鲜榨苹果汁非热杀菌技术与设备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容是国家科技部“十五”重大科技专项一农产品深加工技术与设备研究开发课题《优质鲜榨苹果汁和浑浊型苹果汁加工关键技术研究》的一部分。
     非热杀菌技术是制约我国鲜榨苹果汁生产和销售的重大关键技术难题,至今未能提出有效实用的解决方案。本论文主要针对几种在鲜榨苹果汁生产中具有应用前景的非热杀菌技术,为最大限度保留苹果汁的新鲜风味和热敏性营养成分,提高杀菌工艺效果,保证鲜榨苹果汁的卫生安全质量,延长产品货架期,从榨汁苹果原料中微生物的种类分析鉴定入手,将二氧化氯杀菌与清洗过程相结合,有针对性的研究其对原料中主要致病菌和腐败菌的杀菌规律;从实用和高效两方面考虑,重点开展脉冲强磁场杀菌和陶瓷膜过滤除菌技术研究,为优化杀菌/除菌工艺条件,控制鲜榨苹果汁中的微生物数量,探索了杀菌/除菌过程中主要影响因素对杀菌/除菌效果的影响规律,从细胞膜结构破坏和DNA损伤等方面推测脉冲强磁场杀菌技术的机理,并建立了陶瓷膜除菌过程膜污染机制的数学模型;同时根据已获得的杀菌规律和数据确定了脉冲强磁杀菌设备和陶瓷膜过滤除菌设备制造参数和样机设计方案,最终利用数学模拟方法描述了环境因素对鲜榨苹果汁中的常见致病菌和腐败菌生长状态的影响,建立了致病菌的生存/死亡概率模型,控制致病菌的存活,通过腐败菌最大生长速度的数学模型对鲜榨苹果汁的货架期进行预测。
     本论文主要包括榨汁苹果原料表面微生物种类的分离和鉴定、二氧化氯对苹果原料的清洗与杀菌规律、脉冲强磁场杀菌规律与机理研究、陶瓷膜过滤除菌技术与膜污染机制、非热杀菌设备的设计、微生物在鲜榨果汁中的生存状态模拟等内容。主要结论如下:
     1.榨汁苹果原料中微生物是鲜榨苹果汁中致病菌和腐败菌的主要来源。为有针对性地对苹果原料和鲜榨苹果汁中的主要污染菌采取有效的清洗与杀菌措施进行控制,利用API细菌鉴定系统,结合细菌的菌落形态特征,对榨汁苹果原料中的微生物种类和数量分布进行了研究。结果发现,烈性致病菌单增李斯特(Listeria monocytogenes)和大肠杆菌O157:H7在榨汁苹果原料中均有检出,微生物在榨汁苹果表面的数量分布在10~5~10~7cfu/g,引起果汁腐败变质的主要微生物是酵母菌、乳酸菌和芽孢杆菌,并对它们的种类进行了鉴定,共鉴定出酵母菌6种、乳酸菌3种、芽孢杆菌2种。
     2.为降低鲜榨苹果汁中的微生物数量,减轻后续果汁非热杀菌过程的负担,原料中微生物数量必须尽可能降低到最低程度。本研究采用四因素中心组合试验设计(Central Composite Design)模型,对从榨汁苹果表面分离的单增李斯特氏菌(Listeria monocytogenes)、大肠杆菌O157:H7(E. coli. O157:H7)和几种典型腐败菌进行了二氧化氯杀菌实验,并将原料清洗与杀菌过程相结合,以杀菌效果(以杀菌效率的负对数表示,即log(N/N_0)为响应值,研究了二氧化氯溶液浓度、杀菌温度、处理时间和杀菌液pH值等因素对杀菌效果的影响,分析归纳了杀菌主要影响因素与杀菌效果的数学模型,为实现生产过程的在线自动优化控制提供了计算依据。
     3.通过脉冲强磁场对主要致病菌和腐败菌杀菌效果的研究,发现影响杀菌效果的主要因素是磁场强度、脉冲次数、杀菌温度、介质pH值等。介质pH值对杀菌效果影响明显,较低pH值(<4.5)均可提高对金黄色葡萄球菌、大肠杆菌和沙门氏菌的杀菌效果;介质温度
    
    越高杀菌效果越好,提高介质温度也可以提高杀菌效果;随着磁场强度和脉冲数的增加,杀
    菌效果提高;脉冲磁场对实验研究的几种微生物作用效果并不一致,对金黄色葡萄球菌的作
    用最强,而对霉菌抱子和芽抱杆菌的作用效果相对较差。采用扫描电镜、流式细胞仪和单细
    胞凝胶电泳技术揭示了脉冲磁场对大肠杆菌细胞膜和DNA的损伤情况,结果证实,脉冲磁
    场对大肠杆菌的细胞膜结构和核内DNA有损伤作用。
     4.为保证鲜榨苹果汁卫生指标达到要求,应用膜孔径为1 00nm的陶瓷膜对果胶酶酶解
    后的鲜榨苹果原汁进行了过滤澄清与除菌效果研究。通过对经酶解除果胶的鲜榨苹果原汁进
    行跨膜压力、膜面流速、过滤温度与膜通量关系的研究,初步确定了陶瓷膜过滤除菌的最佳
    条件,经试验测定,本研究选用的loonm陶瓷膜过滤后可使细菌总数下降9个对数值,滤
    后果汁澄清度得到明显提高,而果汁的各项质量指标如pH值、总酸、糖度等均未发生明显
    变化;经过4℃,8℃,25℃和35℃28d贮存观察,果汁中均无微生物生长;4℃和8℃低温
    贮藏的苹果汁其理化指标变化较小。通过研究压力、温度对膜通量的影响,分析了过滤过程
    膜污染机制,确定了其适用的数学模型,证明选用1 00 nm陶瓷膜过滤果汁中的颗粒物质只
    是对膜孔的覆盖,降低膜过滤面积,而不会对膜孔造成不可恢复性阻塞。
     5.本研究对脉冲强磁杀菌设备和陶瓷膜过滤除菌设备进行了系统设计,并制作完成脉冲
    强磁杀菌设备和陶瓷膜过滤除菌设备实验样机,根据选用的非热杀菌方法的特点,提出鲜榨
    苹果汁非热杀菌技术方案,确定了鲜榨苹果汁生产过程的杀菌工艺和流程。
     6.应用微生物预测技术(Predictive MicrobiologyT’e chnol
This paper was a part of the item - "The Study on Key Technologies of High-Quality Fresh Apple Juice and Concentrated Cloudy Apple Juice" in the Tenth-Five-Year Science and Technology Plan of China.
    The non-thermal technology was the pivotal problem, which restricted the producing, and marketing of fresh apple juice in China. Up to now, there was no effective and practical method to resolve the processing problems. This study focused on the several prospective non-thermal inactivation technologies to keep the natural flavor and nutritional qualities of the apple juice. The presence of an inactivation processing unit operation aiming at microbial destruction was of primary importance to ascertain safety and stability of food. After the isolation and identification of the primary pathogenic and septic bacteria in the raw apple, the bactericidal effects of chlorine dioxide (ClO2) solution treatments on the microbia potted on pulp surface of apples were investigated to explore the inactivation rule. From the point of view of practicality and high efficiency, the effect of main parameters on the inactivation or sterilization efficiency of the selected pulsed magnetic field and membrane filtration technology
    were explored to suppress microbial growth, and reduce or eliminate the microbial load. In this part, the damages inflicted on the membrane and DNA of Escherichia coli cells treated by pulsed magnetic field was investigated to reveal the mechanism of the inaction. The flux behavior and mechanism of ceramic membranes was examined during cross-flow ultrafiltration (UF) of depectinized fresh apple juice to evaluate the effects of transmembrane pressure (TMP) and temperature on membrane fouling. On the basis of data and rules induced from the experiments, the scheme to produce fresh apple juice was brought forward and the pilot scale equipment for non-thermal inactivation was designed. By the theory of predictive microbiology technology, predictive models for the lag phase and the maximum specific growth rate of a specific spoilage organism in fresh apple juice was developed and the logistic model to evaluate the growth/no growth boundary for the pathogenic bacteria in relation to the considered independent vari
    ables was also established. From the studies above, the conclusions were:
    1. The raw material apple was the main resource of the pathogenic and septic bacteria of the fresh apple juice. To sanitize the microbia on the apple surface effectively, the clones of bacteria and yeasts were isolated and identified respectively by their clone physiological characteristics and the API system. The microbial load in the raw apples was between 105 and 107 cfu/g. The pathogenic bacteria such as Listeria monocytogenes and E.coli O157:H7 were found in the raw apple. The primary kinds of septic microbia were yeast, lactic bacteria, and spores.
    2. Production of safe fresh apple juice includes scrutinizing raw materials and reducing or eliminating the microbial load by chlorine dioxide (ClO2) solution. The inactivation rule of chlorine dioxide (C1O2) treatments on the microbiology was investigated in the process of
    
    
    apple rinsing. The Central Composite Design model was used to describe the influence of main, quadratic, and cross-product effects of the environmental factors such as concentration of chlorine dioxide (C1O2), temperature, treating time and pH on the response of inactivation efficiency (log (NO/N)).
    3. The major factors on the inactivation efficiency of the pulsed magnetic field were strength, the number of pulses, temperature and pH of the medium. The pH of the medium effected the inactivation markedly. In low pH (<4.5), the efficiency of inactivation was higher for the treatment of Escherichia coli, Salmonella enterica and Sarcina aurea Henrici. The increase in the strength and the number of the pulses increased the efficiency of inactivation. The inactivation efficiency of pulsed magnetic field was not consistent to all kinds of microbiology. In the investigated microbiologies t
引文
[1] 边藏丽,杨远荣,熊贻该,等.激光杀菌的实验研究.中国消毒学杂志,1995,12(3):168
    [2] 陈长娥,刘跃进,熊双喜,等.二氧化氯的杀菌研究.湘潭大学自然科学学报,1994,16(2):45~47
    [3] 陈春田,李东力,刘希真,等.二氧化氯作用后细菌中DNA漏出的实验观察.中国公共卫生,2002,18(1):57
    [4] 陈启和,何国庆.微波技术在食品中的应用和食品杀菌研究进展.粮油加工与食品机械,2002,4:30~32
    [5] 陈祥奎.超高压杀菌新技术.食品与发酵工业,1995,4:69~71
    [6] 陈小娥,方旭波.杀菌技术在食品加工中的应用进展.浙江海洋学院学报(自然科学版),2002,21(1):62~65
    [7] 陈秀伟.高电压脉沖杀菌技术的研究进展.食品与机械食品与机械,1994,4:13
    [8] 陈祖毅,林立旺,王碧桑,等.两种紫外线水消毒设备的杀菌试验观察.海峡预防医学杂志.2002,8(2):58~59
    [9] 崔晓江,刘枝俏,田颖川,等.杀菌肽的研究进展及应用前景.生物化学与生物物理进展,1995,22(]):5~8
    [10] 丁兰英,李荣芬,李素卿.微波照射对豆腐皮杀菌效果的影响.中国消毒学杂志,1996,13(3):166~167
    [11] 杜连起.稳定性二氧化氯在啤酒生产中的应用.食品工业,2000,4:6~7
    [12] 范丽英,张昕.紫外线杀菌机理及其在食品工业中的应用.吉林粮食高等专科学校学报,1996,11(1):23~25
    [13] 费尚芬,徐景志,王晓敬.恒定磁场对Escherichia coil生长影响初探.河北大学学报(自然科学版),1995,15(5):65~66
    [14] 冯建荣,崔春红.二氧化氯消毒剂在食品加工领域中的应用前景.中国果品研究,1996,1:29
    [15] 葛飞.超声波在食品工业中的应用.肉类工业,1999,9:43~45
    [16] 关秀丽.高新技术在食品杀菌工艺中的应用.食品与机械,1994,2:33~34
    [17] 郭烈恩,胡云堂,李华栋.高压脉冲电场在食品杀菌中的应用.南昌大学学报(工科版),2001,23(4):20~24
    [18] 何孟晓.二氧化氯处理食用肉类的新方法.肉类工业,2002,9:28
    [19] 胡滨,张亚雄,唐明.二氧化氯消毒剂在发酵酸奶生产中的应用研究.中国酿造,2001,33~34
    [20] 黄建蓉,郭祀远,蔡妙颜,等.食品微波杀菌新技术的研究进展.食品与发酵工业,1998,24(4):44~52
    [21] 黄炜,薛婉丽,钱蕾芸.高压静电场在食品杀菌中的应用.食品与机械,2001,4:13~14
    [22] 黄云翔.氯酸钠、亚氯酸钠和二氧化氯的制造与应用.氯碱工业,1997,2:25~29
    [23] 李汴生.热杀菌与非热杀菌特性与方法.粮油加工与食品机械,2001,7:14~15
    [24] 李梅,彭永臻,于德爽.脉冲磁场杀菌效果实验研究.哈尔滨商业大学学报(自然科学版),2003,19(2):178~182
    [25] 李荣芬,李素卿.微波杀菌机理研究:对细胞通透性影响的观察.中国消毒学杂志,1995,12(3):129~132
    [26] 李儒荀,袁锡昌,王跃进,等.超声波.激光联合杀菌的研究.包装与食品机械,1998,16(3):6~12
    [27] 李兴国,林虎.磁力灭菌技术研究.四川工业学院学报,1996,15(3):31~36
    
    
    [28] 李勇,曹开明,杜建民.微波杀菌的应用研究.食品科技,1997,6:43~44
    [29] 李勇,梁峙.紫外线杀菌原理及其净水器的设计.农机与食品机械,1997,1:26~28
    [30] 励建荣,夏道宗.超高压技术在食品工业中的应用.食品工业科技,2002,7:79~81
    [31] 梁峙.超高压致死微生物在饮料中的研究进展.广西轻工业,2000,3:6~7
    [32] 刘华.固体二氧化氯在食品包装工业中的应用.中国食物与营养,2001,3:31~32
    [33] 刘怀田,丁兰英,杨华明.微波于柠檬酸协同杀菌作用的研究.中国消毒学杂志,1995,12(4):241~242
    [34] 刘南,李秀安,孙立萍.一种二氧化氯水溶液杀菌效果的试验观察.中国消毒学杂志,2002,19(2):91
    [35] 陆绪钦,林霞,徐水凌,等.远红外线杀菌作用的研究.中国消毒学杂志,1994,11(2):93~97
    136] 吕联通,梁莉萍,姜英才,等.一个测定微波杀菌致死速率的方法.成都科技大学学报.1994,5:45~50
    [37] 梅从笑,方远超.新型冷杀菌技术在食品工业中的应用研究.江苏食品与发酵江苏食品与发酵,2001,2:31~33
    [38] 潘见,张文成,陈从贵.超高压液体饮料实用性灭菌工艺及设备设计.食品科学,1999,1:62~64
    [39] 綦翠华.臭氧杀菌及其在食品工业中的应用.食品科技,1998,6:49~50
    140] 秦贯丰,谢名洋,李月花,等.压榨车间电化学杀菌及蔗汁杀菌剂.甘蔗糖业,1996,1:30~35
    [41] 丘泉发,许莉萍.~60Coγ辐射对木瓜蛋白酶制剂的杀菌效应.辐射研究与辐射工艺学报,1994,12(2):117~118
    [42] 邱伟芬.食品超高压杀菌技术及其研究进展.食品科学,2002,22(5):81~84
    [43] 生庆海,程建军,王辉兰.一种新的食品加工技术—超高压技术.中国乳品工业.2000,28(5):23~25
    [44] 石秀东.超声作用在食品加工中的应用.包装与食品机械,1998,16(1):10~11
    [45] 石秀东.液态食品非加热杀菌技术的研究进展.冷冻与速冻食品工业,2003,8(4):37~44
    [46] 宋怀俊.秦伟.二氧化氯在杀菌消毒中的应用.河南科技,1996,1:18~19
    [47] 苏世颜.食品微生物检验手册.北京:中国轻工业出版社,1998:11~13
    [48] 苏世彦.超高压杀菌技术在果汁饮料生产中的应用.广州食品工业科技,1995,11(2):40~41
    [49] 孙承锋,南庆贤,牛天贵.微波杀菌在酱牛肉保鲜中的应用研究.食品工业科技,2001,22(3):11~13
    [50] 孙学兵,方胜,陆守道.高压脉冲电场杀菌技术研究进展.食品科学,2001,2(8):84~86
    [51] 汤利飞.用膜法提取乌龙枸札茶.食品科学,1995,16(8):31~35
    [52] 唐伟强,周宇英.基于食品电磁杀菌机理的几种理论学说.粮油加工与食品机械,2001,10:16~18
    [53] 田承斌.脉冲强光杀菌在水处理中的应用.饮料工业,2001,4(4):31~32
    [54] 汪保国,张冠群,伍碧雯,等.微波消毒法与水浴加热法杀菌效果的对比研究.广东药学院学报,1996,12(3):178~180
    [55] 王彩芽.三氧消毒杀菌与紫外线消毒杀菌效果的研究.广东微量元素科学,2002,9(1):66~68
    [56] 王丹,林劲松,刘春波,等.二氧化氯消毒剂在乳品加工中的应用.中国乳业,2002,5:23~25
    [57] 王建中.微波杀菌在食品工业中的应用.农机与食品机械农机与食品机械,1996,3:28~29
    
    
    [58] 王强.国内外食品GMP对比分析.中国农业科技导报,2002,4(5):36~39
    [59] 王绍林.微波加热技术在食品加工中应用(续).食品科学,2000,21(3):10~12
    [60] 王绍林.微波加热在食品加工中的应用.食品科学,2000,21(2):6~9
    [61] 王世强,徐亚君,蒋立科,等.中草药防腐剂的杀菌作用.微生物通报,1994,21(1):30~33
    [62] 王文明,杜一平.二氧化氯保鲜蔬菜效果.现代化农业,1999,1:25
    [63] 王永仪,李娜.二氧化氯杀菌杀藻效果的研究.工业水处理,1994,14(6):12~14
    [64] 王雨来.高效、安全的食品杀菌和保鲜新技术新产品.新技术新工艺,2000,2:25~29
    [65] 温旺荣,戴庚孙,王德春,等.常用消毒剂对念珠菌最小杀菌浓度的测定.中国消毒学杂志.1994,11(2):85~88
    [66] 无锡轻工业学院,天津轻工业学院等合编,微生物学.北京:轻工业出版社,1987.
    [67] 吴锦超,林革.臭氧杀菌在饮用纯净水生产中的应用.水处理技术,1999,25(2):87~88
    [68] 吴新安,花日茂,岳永德,等.植物源抗菌、杀菌活性物质研究进展(综述).安徽农业大学学报.2002,29(3):245~249
    [69] 辛志宏,马海乐,樊明涛.微波技术在食品杀菌与保鲜中的应用.粮油加工与食品机械,2000,4:30~32
    [70] 杨红旗,刘钟栋,陈肇锬.微波和紫外线协同杀菌作用研究.郑州粮食学院学报 1998,2:6~10
    [7]] 杨华明,丁兰英,刘育京,等.微波杀菌规律的研究.中国消毒学杂志,1996,13(2):65~68
    [72] 杨华明,丁兰英.医用微波灭菌器杀菌D值的研究.中华医院感染学杂志,1996,6(4):203~205
    [73] 杨洁彬.乳酸菌生物学基础及应用.北京:中国轻工业出版社,1996:1~150
    [74] 杨薇,张绍荣.超高压装置在食品工业中的应用.云南工业大学学报,1999,15(1):20~22
    [75] 姚开,李庆,贾冬英,等.食品非热力杀菌新技术.食品与发酵工业,2001,27(8):52~55
    [76] 殷际杰,宋国森,孙永军,等.食品微波杀菌问题的研究.燕山大学学报,1999,23(2):105~107
    [77] 殷涌光,王忠东,赵武奇.高压脉冲电场杀菌技术研究现状及发展.农业工程学报,2001,17(5):139~141
    [78] 袁华,顾仁勇,张晓蓉,等.二氧化氯对猪肉保鲜的研究.肉类工业,2001,11:31~33
    [79] 袁志发,周静芋.试验设计与分析.北京:高等教育出版社,2000(2001重印)
    [80] 张俊祥,刘有智,高松平.陶瓷超滤膜过滤含超细颗粒的乳化悬浮液的数学模型及二次成膜操作条件研究.兰州大学学报(自然科学版),2003,39(4):38~40.
    [81] 张蓉晖,银玉容.最少加工果蔬品质影响因素及冷杀菌技术.食品与机械,2001,2:11~13
    [82] 张仲彬,黄福南.电子及栓剂在热杀菌过程中的应用.食品与发酵工业,1994,1:74~78
    [83] 赵凯,孔书敬,洪伯铿,等.卤猪肝微波杀菌工艺的研究.肉类工业,2001,3:18~21
    [84] 赵立川,唐玉德,祁振强.超高压食品加工及其装置.河北工业科技,2002,19(1):21~28
    [85] 赵武奇,殷涌光,关伟,等.高压脉冲电场杀菌系统设计与试验,农业机械学报.2002,33(3):67~69
    [86] 钟璟,徐南平.陶瓷微滤膜过滤微米级颗粒体系的模拟.江苏石油化工学院学报,2000,12(3):12~15
    [87] 周安琪,卫新年,刘军.磁————生物电效应对生物影响机理的探讨.天津农林科技,2002,3:5~7
    [88] 周德庆.微生物学实验手册.上海:上海科学技术出版社,1994:197~227
    [89] 周曰兴,韩清华,李惠,等.圆柱腔式微波杀菌机.食品与机械,2001,4:35~37
    [901 周万龙,高:大维,夏小舒.脉冲强光杀菌技术的研究.食品科学,1998,18(1):116~19
    
    
    [91] 周宇英,唐伟强.压力与电磁技术在食品杀菌上的研究进展.粮油加工与食品机械,2001,5:9~10
    [92] 朱绍华,超声波灭菌试验初探,食品工业科技,1998,1:12~14
    [93] J. A.巴尼特.酵母菌的特征与鉴定手册.胡瑞卿译.青岛:青岛海洋大学出版社,1991:168~171
    [94] R. E.希坎南.伯杰氏细菌鉴定手册.第九版.北京:科学出版社,1989
    [95] Abbaszadegan, Morteza, Hasan, Michaela N., Gerba, Charles E, et al. The disinfection efficacy of a point-of-use water treatment system against bacterial, viral and protozoan waterborne pathogens. Water Research, 1997, 31(3): 574~582
    [96] Ade-Omowaye B.I.O., Angersbach A., Eshtiaghi N.M., et al. Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut processing. Innovative Food Science and Emerging Technologies 2000,1, (3): 203~209
    [97] Ade-Omowaye B.I.O., Rastogi N.K., Angersbach A., et al. Effects of high hydrostatic pressure or high intensity electrical field Pulse pre-treatment on dehydration characteristics of red paprika. Innovative Food Science and Emerging Technologies, 2001, 2(1): 1~7
    [98] Ade-Omowaye B.I.O., Rastogi N.K., Angersbach A., et al. Osmotic dehydration of bell peppers: influence of high intensity electric field pulses and elevated temperature treatment. Journal of Food Engineering, 2002, 54(1): 35~43
    [99] Ahvenainen. New approaches in improving the shelf life of minimally processed fruit and vegetables. Trends Food Sci. Technol., 1996, 7:179-187
    [100] Akdemir Evrendilek, Jin Z.T., Ruhlman K.T., et al. Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innovative Food Science & Emerging Technologies, 2000, 1: 77-86
    [101] Allen J. T., Calhoun R., Helm J., et al. A fully integrated 10 MeV electron beam sterilization system. Radiation Physics and Chemistry, 1995, 46(4-6): 457~460
    [102] Alvarez F.A., Riera R., Alvarez, et al. A new integrated membrane process for producing clarified apple juice and apple juice aroma concentrate. Journal of Food Engineering, 2000, 46: 109~125
    [103] (?)lvarez Ignacio, Raso Javier, Palop Alfredo, et al. Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 2000, 55(1-3): 143~146
    [104] Ananta Edwin, Heinz Voiker, Schl(?)ter Oliver, et al. Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innovative Food Science and Emerging Technologies, 2001, 2(4): 261-272
    [105] Andreadakis A., Mamais D., Christoulas D., et al. Ultraviolet Disinefection of Secondary and Tertiary Effluent in the Mediterranean Region. Water Science and Technology, 1999,40(4-5): 253~260
    [106] Andrews, S. Evaluation of surface disinfection procedures for enumerating fungi in foods: a collaborative study. International Joumal of Food Microbiology, 1996,29(2-3): 177~184
    [107] Angersbach Alexander, Heinz Volker, Knorr Dietrich. Effects of pulsed electric fields on cell membranes in real food systems Innovative Food Science and Emerging Technologies, 2000, 1(2): 135~149
    [108] Aronsson Kristina, R(?)nner Ulf. Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2001, 2 (2): 105~112
    
    
    [109] Arroyo G., Sanz P.D., Prestamo G. Response to high-pressure, low-temperature treatment in vegetables: determination of survival rates of microbial populations using flow cytometry and detection of peroxidase activity using confocal microscopy. J. Appl. Microbiol., 1999, 86: 544-556.
    [110] Asp Elaine H. Factors affecting food decisions made by individual consumers. Food Policy, 1999, 24(2-3): 287-294
    [111] Ataka M., Takano K.J., Harigae H., et al. Effect of hydrostatic pressure on the crystallization of lysozyme based on in situ observations. Journal of Crystal Growth, 1997, 171(3-4): 554~558
    [112] Barbosa-Canovas G.V., Gongora-Nieto M.M., Pothakamury U.R., et al. Preservation of Foods with Pulsed Electric Fields. Academic Press, Washington, 1999
    [113] Barbosa-C(?)novas G.V., Gongora-Nieto M.M., Swanson B.G. Nonthermal electrical methods in food preservation. Food Sci. Int., 1998, 4(5): 363~370.
    [114] Barbosa-C(?)novas G.V., Pothakamury U.R., Barry G.S,. State of the art technologies for the stabilization of foods by non-thermal processes: physical methods. Food Preservation by Moisture control. Lancaster, Technomic Publishing, 1994. 423~532.
    [115] BarkerAT. Design of clinical electromagnetic bone stimulator.Clin Physica Means,1981,2(1): 57
    [116] Barsotti Laura, Dumay Eliane, Mu Tai Hua, et al. Effects of high voltage electric pulses on protein-based food constituents and structures. Trends in Food Science and Technology, 2001, 12(3-4): 136~144
    [117] Batterman Stuart, Zhang Lianzhong, Wang Shuqin. Quenching of chlorination disinfection by-product formation in drinking water by hydrogen peroxide. Water Research, 2000, 34(5): 1652~1658
    [118] Beggs C.B., Sleigh P.A. A quantitative method for evaluating the germicidal effect of upper room UV fields. Journal of Aerosol Science Volume, 2002, (33) 12:1681~1699
    [119] Belosevic Miodrag, Craik Stephen A., Stafford James L., et al. Studies on the resistance/reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts exposed to medium-pressure ultraviolet radiation. FEMS Microbiology Letters, 2001, 204(1): 197~203
    [120] Bendicho Silvia, Barbosa-C(?)novas Gustavo V., et al. Milk processing by high intensity pulsed electric fields. Trends in Food Science and Technology, 2002, 13(6-7): 195~204
    [121] Benito A., Ventoura G., Casadei M., et al. Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses, Appl. Environ. Microbiol., 1999, 65:1564~1569
    [122] Bintsis E. Litopoulou, Tzanetaki R.K. Robinson. Existing and potential applications of ultraviolet light in the food industry- a critical review. J. Sci. Food Agric., 2000,80: 637~645.
    [123] Blake M.R., Weimer B.C., McMahon D.J., et al. Sensory and microbial quality of milk processed for extended shelf life by direct steam injection, J. Food Prot. 58 (1995) 1007-1013.
    [124] Blatchley Ⅲ Ernest R. Numerical modelling of UV intensity: application to collimated-beam reactors and continuous flow systems. Water Research, 1997, 31 (9) 2205~2218
    [125] Blatchley Ⅲ Ernest R., Do-Quang Zdravka, Janex Marie-Laure, et al. Process modeling of ultraviolet disinfection. Water Science and Technology, 1998, 38(6): 63~69
    [126] Boebinger G.S., Lacerda A.H., Schneider-Muntau H.J., et al. The National High Magnetic Field Laboratory's pulsed magnetic field facility in Los Alamos. Physica B 2001,294-295:
    
    512~518
    [127] Bogosian G., Morris P.J.L., O'Neil J.P. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but non-culturable state. Appl. Environ. Microbiol., 1998, 64: 1736~1742.
    [128] Bolton James R. Calculation of ultraviolet fluence rate distributions in an annular reactor: significance of refraction and reflection. Water Research, 2000, 34(13): 3315-3324
    [129] Boulos, Prevost M., Barbeau B., et al. LIVE/DEAD BacLightt: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Meth., 1999, 37:77-86
    [130] Brayman A. A., Church C. C., Miller M. W. Re-evaluation of the concept that high cell concentrations "protect" cells in vitro from ultrasonically induced lysis. Ultrasound in Medicine & Biology, 1996, 22(4): 497~514
    [131] Brooks J. S., Crow J. E., Moulton W. G. Science Opportunities at High Magnetic Fields. Journal of Physics and Chemistry of Solids, 1998, 59(4): 569~590
    [132] Bushnell A.H., Clark R.W., Dunn J.E., et al. Low-temperature electric field preservation method. Trends in Food Science & Technology, 1997, 8(3): 95
    [133] Butz P., Tauscher B. Emerging technologies: chemical aspects. Food Research International, 2002, 35(2-3): 279~284
    [134] Campbell Andrew T., Wallis Peter. The effect of UV irradiation on human-derived Giardia lamblia cysts. Water Research, 2002, 36(4): 963~969
    [135] Carme Guell, Robert H. Davis. Membrane fouling during microfiltmtion of protein mixtures. Journal of Membrane Science, 1996, 119: 269~284.
    [136] Cassano, Drioli E., Galavema G., et al. Clarification and concentration of citrus and carrot juices by integrated membrane processes. Journal of Food Engineering, 2003, 57:153~163
    [137] Castro A.J., Barbosa-Canovas G.V., Swanson B.G. Microbial inactivation of foods by pulsed electric fields. J. Food Process. Preserv., 1993, 17: 47~73.
    [138] Chakrabarti Bikas K., Misra Arkajyoti. Dynamic transitions in pure Ising magnets under pulsed and oscillating fields. Computer Physics Communications, 2002, 147(1-2): 120~125
    [139] Chang Cheng-Nan, Ma Ying-Shih, Zing Fang-Fong. Reducing the formation of disinfection by-products by pre-ozonation. Chemosphere, 2002, 46(1): 21~30
    [140] Chang Chen-Yu, Hsieh Yung-Hsu, Lin Yu-Min, et al. The organic precursors affecting the formation of disinfection by-products with chlorine dioxide. Chemosphere, 2001, 44(5): 1153~1158
    [141] Chau The Tu, Kao Kwan Chi, Blank Gregory et al. Microwave plasmas for low-temperature dry sterilization. Biomaterials, 1996, 17(13): 1273~1277
    [142] Chmiel H., Kaschek M., Bl(?)cher C., et al. Concepts for the treatment of spent process water in the food and beverage industries. Desalination, 2003, 152(1-3): 307~314
    [143] Cbristensen C.S., Hummelsh(?)j P., Jensen N.O., et al. Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation. Atmospheric Environment, 2000, 34(19): 3057-3067
    [144] Claeys Wendie L., Van Loey, Indrawati Ann M., et al. Review: are intrinsic TTIs for thermally\ processed milk applicable for high-pressure processing assessment? Innovative Food Science and Emerging Technologies, 2003, 4(1): 1~14
    [145] Comas J. Vives-Rego. Enumeration, viability and heterogeneity in Staphylococcus aureus cultures by flow cytometry. Journal of Microbiological Methods, 1998, 32: 45~53.
    
    
    [146] Coughlan A., Hall N. How magnetic field can influence your ions? New Scientist, 1990, 8(4): 30.
    [147] Courtois L., B(?)coulet A., Berger-By G., et al. Characterization of the ECRH system electromagnetic field: determination of the electromagnetic modes at high and low power. Fusion Engineering and Design, 2001, 53(1-4): 443~449
    [148] Crenshaw Hugh C., Salmon E. D. Hydrostatic Pressure to 400 atm Does Not Induce Changes in the Cytosolic Concentration of Ca~(2+)in Mouse Fibroblasts: Measurements Using Fura-2. Fluorescence Experimental Cell Research, 1996, 227(2): 277~284
    [149] D'Aoust J.Y., Park C.E., Szabo R.A., et al. Thermal inactivation of Campylobacter species, Yersinia enterocolitica, and hemorrhagic Escherichia coli O157:H7 in fluid milk. J. Dairy Sci., 1988 (71): 3230~3236.
    [150] D(?)m A. M., Gazs(?) L. G., Kaewpila, S., et al. Radiation treatment of pharmaceuticals. Radiation Physics and Chemistry, 1996, 47(3): 515~517
    [151] Danfelter Maria, Engstrrm Per, Persson, Bertil R.R., et al. Effect of high voltage pulses on survival of Chinese hamster V79 lung fibroblast cells. Bioelectrochemistry and Bioenergetics, 1998, 47(1): 97~101
    [152] de Barros S.T.D., Andrade C.M.G., Mendes E.S. Study of fouling mechanism in pineapple juice clarification by ultrafiltration. Journal of Membrane Science, 2003, 215: 213~224.
    [153] de Bruijn J.P.F., Venegas A., Martinez J.A., et al. Ultrafiltmtion performance of Carbosep membranes for the clarification of apple juice. Lebensm. -Wiss. U. -Technol., 2003(36): 397~406.
    [154] De Gennaro, Cavella S., Romano R., et al. The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication. Journal of Food Engineering, 1999, 39:401~407
    [155] De Haan S.W.H., Willeoek P.R. Comparison of the energy performance of pulse generation circuits for PEF. Innovative Food Science and Emerging Technologies, 1998, 3(4): 349~356
    [156] Denise Carvalho Pereira Campos, Angtlica Sabino Santos, Daisy Blumenberg Wolkoff, et al. Cashew apple juice stabilization by mierofiltration. Desalination, 2002, 148: 61~65.
    [157] Devlieghere, Van Belle B., Debevere J. Shelf life of modified atmosphere packed cooked meat products: a predictive model. International Journal of Food Microbiology, 1999, 46: 57~70
    [158] Diffey Brian L. Sources and measurement of ultraviolet radiation. Methods, 2002, 28(1):4~13
    [159] Dimitris J. Panagopoulos, Andreas Karabarbounis, Lukas H. Margaritis. Mechanism for action of electromagnetic fields on cells. Biochemical and Biophysical Research Communications, 2002, 298: 95~102.
    [160] Dobson Jon, Pierre Tim St. Application of the Ferromagnetic Transduetion Model to D.C. and Pulsed Magnetic Fields: Effects on Epileptogenie Tissue and Implications for Cellular Phone Safety. Biochemical and Biophysical Research Communications, 1996, 227(3): 718~723
    [161] Dorrer Christophe, Joffre Manuel. Characterization of the spectral phase of ultrashort light pulses Comptes Rendus de 1'Aeademie des Sciences Series IV Physics, 2001, 2(10):1415~1426
    [162] Downey D., Giles D.K., Delwiche M.J. Finite element analysis of particle and liquid flow through an ultraviolet reactor. Computers and Electronics in Agriculture, 1998, 21(2): 81~105
    [163] Erkmen O., Karatas S. Effect of High Hydrostatic Pressure on Staphylococcus aureus in Milk.
    
    Journal of Food Engineering, 1997, 33(3-4): 257~262
    [164] Erkmen Osman. Antimicrobial Effect of Pressurized Carbon Dioxide on Staphylococcus aureusin Broth and Milk. Lebensmittel-Wissenschaft und -Technologic, 1997, 30(8): 826~829
    [165] Eshtiaghi M.N., Knorr D. High electric field pulse pretreatment: potential for sugar beet processing. Journal of Food Engineering, 2002, 52(3): 265~272
    [166] Farkas J. Irradiation as a method for decontaminating food. Int. J. Food Microbiol., 1998 (44):189~204.
    [167] Farrar IV H. Twenty new ISO standards on dosimetry for radiation processing. Radiation Physics and Chemistry, 2000, 57(3-6): 717~720
    [168] Femanda San Mart(?)n, Federico M. Harte, et al. Inactivation effect of an 18-T pulsed magnetic field combined with other technologies on E.coli. Innovative Food Science & Emerging Technologies, 2001, 2:273-277
    [169] Fincan M., Dejmek P. In situ visualization of the effect of a pulsed electric field on plant tissue. Journal of Food Engineering, 2002, 55(3): 223~230
    [170] Florence Lutin, Mathieu Bailly, Daniel Barb. Process improvements with innovative technologies in the starch and sugar industries. Desalination, 2002, 148: 121-124.
    [171] Foegeding P.M., Stanley N.W. Listeria innocua transformed with an antibiotic resistance plasmid as a thermal-resistance indicator for Listeria monocytogenes. J. Food Prot., 1991, 54: 519~523
    [172] Frankel R. B., Liburdy R. P. Biological effects of static magnetic fields. In Handbook of Biological Effects of Electromagnetic Fields. Polk, C. and Postow, E. (Ed). 2nd Ed. CRC Press. Boca Raton, FL. 1995.
    [173] Garin-Bastuji, Perrin B., Thorel M.F., et al. Evaluation of γ-ray irradiation of cows' eolostrum for Brucella abortus, Escherichia coli K99, Salmonella dublin and Mycobacterium paratuberculosis decontamination. Letters Appl. Microbiol, 1990, 11: 163~166.
    [174] George Isabelle, Crop Philippe, Servais Pierre. Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods. Water Research, 2002, 36(10): 2607~2617
    [175] Gereneser V.F., Barnothy M.F., Barnothy J.M. Inhibition of bacterial growth by magnetic fields. Nature, 1962, 196:539~541
    [176] Gersdorfl R., de Boer F.R., Wolfrat J.C., et al. The high magnetic facility of the University of Amsterdam, high field magnetism. Proceedings International symposium on High Field Magnetism. Osaka, Japan. 1983.277-287
    [177] Gervilla, Felipe X., Ferragut V., et al. Effect of high hydrostatic pressure on Escherichia coli and Pseudomonas fluorescens strains in ovine milk. J. Dairy Sei., 1997, 80:2297~2303
    [178] Gervilla, Ferragut V., Guamis B. High-pressure inactivation of microorganisms inoculated into ovine milk of different fat contents. J. Dairy Sci., 2000, 83: 674~682.
    [179] Giampiero Sacehetti, Andrea Gianotti, Marco Dalla Rosa. Sucrose-salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 2001, 49:163~173
    [180] Giannuzzi L., Pinotti A., Zaritzky N. Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. International Journal of Food Microbiology, 1998, 39:121~112
    [181] Giddings George. Commercial food irradiation in the United States. Radiation Physics and Chemistry, 1996, 48(3): 364~365
    
    
    [182] Giese Nicole, Darby Jeannie. Sensitivity of microorganisms to different wavelengths of UV light: implications on modeling of medium pressure UV systems. Water Research, 2000, 34(16): 4007~4013
    [183] Giner Joaquin, imeno Vicente, spachs Alexandre, et al. Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innovative Food Science and Emerging Technologies. 2000, 1(1): 57~67
    [184] Girard Fukumoto L. R. Apple Juice Clarification Using Microfiltration and Ultrafiltration Polymeric Membranes. Lebensm.-Wiss. u.-Technol., 1999, 32: 290~298.
    [185] G(?)ngora-Nieto M.M., edrow P.D.,Swanson B.G.,et al. Impact of air bubbles in a dielectric liquid when subjected to high field strengths. Innovative Food Science and Emerging Technologies, 2003, 4(1): 57~67
    [186] Grngora-Nieto M.M.,Younce F.,Hyde G.M.,et al. Metrology system for pulsed electric fields processing. Innovative Food Science and Emerging Technologies. 2002, 3(4): 337~348
    [187] Gould G. W. Biodeterioration of Foods and an Overview of Preservation in the Food and Dairy Industries. International Biodeterioration and Biodegradation, 1995, 36(3-4): 267-277
    [188] Gould G. W. Potential of irradiation as a component of mild combination preservation procedures. Radiation Physics and Chemistry, 1996, 48(3): 366
    [189] Gould Graharne W. Methods for preservation and extension of shelf life. International Journal of Food Microbiology, 1996, 33(1): 51~64
    [190] Grahl T., Maerkl H. Killing of microorganisms by pulsed electric fields. Appl. Microbiol. Biotechnol, 1996, 45:148~157
    [191] Gudmundsson Magn(?)s,Hafsteinsson Harmes. Effect of electric field pulses on microstructure of muscle foods and roes. Trends in Food Science and Technology, 2001, 12(3-4): 122~128
    [192] Guerrero S., L(?)pez-Malo A., Alzamora S.M. Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. Innovative Food Science and Emerging Technologies, 2001, 2(1): 31~39
    [193] Gujer Willi, von Gunten Urs. A stochastic model of an ozonation reactor. Water Research, 2003, 37(7): 1667~1677
    [194] Haas Charles N., Joffe Josh, Heath Mark, et al. Predicting disinfection performance in continuous flow systems from batch disinfection kinetics. Water Science and Technology, 1998, 38(6): 171~179
    [195] Haider Thomas, Sommer Regina, Knasm(?)ller Siegfried, et al. Genotoxic response of Austrian groundwater samples treated under standardized UV (254nm)—disinfections conditions in a combination of three different bioassays. Water Research, 2002, 36(1): 25~32
    [196] Hajmeer M.N., Basheer I.A. A hybrid Bayesian-neural network approach for probabilistic modeling of bacterial growth/no-growth interface. International Journal of Food Microbiology, 2003, 82: 233~243.
    [197] Hall Tom, Croll Brian. Particle counters as tools for managing Cryptosporidium risk in water treatment. Water Science and Technology, 1997, 36(4): 143~149
    [198] Harleman D. R. F., Murcott, S. The Role of Physical-Chemical Wastewater Treatment in the Mega-Cities of the Developing World. Water Science and Technology; 1999, 40(4-5): 75~80
    [199] Hashisaka A.E., MatchesJ.R., Batters Y., et al. Effects of gamma irradiation at -78 ℃ on microbial populations in dairy products. J. Food Sci., 1990, 55: 1284~1289
    [200] Hashizume, Kimura K., Hayashi R. Kinetic analysis of yeast inactivation by high-pressure treatment at low temperatures. Bioscience, 1995, 59: 1455~1458.
    
    
    [201] Hassen Abdennaceur, Mahrouk Meryem, Ouzari Hadda, et al. UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device. Bioresource Technology, 2000, 74(2): 141~150
    [202] Hauben K.J.A., Bartlett D.H., Soontjens C.C.F., et al. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl. Environ. Microbiol. 1997, 63: 945~950.
    [203] Hayakawa, Kanno T., Tomita M., et al. Application of high pressure for spore inactivation and protein denaturation. J. Food Sci., 1994, 59: 159-163.
    [204] He W., Chang J.S., Baird M.H.I. Enhancement of Interphase Mass Transfer by a Pulsed Electric Field. Journal of Electrostatics, 1997, 40-41:259-264
    [205] Heinz Volker, Knorr Dietrich. Effect of pH, ethanol addition and high hydrostatic pressure on the inactivation of Bacillus subtilis by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2000, 1(2): 151~159
    [206] Hengen Paul, Emergency N. Sterilization using microwaves. Trends in Biochemical Sciences, 1997, 22(2): 68-69
    [207] Ho S. Y., Mittal G. S., Cross J. D. Effects of High Field Electric Pulses on the Activity of Selected Enzymes. Journal of Food Engineering, 1997, 31 (1): 69~84
    [208] Hofmann G.A. Deactivation of microorganisms by an oscillating magnetic field. 1985.U.S. Patent 4,524,079.
    [209] Holl(?)sy, F. Effects of ultraviolet radiation on plant cells Micron. 2002, 33(2): 179~197
    [210] Hoover D.G., Metrick C., Papineau A.M., et al. Biological effects of high hydrostatic pressure on food microorganisms. Food Technol., 1989, 43: 99~107.
    [211] Hulsheger, Potel J., Niemann E.G. Killing of bacteria with electric pulses of high field strength. Radiat. Environ. Biophys., 1981, 20: 53~65.
    [212] Iwaguch Shiro, Matsumura Kentaro, Tokuoka Yoshikazu, et al. Sterilization system using microwave and UV light. Colloids and Surfaces B: Biointerfaces, 2002, 25(4): 299~304
    [213] Jana Samar, Mukherjee R.K. Generation and measurement of pulsed high magnetic field. Journal of Magnetism and Magnetic Materials, 2000, 214(3): 234~242
    [214] Jeantet R., Baron F., Nau F., et al. High intensity pulsed electric fields applied to egg white: effect on Salmonella enteritidis inactivation and protein denaturation. J. Food Prot., 1999, 62: 1381~1386
    [215] Johannes de Bruijna, Alejandro Venegas, Rodrigo Borquez. Influence ofcrossflow ultrafiltration on membrane fouling and apple juice quality. Desalination, 2002, 148:131~136.
    [216] John David E., Nwachuku Nena, Pepper Ian L., et al. Development and optimization of a quantitative cell culture infectivity assay for the microsporidium Encephalitozoon intestinalis and application to ultraviolet light inactivation. Journal of Microbiological Methods, 2003, 52(2): 183~196
    [217] Jyoti K.K., Pandit A.B. Hybrid cavitation methods for water disinfection. Biochemical Engineering Journal, 2003, 14(1): 9~17
    [218] Jyoti K.K., Pandit A.B. Water disinfection by acoustic and hydrodynamic cavitation. Biochemical Engineering Journal, 2001, 7(3): 201~212
    [219] Kakol T., Sheregii E.M. The optimal coil build-up aimed to generate high-pulsed magnetic fields. Physica B, 2001, 298(1-4): 594~598
    [220] Kalchayanand, T. Sikes, C.P. Dunne, et al. Hydrostatic pressure and electroporation have increased bactericidal efficacy in combination with bacteriocins. Appl. Environ. Microbiol., 1994, 60:4174~4177
    
    
    [221] Kamakura Hiroyuki, Hirano Takeshi, Ito Hitoshi, et al. Studies on the sterilization methods for the crude drugs. Possibility of EB machine for decontamination of crude drugs and influence on the components of crude drugs by irradiation. Radiation Physics and Chemistry, 2002, 63(3-6): 685-689
    [222] Kashimada Koji, Kamiko Naoyuki, Yamamoto Kazuo, et al. Assessment of photoreactivation following ultraviolet light disinfection. Water Science and Technology, 1996, 33(10-11): 261-269
    [223] Ken Riedl, Benoit Girard, Robert W. Lencki. Influence of membrane structure on fouling layer morphology during apple juice clarification. Journal of Membrane Science, 1998, 139: 155-166
    [224] Khadre M. A., Yousef A. E. Sporicidal action of ozone and hydrogen peroxide: A comparative study. International Journal of Food Microbiology, 2001,71(2-3): 131-138.
    [225] Kim J. G., Yousef A. E., Dave S. Application of ozone for enhancing the microbiological safety and quality of foods: A review. Journal of Food Protection, 1999, 62(9): 1071-1087.
    [226] Kleiser G., Frimmel F.H. Removal of precursors for disinfection by-products (DBPs)——differences between ozone- and OH-radical-induced oxidation. The Science of the Total Environment, 2000, 256(1): 1~9
    [227] Knorr Dietrich, Angersbach Alexander, Eshtiaghi Mohamed N., et al. Processing concepts based on high intensity electric field pulses. Trends in Food Science and Technology, 2001, 12(3-4): 129~135
    [228] Knorr Dietrich. Impact of non-thermal processing on plant metabolites. Joumal of Food Engineering, 2003, 56(2-3): 131~134
    [229] Knorr Dietrich. Novel approaches in food-processing technology: new technologies for preserving foods and modifying function. Current Opinion in Bioteehnology, 1999, 10(5): 485~491
    [230] Konstantinos B. Petrotos, Peter C. Quantick, Heracles Petropakis. Direct osmotic concentration of tomato juice in tubular membrane- module configuration. Ⅱ. The effect of using clarified tomato juice on the process performance. Journal of Membrane Science, 1999, 160: 171~177.
    [231] Kowalski John B., Aoshuang Yan, Tallentire Alan. Radiation sterilization——evaluation of a new approach for substantiation of 25 kGy. Radiation Physics and Chemistry, 2000, 58(1): 77~86
    [232] Krebbers B., Matser A.M., Koets, M., et al. Quality and storage-stability of high-pressure preserved green beans. Journal of Food Engineering, 2002, 54(1): 27~33
    [233] Kudasov Yu.B. Megagauss magnetization measurements. Physica B, 2001, 294-295:684-690
    [234] Kuo F.L., Ricke S.C., Carey J.B. Shell egg sanitation: UV radiation and egg rotation to effectively reduce populations of aerobes, yeasts, and molds. J. Food Prot., 1997, 60:694~697
    [235] Lambadarios Evripidis, Zabetakis Ioannis. Does High Hydrostatic Pressure Affect Fruit Esters? Lebensmittel-Wissenschaft und-Technologic, 2002, 35(4): 362~366
    [236] Lambert Byron J., Hansen Joyce M. ISO radiation sterilization standards. Radiation Physics and Chemistry, 1998,52(1-6): 11~14
    [237] Lavigne C., Zee J.A., Simard R.E., et al. Effect of processing and storage conditions on the fate of vitamins B1, B2, and C and on the shelf-life of goat's milk. J. Food Sci., 1989, 54: 30~34.
    [238] Lazarova V.,. Janex M. L., Fiksdal L., et al. Advanced wastewater disinfection technologies:
    
    short and long term efficiency. Water Science and Technology, 1998, 38(12): 109~117
    [239] Lazarova V., Savoye P., Janex M. L., et al. Advanced Wastewater Disinfection Technologies: State of the Art and Perspectives. Water Science and Technology, 1999,40(4-5): 203~213
    [240] Liberti Lorenzo, Notarnicola Michele, Petruzzelli Domenico. Advanced treatment for municipal wastewater reuse in agriculture. UV disinfection: parasite removal and by-product formation. Desalination, 2003, 152(1-3): 315~324
    [241] Liltved H., Landfald B. Effects of high intensity light on ultraviolet-irradiated and non-irradiated fish pathogenic bacteria. Water Research, 2000, 34(2): 481-486
    [242] Lindgren Martin, Aronsson Kristina, Gait Sheila, et al. Simulation of the temperature increase in pulsed electric field (PEF) continuous flow treatment chambers. Innovative Food Science and Emerging Technologies, 2002, 3(3): 233~245
    [243] L(?)pez-Malo A., Palou E., Barbosa-C(?)novas G. V., et al. Polyphenoloxidase activity and color changes during storage of high hydrostatic pressure treated avocado puree. Food Research Intemational, 1998, 31(8): 549-556
    [244] Lou Y., Yousef A.E. Adaptation to sub-lethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Mierobiol. 1997, 63: 1252~1255.
    [245] Lucht L., Blank G., Borsa J. Recovery ofEscherichia coli from potentially lethal radiation damage: characterization of a recovery phenomenon. J. Food Safety, 1997, 17:261~271
    [246] Lucht L., Blank G., Borsa J. Recovery of food-borne microorganisms from potentially lethal radiation damage. J. Food Prot., 1998, 61:586~590
    [247] Lucia Carneiro, Iralla dos Santos Sa, Flhia dos Santos Gomes, et al. Cold sterilization and clarification of pineapple juice by tangential microfdtration. Desalination, 2002, 148: 93~98.
    [248] Ma(?)as Pilaf, Barsotti Laura, Cheftel J. Claude. Microbial inactivation by pulsed electric fields in a batch treatment chamber: effects of some electrical parameters and food constituents. Innovative Food Science and Emerging Technologies, 2001, 2 (4): 239~249[249] Market for Juices, Ades, and Noncarbonated Drinks. Published By: Business Trend Analysts. 2001. 225-145
    [250] Matta V.M., Moretti R.H., L.M.C. Cabral. Microfiltration and reverse osmosis for clarification and concentration of acerolajuice. Journal of Food Engineering, 2004, 61: 477~482
    [251] Matthew A. Larson, Benito J. Marinas. Inactivation of Bacillus subtilis spores with ozone and Monoehloramine. Water Research, 2003, 37:833-844
    [252] Mavrogianopoulos G. N., Frangoudakis A., Pandelakis J. Energy Efficient Soil Disinfestation by Microwaves. Journal of Agrieultural Engineering Research, 2000, 75 (2): 149-153
    [253] McDougald, Rice S.A., Weiehart D., et al. Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol., 1998, 25: 1~9.
    [254] McMeekin T.A., Olley J., Ratkowsky D.A., et al. Predictive microbiology: towards the interface and beyond. International Journal of Food Microbiology, 2003,73:395~497
    [255] McMeekin T.A., Ross T. Predictive microbiology: providing a knowledge-based framework for change management. International Journal of Food Microbiology, 2002, 78:133~153
    [256] Mertens B., Knorr D. Development of non-thermal processes for food preservation. Food Technology, 1992, 46: 124~33.
    [257] Mertens B.A. High-pressure equipment for the food industry. High Pressure Res. 1994, 12: 227-237.
    
    
    [258] Miller Arne, Hansen Joyce. Revision of the ISO and EN radiation sterilization standards. Radiation Physics and Chemistry, 2002, 63(3-6): 665~667
    [259] Miller Arne. Documentation requirements for radiation sterilization. Radiation Physics and Chemistry, 1995, 46:1329~1334
    [260] Miller Arne. Dose mapping for documentation of radiation sterilization. Radiation Physics and Chemistry, 1999, 55(5-6): 789~794
    [261] Miller Arne. Dosimetry requirements derived from the sterilization standards. Radiation Physics and Chemistry, 1998, 52(1-6): 533~537
    [262] Moerman E, Mertens B., Demey L., Huyghebaert A. Reduction of Bacillus subtilis, Bacillus stearothermophilus and Streptococcus faecalis in meat batters by temperature-high hydrostatic pressure pasteurization. Meat Science, 2001, 59(2): 115~125
    [263] Mohd Zaki Sulaiman, Nik Meriam Sulaiman, Liew Shyue Yih. Limiting permeate flux in the charification of untreated starfruit juice by membrane ultrafiltration. Chemical Engineering Journal, 1998, 69:145~148
    [264] Momba Maggy N. B., Cloete T. E., Venter, S. N., et al. Evaluation of the impact of disinfection processes on the formation of biofilms in potable surface water distribution systems. Water Science and Technology, 1998, 38(8-9): 283-289
    [265] Monarca Silvano, Feretti Donatella, Collivignarelli Carlo, et al. The influence of different disinfectants on mutagenicity and toxicity of urban wastewater. Water Research, 2000, 34(17): 4261~4269
    [266] Mont(?)s i Mic(?), Robert, L(?)pez-Alemany Antonio.Change in pH of two-step hydrogen peroxide disinfection systems available on the Spanish market. International Contact Lens Clinic, 1998, 25(1): 7~10
    [267] Moore R.L. Biological effects of magnetic fields. Studies with microorganisms. Can. J. Microbiol., 1979, 25:1145~1151.
    [268] Moreno B., Go(?)i E, Fernandez O., Martinez, et al. The disinfection of wastewater by ultraviolet light. Water Science and Technology, 1997, 35(11-12): 233-235
    [269] Muyanja C.M.B.K., Narvhus J.A., Treimo J. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage. International Journal of Food Microbiology, 2003, 80: 201-210
    [270] Nagasawa M., Sambongi T., Nomura K., et al. Spin-density-wave sliding: Transient oscillation in high electric field and at low temperature. Synthetic Metals, 1995, 71(1-3): 1717~1718
    [271] Nakagawa M. A study on extremely low-frequency electric and magnetic fields and cancer: Discussion of EMF safety limits. Occupational Health and Industrial Medicine, 1997, 36(5): 214
    [272] Narendra P. Singh, Ralph E. Stephens, Himani Singh. Visual quantification of DNA double-strand breaks in bacteria. Mutation Research, 1999, 429:159~168.
    [273] Narendra Singh, Henry Lai. 60 Hz magnetic field exposures induce DNA crosslinks in rat brain cells. Mutation Research, 1998, 400:313~320.
    [274] Narkis Nava, Arrnon Robert, Offer Regina, et al. Effect of suspended solids on wastewater disinfection efficiency by chlorine dioxide. Water Research, 1995, 29(1): 227~236
    [275] Neaves P. UHT Plant Cleaning: Problems and Solutions. International Biodeterioration and Biodegradation, 1995, 36(3-4): 461~462
    [276] Nebe von Caron G., Stephens P., Badley R.A. Assessment of bacterial viability status by flow
    
    cytometry and single cell sorting. J. Appl. Microbiol., 1998, 84: 988~998.
    [277] Noronha M., Britz T., Mavrov V. et al. Treatment of spent process water from a fruit juice company for purposes of reuse: hybrid process concept and on-site test operation of a pilot plant. Desalination, 2002, 143(2): 183~196
    [278] Nott Kevin P., Hall Laurance D. Advances in temperature validation of foods. Trends in Food Science and Technology, 1999, 10(11): 366~374
    [279] Ohshima T., Sato K., Terauchi H., et al. Physical and chemical modifications of high-voltage pulse sterilization, J. Electrostat., 1997,42:159~166.
    [280] Oleksandr S. Lukanin, Sergiy M. Gunko, Mikhaylo T. Bryk, et al. The effect of content of apple juice biopolymers on the concentration by membrane distillation. Journal of Food Engineering, 2003, 60:275~280
    [281] Olsen Karsten, Kristiansen Kristian R., Skibsted Leif H. Effect of high hydrostatic pressure on the steady-state kinetics of tryptic hydrolysis of β-lactoglobulin. Food Chemistry, 2003, 80(2): 255~260
    [282] Oosterom Johannes. The importance of hygiene in modem society. International Biodeterioration and Biodegradation, 1998, 41 (3-4): 185~189
    [283] Otaki M., Takizawa S., Ohgaki S. Control and modeling of membrane fouling due to microorganism growth by UV pretreatment. Water Science and Technology, 1998, 38(4-5):405~412
    [284] Otaki M., Takizawa S., Ohgaki S. Control and modeling of membrane fouling due to microorganism growth by UV pretreatment. Water Science and Technology. 1998, 38(4-5): 405~412
    [285] Pagan R., Manas P., Alvarez I.,et al. Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal manosonication and lethal manothermosonication temperatures. Food Microbiology, 1999, 16:139~148
    [286] Palm H., Merkt F. Ion density effects in the pulsed field ionization of high Rydberg states. Chemical Physics Letters, 1997, 270(1-2): 1~8
    [287] Palou E., L(?)pez-Malo A., Barbosa-C(?)novas G. V., et al. Kinetic Analysis of Zygosaccharomyces bailii Inactivation by High Hydrostatic Pressure Lebensmittel-Wissenschaft und-Technologic, 1997, 30(7): 703~708
    [288] Paola Malacrino, Giacomo Zapparoli, Sandra Torriani, et al. Rapid detection of viable yeasts and bacteria in wine by flow cytometry. Journal of Microbiological Methods, 2001, 45: 127~134.
    [289] Patterson M.F., Quinn M., Simpson R., et al. Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J. Food Prot., 1995, 58: 524~529.
    [290] Perrot J. Y., Baron J. The disinfection of municipal wastewater by ultraviolet light: a French case study. Water Science and Technology, 1995, 32(7): 167~174
    [291] Petin Vladislav G., Zhurakovskaya Galina P., Komarova Ludmila N. Mathematical description of combined action of ultrasound and hyperthermia on yeast cells. Ultrasonics, 1999, 37(1): 79~83
    [292] Pfuhler S., Wolf H.U. Detection of DNA crosslinking agents with the alkaline comet assay. Environ. Mol. Mutagen, 1996, 27: 196~201.
    [293] Picart La(?)titia, Dumay Eliane, Cheftel J. Claude. Inactivation of Listeria innocua in dairy fluids by pulsed electric fields: influence of electric parameters and food composition.
    
    Innovative Food Science and Emerging Technologies, 2002, 3(4): 357~369
    [294] Pliquett Uwe F., Gusbeth Christian A. Perturbation of human skin due to application of high voltage. Bioelectroehemistry and Bioenergetics, 2000, 51(1): 41~51
    [295] Plummer Jeanine D., Edzwald James K. Effect of ozone on disinfection by-product formation of algae. Water Science and Technology, 1998, 37(2): 49-55
    [296] Pol I.E., Mastwijk H.C., Bartels P.V., et al. Pulsed-electric field treatment enhances the bactericidal action of Nisin against Bacillus cereus. Appl. Environ. Microbiol., 2000, 66: 428-430.
    [297] Pothakamury U.R., Barbosa-C(?)novas G.V., Swanson B.G. Magnetic-field inactivation of microorganisms and generation of biological changes. Food Technol., 1993, 47(12): 85-93
    [298] Presser K., Ross T., Ratkowsky D.A. Modeling the growth limits (growth/no growth) interface of Escherichia coli as a function of pH, lactic acid and temperature. Appl. Environ. Microbiol., 1998, 64:1733~1799
    [299] Purevdorj Dambadarjaa, Igura Nodyuki, Hayakawa Isao, et al. Inactivation of Escherichia coli by microwave induced low temperature argon plasma treatments. Journal of Food Engineering, 2002, 53 (4): 341~346
    [300] Qin B.L., Pothakamury U.R., Barbosa-Canovas G.V., et al. Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Crit. Rev. Food Sci. Nutr, 1996, 36: 603~627.
    [301] Qin hao Meng, Gerba Charles P. Comparative inactivation of enteric adenoviruses, poliovirus and eoliphages by ultraviolet irradiation. Water Research, 1996, 30(11): 2665~2668
    [302] Raso Javier, Alvarez Ignacio,Condrn Santiago,et al. Predicting inactivation of Salmonella senfienberg by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2000, 1(1): 21~29
    [303] Raso Javier, Calder6n Maria Luisa, G(?)ngora Marcela, et al. Inactivation of Mold Aseospores and Conidiospores Suspended in Fruit Juices by Pulsed Electric Fields. Lebensmittel-Wissensehaft und -Technologic, 1998, 31 (7-8): 668~672
    [304] Raso Javier, G(?)ngora-Nieto M. Marcela, Barbosa-C(?)novas Gustavo V., et al. Influence of several environmental factors on the initiation of germination and inactivation of Bacillus cereus by high hydrostatic pressure. International Journal of Food Microbiology, 1998, 44(1-2): 125~132
    [305] Ratkowski D. A., Lowry R. K., McMeekin T. A., et al. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol, 1983, 154: 1222~1226.
    [306] Ratkowsky D.A., Ross T. Modelling the bacterial growth/no growth interface. Lett. Appl. Microbiol, 20: 29~33.
    [307] Ratkowsky D.A., Ross T., Macario N., et al. Choosing probability distributions for modeling generation time variability. J. Appl. Baeteriol, 1996, 80: 131~137.
    [308] Reyns Kristien M.F.A., Soontjens Carine C.F., Comelis, Kris, et al. Kinetic analysis and modelling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 2000, 56(2-3):199~210
    [309] Ritz M., Freulet M., Orange N., et al. Effects of high hydrostatic pressure on membrane proteins of Salmonella typhimurium. International Journal of Food Microbiology, 2000, 55(1-3): 115~119
    [310] Ritz M., Jugiau F., Rama F., et al. Inactivation of Listeria monocytogenes by high hydrostatic
    
    pressure: effects and interactions of treatment variables studied by analysis of variance. Food Microbiology, 2000, 17(4): 375~382
    [311] Ritz M., Tholozan J.L., Federighi M., et al. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. International Journal of Food Microbiology, 2002, 79: 47~53.
    [312] Rosalba Lanciotti, Milena Sinigaglia, Fausto Gardini, et al. Growth/no growth interfaces of Bacillus cereus, Staphylococcus aureus and Salmonella enteritidis in model systems based on water activity, pH, temperature and ethanol concentration. Food Microbiology, 2001, 18: 659~668
    [313] Rose Joan B., Huffman Debra E., Gennaccaro Angela. Risk and control of waterborne cryptosporidiosis. FEMS Microbiology Reviews, 2002, 26(2): 113~123
    [314] Ruan Kangcheng, Lange Reinhard, Bee Nicole, et al. A Stable Partly Denatured State of Trypsin Induced by High Hydrostatic Pressure. Biochemical and Biophysical Research Communications, 1997, 239(1): 150~154
    [315] Rubow, U.; Carnfeldt, T.B. Redox/magnetic-field food sterilization. Trends in Food Science & Technology, 1997, 8(2): 61~62
    [316] Russell N.J., Evans R.I., Steeg P.F., et al. Membranes as a target for stress adaptation. Int. J. Food Microbiol., 1995, 28: 255-261.
    [317] Samuel Bernal, Estrella Mart(?) n Mazuelos, Mo'nica Cha'vez, et al. Evaluation of the New API Candida System for Identification of the Most Clinically Important Yeast Species. Diagn Microbiol Infect Dis, 1998, 32:217-221
    [318] San Martin M. Fernanda, Harte Federico M., Lelieveld Huub, et al. Inactivation effect of an 18-T pulsed magnetic field combined with other technologies on Escherichia coli. Innovative Food Science and Emerging Technologies, 2001, 2(4): 273~277
    [319] Sancho F(?)lix, Lambert Yann, Demazeau G(?)rard, et al. Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. Journal of Food Engineering, 1999, 39(3): 247~253
    [320] Schoenen, D. Role of disinfection in suppressing the spread of pathogens with drinking water: possibilities and limitations. Water Research, 2002, 36(15): 3874~3888
    [321] Schwarz Alexander, Yahyavi Bahrain, M(?)sche Marek, et al. Mathematical modelling for supporting scale-up of an anaerobic wastewater treatment in a fluidizod bed reactor. Water Science and Technology, 1996, 34(5-6): 501~508
    [322] Sellami Mohamed Habib, Hassen Abdennaceur, Sifaoui Moharned Salah. Modelling of UV radiation field inside a photoreactor designed for wastewater disinfection Experimental validation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 78(3-4): 269~287
    [323] Severin Blaine E, Roessler Peter E Resolving UV photometer outputs with modeled intensity profiles. Water Research, 1998, 32(5): 1718~1724
    [324] Shaban A. M., EI-Taweel G. E., All G. H. UV ability to inactivate microorganisms combined with factors affecting radiation. Water Science and Technology, 1997, 35(11-12): 107~112
    [325] Singer Philip C., Bilyk Katya. Enhanced coagulation using a magnetic ion exchange resin. Water Research, 2002, 36(16): 4009~4022
    [326] Sintzel Martina B., Schwach-Abdellaoui Khadija, M(?)ider Karsten, et al. Influence of irradiation sterilization on a semi-solid poly (ortho ester). International Journal of Pharmaceutics, 1998, 175(2): 165~176
    [327] Smelt J. R E M. Recent advances in the microbiology of high pressure processing. Trends in
    
    Food Science & Technology, 1998, 9(4): 152~158
    [328] Smelt J.P.P.M. Recent advances in the microbiology of high pressure processing, Trends Food Sci. Technol., 1998, 9:152-158
    [329] Smelt Jan P.P.M., Hellemons Johan C., Wouters Patrick C., et al. Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. International Journal of Food Microbiology, 2002, 78(1-2): 57~77
    [330] Soika Christian.e, Delinc(?)e Henry. Thermoluminescence Analysis for Detection of Irradiated Food—Luminescence Characteristics of Minerals for Different Types of Radiation and Radiation Doses. Lebensmittel-Wissenschaft und -Technologic, 2000, 33(6): 431~439
    [331] S(?)kmen M., et al. Disinfection of E. coli by the Ag-TiO2/UV system: lipidperoxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143: 241~244
    [332] Sommer R., Cabaj A., Schoenen D., et al. Comparison of three laboratory devices for UV-inactivation of microorganisms. Water Science and Technology, 1995, 31 (5-6): 147~156
    [333] Sommer R., Cabaj A.; Halder T. Microbieidal effect of reflected UV radiation in devices for water disinfection. Water Science and Technology, 1996, 34(7-8): 173~177
    [334] Srikaeo Khongsak, Hourigan A., James. The use of statistical process control (SPC) to enhance the validation of critical control points (CCPs) in shell egg washing. Food Control, 2002, 13(4-5): 263~273
    [335] Stewart Cynthia M., Dunne C. Patrick, Sikes Anthony, et al. Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters. Innovative Food Science and Emerging Technologies, 2000, 1(1): 49~56
    [336] Taiwo K.A., Angersbach A., Knorr D. Influence of high intensity electric field pulses and osmotic dehydration on the rehydration characteristics of apple slices at different temperatures. Journal of Food Engineering, 2002, 52(2): 185~192
    [337] Takehisa, Masaaki A. Versatile method of verification test for radiation sterilization. Radiation Physics and Chemistry, 1995, 46(2): 293~295
    [338] Takehisa, Masaaki. International standard (ISO) of radiation sterlization and issues in the sterilization dose setting. Radiation Physics and Chemistry, 1995, 46:1349~1352
    [339] Tchobanoglous George, Loge Frank, Darby Jeannie, et al. UV designs: comparison of probabilistic and deterministic design approaches. Water Science and Technology, 1996, 33(10-11): 251~260
    [340] Te Giffel MC, Beumer RR, Granum PE, et al. Isolation and characterization of Bacillus cereus from pasteurized milk in household refrigerators in the Netherlands. International Journal of Food Microbiology, 1997, 34:307~318
    [341] Tedjo Wahyuningsih, Taiwo Kehinde A., Eshtiaghi Mohammad N., et al. Comparison of pretreatment methods on water and solid diffusion kinetics of osmotically dehydrated mangos. Journal of Food Engineering, 2002,53(2): 133~142
    [342] Teissi(?) J., Eynard N., Vernhes M.C., et al. Recent bioteehnological developments of electropulsation. A prospective review Bioelectrochemistry, 2002, 55(1-2): 107~112
    [343] Thomas A. McMeekin, Kirsty Presser, David Ratkowsky, et al. Quantifying the hurdle concept by modeling the bacterial growth/no growth interface. International Journal of Food Microbiology, 2000, 55:93~98
    [344] Timson W.J., Short A.J. Resistance of microorganisms to hydrostatic pressure. Bioteehnol. Bioeng., 1965, 7: 139~159.
    
    
    [345] Tosa K., Hirata T. Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection. Water Research. 1999, 33(2): 361~366
    [346] Tsong T.Y. Electroporation of cell membranes, Biophys. J. 1991, 60:297~306
    [347] Tsuchiya K., Nakamura K., Okuno K., et al. Effect of homogeneous and inhomogeneous high magnetic fields on the growth ofE.coli. J Ferment Bioeng, 1996, 81(4): 343~346
    [348] Uemura Kunihiko, Isobe Seiichiro. Developing a new apparatus for inactivating Bacillus subtilis spore in orange juice with a high electric field AC under pressurized conditions. Journal of Food Engineering, 2003, 56(4): 325~329
    [349] Vaillant, Millan A., Dornier M., et al. Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. Journal of Food Engineering, 2001, 48: 83~90.
    [350] Van Gerwen S.J.C., Zwietering M.H. Growth and inactivation models to be used in quantitative risk assessments. J. Food Prot, 1998, 61: 1541~1549.
    [351] Van Loey A., Verachtert B., Hendrickx M. Effects of high electric field pulses on enzymes. Trends in Food Science and Technology, 2001, 12(3-4): 94-102
    [352] Van Nostran F.E., Reynolds R.J., Hedrick H.G. Effects of a high magnetic field at different osmotic pressures and temperatures on multiplication of Saccharomyces cerevisiae. Appl Microbiol., 1967, 15: 561~563.
    [353] Vandebriel R.J., Scott M.E, Wijnands J.A.H., et al. Effect of exposure in vivo to tributyltin oxide (TBTO) and ozone on cytokine mRNA levels. Pharmacological Research, 1995, 31(1): 6
    [354] Vladisavljevic G.T., Vukosavljevic P., Bukvic B. Permeate flux and fouling resistance in ultrafiltration of depectinized apple juice using ceramic membranes. Journal of Food Engineering 2003 (60): 241~247
    [355] von Gunten Urs, Driedger Amy, Gallard Herv(?), et al. By-products formation during drinking water disinfections: a tool to assess disinfection efficiency? Water Research, 2001, 35(8): 2095~2099
    [356] Votyakova T.V., Kaprelyants A.S., Kell D.B. Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase: the population effect. Appl. Environ. Microbiol. 1994, 60: 3284~3291
    [357] Walker G.C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev., 1984 (48): 60~93.
    [358] Wang Yifen, Wig Timothy D., Tang Juming, et al. Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 2003, 57(3): 257~268
    [359] Watanabe Ryozo, Kikuchi Motokazu, Ishikawa Shigemitsu, et al. Measurement of temperature-time profile of packed food under microwave heating. Previews of Heat and Mass Transfer, 1995, 21(6): 544
    [360] Wuytack Elke Y., Diels Ann M.J., Michiels Chris W. Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. International Journal of Food Microbiology, 2002, 77(3): 205~212
    [361] Wuytack, Elke Y.; Michiels, Chris W. A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH. International Journal of Food Microbiology, 2001, 64(3): 333~341
    [362] Xu Pei, Janex Marie-Laure, Savoye Philippe, et al. Wastewater disinfection by ozone: main parameters for process design. Water Research, 2002, 36(4): 1043~1055
    
    
    [363] Xu Peng, Peccia Jordan, Fabian Patricia, et al. Efficacy of ultraviolet germicidal irradiation of upper-room air in inac, tivating airborne bacterial spores and mycobacteria in full-scale studies. Atmospheric Environment, 2003, 37(3): 405~419
    [364] Yavuz H(?)lya, Celebi Serdar S. Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme and Microbial Technology, 2000, 26(1): 22~27
    [365] Yoshimura, N. Application of magnetic action for sterilization of food. Shokukin Kihatsu, 1989, 24(3): 46~48.
    [366] Zhang G.V., Barbosa-Canovas B.G. Swanson. Engineering aspects of pulsed electric field pasteurization. J. Food Eng., 1995, 25:261~281
    [367] Zhang, Qinghua, Barbosa-C(?)novas, Gustavo V., Swanson Barry G. Engineering Aspects of Pulsed Electric Field Pasteurization. Journal of Food Engineering, 1995, 25(2): 261~281
    [368] Zhivkov, Alexandar M. Orientation-deformation electro-optical effect in water suspension of purple membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209(2-3): 327~332
    [369] Zimmermann. Electrical breakdown, electropermeabilization and electrofusion, Rev. Physiol. Biochem. Pharmacol. 105 (1986) 175-256.
    [370] Zuckerman H., Krasik Ya. E., Felsteiner J. Inactivation of microorganisms using pulsed high-current underwater discharges. Innovative Food Science and Emerging Technologies, 2002, 3(4): 329~336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700