,1995,4:44-50.
    [77] 夏建新,姜恩沪,张宗才等.发动机窜气和机油耗——活塞环组工作性能的研究[J].内燃机学报,1988,6(4):357-365
    [78] 仲志全,尹琪.柴油机缸内润滑油消耗途径分析[J].小型内燃机与摩托车,2004,1:10-12.
    [79] 叶晓明.活塞环组三维润滑数值模拟及其应用研究[D].武汉:华中科技大学,2004.
    [80] 尹琪.柴油机润滑油消耗测量与理论分析研究[1)].上海:上海交通大学,1999.
    [81] Kenneth H H. A Simplified Approach to Flow Network Analysis: Application to Engine Lubrication System[C]. SAE Paper 750080, 1975.
    [82] 刘剑,张卫正,向建华.基于节点网络法的润滑系统图形化建模技术研究[J].润滑与密封,2006,174:59-62.
    [83] 胡爱云.化纤企业几种温度控制方法的特点及应用[J].广东化纤,2002,2:52-53
    [84] 赵斌,李桂桃.LC型椭圆齿轮流量计的磁性故障分析[J].液压与气动密封,2001,86(2):16-17.
    [85] 李强,赵伟.MATLAB数据处理与应用[M].北京:国防工业出版社,2001,1.
    [86] 张也影.流体力学[M].北京:高等教育出版社,1999,6.
    [87] 内燃机机油泵试验方法.中华人民共和国机械行业标准JB/T 8886-1999[S],1999,9.
    [88] 杜小树,高洪臣.斯太尔WD615型柴油机机油泵的试验研究[J].柴油机,1999,1:9-15
    [89] 内燃机机油冷却器传热性能试验方法.中华人民共和国机械行业标准JB/T 5095-91,1991,7.
    [90] Schwandt B N,Verdegan B M,Holm E C等.优化柴油机润滑油滤清系统[J].国外内燃机,1996,4:51-61.
    [91] 内燃机纸质滤芯机油滤清器总成试验方法.中华人民共和国机械行业标准JB/T 5099-91,1991,7.
    [92] 阮桢,胡德金,许黎明等.内燃机机油泵工作特性数学模型的分析与研究[J].内燃机工程,2006,27(3):50-53.
    [93] Xu K, Xie M, Tang L C, et al. Application of neural networks in forecasting engine systems reliability[J]. Applied Soft computing, 2003,2: 255-268.
    [94] Hafner M, Schiller M, Nelles O, et al. Fast neural networks for diesel engine control design[J]. Control Engineering Practice, 2000,8:1211-1221
    [95] Lucas A, Duran A, Carmona M etl. Modeling diesel particulate emissions with neural networks[J]. Fuel,2001,80:539-548.
    [96] Shayler P J, Goodman M, Ma T. The exploitation of neural networks in automotive engine management systems[J]. Engineering Applications of Artificial Intelligence, 2000,13:147-157.
    [97] 何仁,周孔亢,吴志敏.应用人工神经网络预测内燃机基本性能[J].机械工程学报,1996,32(6):101-104.
    [98] 黄强,刘永长,魏明锐.内燃机中人工神经网络技术的研究[J].小型内燃机与摩托车,2002,31(2):43-46.
    [99] 钱立军,袭著永,赵韩.基于BP神经网络的发动机排放预测[J].汽车工程,2005,27(1):28-31.
    [100] 冯国胜,杨绍普,程京平.基于神经网络的柴油机性能建模[J].内燃机学报,2005,23(2):182-186.
    [101] 吴义虎.汽车发动机技术的神经网络方法[M].北京:人民交通出版社,2000,6.
    [102] 周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005,7.
    [103] 周斌,李玉梅,志一.神经网络内燃机排放模型学习样本的选定[J].西南交通大学学报,2002,37(6):659-663.
    [104] 高国珍.正交法在内燃机试验中的应用[J].实验室研究与探索,1998,6:51-53.
    [105] 傅建平,李国章,廖振强等.基于模糊BP神经网络的发动机磨损模式识别研究[J].内燃机学报,2005,23(2):187-191.
    [106] 周龙保.内燃机学[M].北京:高等教育出版社,2005,1.
    [107] Zissimos P.Mourelatos. A crankshaft system model for structural dynamic analysis of internal combustion engines[J]. Computer & Structure,2001,79:2009-2027.
    [108] 芮执元,程林章.基于Pro/E与ADAMS结合的虚拟样机动态仿真[J].现代制造工程,2005,1:56-58.
    [109] 毕世英,杨晓京,李哲昆.UG与ADAMS-View之间的图形数据交换研究[J].机械,2004,31(6):8-10.
    [110] 郁飞鹏,贾鸿社.ADAMS与UG、SolidWorks的数据交换实践[J].现代制造工程,2005,10:37-39.
    [111] 郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析[J].铁道机车车辆,2003,23(1):83-89.
    [112] 尤小梅,马星国.发动机曲轴动力学仿真研究[J].沈阳工业学院学报,2004,23(4):4-7.
    [113] 候红玲,赵永强,魏伟锋.基于ADAMS和ANSYS的动力学仿真分析[J].现代机械,2005.4:62-63.
    [114] 王德人.非线性方程组解法与最优化方法[M].北京:人民教育出版社,1979,1.
    [115] 张光澄.非线性最优化计算方法[M].北京:高等教育出版社,2005,7.
    [116] 苏金明,阮沈勇.MATLAB 6.1实用指南(下册)[M].北京:电子工业出版社,2002,1.
    [117] 吴南星,孙庆鸿.机械系统动态仿真技术研究[J].制造业自动化,2002,12:36-38.
    [118] Mostyn V, Skarupa J. Improving mechanical model accuracy for simulation purposes[J]. Mechatronics, 2004,14: 777-787.
    [119] 魏阳,王书义.基于Pro/E的机械三维动态仿真技术[J].机械设计,2004,10:206-209.
    [120] 二代龙震工作室.Pro/Mechanism/MECHANICA Wildfire 2.0机构/运动/结构/热力分析[M].北京:电子工业出版社,2006,1.
    [121] 刘则毅.科学计算与Matlab[M].北京:科学出版社,2001.
    [122] 孙军.曲轴——轴承系统摩擦学、刚度和强度的耦合研究[D].合肥工业大学博士学位论文,2005,9.
    [123] A.希林.汽车发动机润滑[M].北京:人民交通出版社,1981,8.
    [124] 李柱国,梁德祥,翁来等.柴油机磨合规范优化及其油液分析[J].内燃机学报,1999,17(4):405-408.
    [125] 魏海军,孙培廷,关德林等.车用柴油机台架磨合过程影响因素研究——表面粗糙度对磨合过程的影响[J].内燃机学报,2006,24(2):188-191.
    [126] 张家玺,朱均.内燃机磨合与表面改性实验研究[J].摩擦学学报,2001'2l(1):59-62.
    [127] 黎苏,张志华,王芝秋.492Q汽油机非稳定加速工况下的示功图分析[J].内燃机学报,1999,17(1):42-46.
    [128] 吴波,刘建伟.内燃机示功图测量与分析技术的发展[J].山东内燃机,2000,63(1):8-13.
    [129] 杨海,邓名华.国内外内燃机示功图的研究与发展[J].内燃机,2005,6:6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700