特种电源技术及其在污水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染的日趋严重,环境治理与保护已成为全球性关注的焦点。特种电源技术最近十几年在环境治理和保护的诸多领域中蓬勃发展,显示出了无比广阔的应用前景。本文着重研究了形变特种开关电源相关技术及其在污水处理中的应用。论文研究过程中采用理论建模、模型参数辨识、软件仿真和工程实验等多种研究方法,得出了一些有意义的研究成果。
     设计和制作了用于污水处理的形变开关电源样机。该样机能输出任意形状的脉冲电压波形。脉冲电压的幅值、脉冲频率和占空比等参数在较大范围内实现可编程数字调节。电源的全桥功率变换器采用基于电压瞬时值反馈的数字PID控制。在实现数字变频过程中提出了基于DSP的查表计算混合SPWM生成算法。
     论文对直流电源作用下电凝聚法处理污水负载特性进行了详细地分析,结合理论建模和最小二乘法参数辨识,得出了相关负载数学模型,并在不同的实验条件下对模型进行验证。在直流负载特性的基础上,进一步分析了脉冲电源作用下的负载特征。双电层电容效应是其一个重要的负载特性。提出采用双极性电极接法和增加电极数目可有效地减少负载的等效电容量。
     利用自行研制的形变电源,在不同的输出电压波形下进行了一系列印染污水处理实验。实验研究结果表明,与传统的直流电压波形相比,脉冲电压波形在取得满意的COD去除率和色度去除率的同时,节省可观的电耗和电极损耗,提高电能净化效率,降低污水处理的经济成本。其中周期换向方波不仅能节省电耗和电极消耗,还可以有效地防止电极钝化和电极表面结垢,出水水质稳定。因此,周期换向方波是一种具有工业实用价值的污水处理波形。脉冲电压波形主要影响废水处理的三个物理化学过程,即:电容效应、液相传质、吸附和脱吸附。
     论文提出将仿生学方法引入电力电子学研究。学习和借鉴大自然中各种生物结构和功能机理,在电力电子学研究过程中可以产生一些新的研究思路。基于冗余思想,提出了一种具有自修复功能多电平变换器拓扑。该电路拓扑中所有电容电压能实现自平衡,并且对开关管故障具有容错能力。借鉴人体等生物系统结构特点和控制策略,基于自律电力电子组块,提出了一种在硬件结构上采用分层递阶结构,在控制上采用自律分布策略的电力电子系统。这种电力电子系统具有诸多优点,代表了今后电力电子系统的一种极具前景的发展方向。
Today, the environmental protection has been drawing more and more attention on people in the world with the environmental pollution continually becoming worse. Particularly, the bright development of special power supply and its wide applications in environmental protection is valuable to pay more attention. The study on the technology of switching power supply and its application in wastewater treatment was investigated in the paper. The research was carried out in the methods such as theoretical modeling, identification of model parameters, software simulation and experiment validation. And some valuable research results were obtained.
    A switching power supply that can output any arbitrary voltage waveforms was designed and made for wastewater treatment. The output voltage parameters such as amplitude, frequency and duty ratio can be variable in a wide range with programmable digital adjustment. The full-bridge converter was controlled with the PID strategy based on the feedback of voltage output. The real-time SPWM generation algorithm using a combination of look-up and interpolation base on DSP was proposed for digital altering frequency.
    The load characteristics of wastewater treatment by electrocoagulation with DC power supply was investigated. The theoretical model describing the relation between electrolysis voltage and the other variables of an electrocoagulation process was established, the model parameters being determined using least squares identification. Moreover, the experiments were performed to validate the established model. The load characteristics of clearing wastewater by electrocoagulation with the pulse power supply was also analyzed. The double layer capacitor effect is significant. Using bipolar electrodes and adding electrolysis separators can reduce the value of the load capacitor.
    The wastwate treatment experiments were conducted using the diverse voltage ouput with the disngned special power supply. The experiments demonstrated that the removal of color and chemical oxygen demand (COD) and decolorization percentage is satisfying using pulse voltage waveform. Moreover, the applications of pulse voltage waveform in the wastewater result in less power and electrode consumption than DC voltage, which reduces the cost. The cyclic reversed-polarity square voltage not only saves power and electrode consumption but also preventes from electrode passivation and scaling on the surface of electrode resulting in steady quality of purified water. So the cyclic reversed-polarity square voltage could be applied in the
    
    
    
    wastewater treatment. The effects of pulse voltage waveform on physical and chemical water treatment processes include double layer capacitor effect, mass transport, absorption and deabsorption on the surface of electrode.
    The applications of bionics in power electronics were firstly proposed as a new research subject. Some inspiration or new ideas on the technology of power electronics can be drew from nature. Based on redundancy, a multilevel converter topology with self-repair ability was proposed. The multilevel topology has fault-tolerant ability in case of switch failures as well as self-voltage balancing ability without any additional control or neutral-point balancing circuit. Under the inspiration drew from hierarchical architecture and control strategy of the human biological system, a overview of bionic power electronic system characterized by hierarchical architecture and autonomous decentralized control was proposed, which was made up of autonomous power electronics building cells. The proposed power electronic system has a promising prospect and paves the way towards future Plug and Play power electronic system for with many significant advantages.
引文
[1] 李冬黎,曹丰文,张晋,何湘宁.脉冲功率技术在环境工程领域的应用[J].高电压技术,2002,28(10):35-38.
    [2] 张军,任云利,付保罗.臭氧发生器的研制及其在水处理中的应用条件[J].洛阳工学院学报,1999,20(2):85-87.
    [3] 葛自良,吴於人.工业臭氧发生器的技术改进[J].高电压技术,1999,25(3):66-67.
    [4] 戴建国.综述:无声放电臭氧发生器的研究进展[J].电子器件,1997,20(3):40-46.
    [5] 李胜利,李劲,王译文,等.用高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学,1996,16(1):73-76.
    [6] 李劲.王译文, 高秋华,等.放电等离子体处理技术中的放电问题[J].高电压技术,1997,23(2):7-12.
    [7] 李肚利,李劲,王译文等脉冲电晕放电对印染废水脱色效果的实验研究[J].环境科学,1996,17(1):13-15.
    [8] 孙明,赵小明,许德玄.水放电极雾化净水技术[J].高电压技术,2000,26(4):
    
    36-37.
    [9] Bing sun, et al. Optical study of active species produced by a pulsed steamer corona discharge in water[J]. Electrostatic, 1997, 39:189.
    [10] Young Sun Mok, In-Sik Nam. Positive pulsed corona discharge process for simultaneous removal of SO_2 and NO_x from iron-ore sintering flue gas[J]. Plasma Science, IEEE Transactions on, 1999, 27(4):1188-1196.
    [11] Puchkarev V, Kharlov A, Gundersen M, Roth G Application of pulsed corona discharge to diesel exhaust remediation[C]. Pulsed Power Conference, 1999. Digest of Technical Papers. 12th IEEE International, 27-30 June 1999,1: 511-514.
    [12] Pokryvailo A, Yankelevich Y, Bomshtein A, Shpitalnik R, Shviro E. Investigation of electrical parameters and chemical activity of high-power short pulsed corona discharge[C]. Pulsed Power Conference, 1999. Digest of Technical Papers. 12th IEEE International, 2: 1349-1355.
    [13] 胡红利,于敏,申忠如,等.几种基于高电压技术的燃煤热电厂烟气处理方法[J].高压电器,2002,38(1):31-38.
    [14] 魏培平,董丽敏,杨嘉祥.脉冲电晕等离子体脱硫脱氮研究[J].哈尔滨师范大学自然科学学报,2001,17(6):68-72.
    [15] Akiyama M, Minami K, Watanabe M, et al. De-NO_x by bidirectional pulse corona discharge[C]. Plasma Science, 2000, ICOPS. IEEE Conference Record-Abstracts. The 27th IEEE International Conference on, 4-7 June 2000: 107.
    [16] 赵君科,任先文,王保健,等.脉冲电晕等离子体法烟气脱硫脱硝技术进展[J].四川环境,2000,19(4),6-15.
    [17] Sun Y. Demonstration of flue gas cleaning by positive pulsed corona discharge process[C]. Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, 3-7 Oct. 1999, 1: 20-27.
    [18] 赵君科,夏连胜,任先文.陡前沿纳秒脉冲电源的研制[J].高电压技术,1999,25(2):44-46.
    [19] Bonifaci N, Denat A, Atrazhev V, Kim N. The pulsed corona discharge in liquid argon[C]. Industry Applications Conference, 2000, Conference Record of the 2000 IEEE, 8-12 Oct. 2000, 2:739-742.
    [20] 王海宁,阮金良,余汉民.电除尘器脉冲供电电源及其应用研究[J].电力环境保护,2001,17(1):13-15.
    [21] 张根保,甘克启.电除尘器脉冲供电电源的改进[J].中国电力,1997,30(4):41-43.
    [22] Qin B L, Barbosa-Canovas G V, Swanson B G, Pedrow P D, et al. A continuous treatment
    
    system for inactivating microorganisms with pulsed electric fields[C]. Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS'95, 2:1345-1352.
    [23] 吴岗,郑成,宁正祥.高压脉冲电场灭菌机理[J].食品科学,1998,19(4):7-9.
    [24] Bruhn R E, Pedrow P D, Olsen R G, et al. Electrical environment surrounding microbes exposed to pulsed electric fields[J]. Dielectrics and Electrical Insulation, IEEE Transactions on, see also Electrical Insulation, IEEE Transactions on, 4(6): 806-812.
    [25] Sato M, Clements S. Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water[J]. IEEE Transactions on Industry Applications, 1996, 32(1): 106.
    [26] Van Heesch E J M, Pemen A J M. Huijbrechts P A H J, et al. A fast pulsed power source applied to treatment of conducting liquids and air[J]. Plasma Science, IEEE Transactions on, 2001, 28(1):137-143.
    [27] Gaudreau M P. Hawkey T, Petry J, Kempkes M. A pulsed power system for food sterilization[C]. Pulsed Power Plasma Science, 2001. IEEE Conference Record-Abstracts, 17-22 June, 2001: 323.
    [28] Qin B L, Swanson G V, Pedrow B G, et al. Inactivating microorganisms using a pulsed electric field continuous treatment system[J]. Industry Applications, IEEE Transactions on, 1998, 34(1): 43-50.
    [29] Mcdonald C J. Effects of pulsed electric fields on microorganisms in orange juice using electric fields strengths of 30 Kv/cm[J]. Journal of Food Science: An Official Publication of the Institute of Food Technologists, 2000, 65(6): 984.
    [30] Yin Y G, Zhang Q H. Pulsed Electric Field Preservation Technology[J]. Transactions of the CSAE, 1995, 41(4): 125-132.
    [31] Jayaram S H. Sterilization of liquid foods by pulsed electric fields[C]. IEEE Electrical Insulation Magazine, 2000, 16(6): 17-25.
    [32] 郭烈恩,胡云堂,李华栋.高压脉冲电场在食品杀菌中的应用[J].南昌大学学报(工科版),2001,23(4):19-24.
    [33] Bruhn R E, Pedrow P D, Olsen R G, et al. Heat conduction in microbes exposed to pulsed electric fields[J]. Dielectrics and Electrical Insulation, IEEE Transactions on, 1998, 5(6):878-885.
    [34] Qin B L, Chang E J, Voarbosa-Canovas G. Inactivation of microorganisms by pulsed electric fields of different voltage waveforms[J]. Dielectrics and Electrical Insulation, IEEE Transactions on, 1998, 1 : 947-957.
    [35] Bruhn R E, Pedrow P D, Olsen R.G, et al. Space charge near microbes during pulsed electric field pasteurization of liquid foods[C]. Electrical Insulation, 1996, Conference Record of the
    
    1996, IEEE International Symposium on, 2:858-861.
    [36] Feyamkondan S, Jaysz D S. Pulsed electric field processing of foods: A Reviews [J]. Journal of Food Protection, 1999, 62(9): 1088.
    [37] Lebovks N I. Simulation and experimental investigation of food material breakage using pulsed electric field treatment[J]. Journal of Food Engineering, 2000, 44(4): 213-223
    [38] 杨岳平.电凝聚—电气浮废水处理实验研究及装置设计[D].浙江杭州:浙江大学,1999:58-59.
    [39] Yousuf M, Molah A, Robert Schennach. Electrocoagulation (EC)—science and applications[J]. J. of Hazardous Materials B84, 2001: 29-41.
    [40] 陈繁忠,李穗中.废水净化的电化学进展[J].重庆环境科学,1997,18(6):16-21.
    [41] 邓皓,王蓉妙,肖遥.钻井废水电凝聚浮选处理研究[J].水处理技术,1997,23(4):245-248.
    [42] Ahmet G, Mehmet Y, Cetin D. Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables[J]. Waste Management, 2002, 22:491-449.
    [43] Churchley J H. Removal of dyewaste color from sewage effluent the use of a full-scacle ozone plant. Wat. Sci. Tech., 1994, 24: 789-790.
    [44] Kobya Mehmet, Can Orhan Taner, Bayramoglu Mahrnut. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes[J]. Journal of Harzardous Materials, 2003, 100(1-3): 163-178.
    [45] Lin S H, Peng C F. Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge[J]. Wat. Res., 1996, 30: 587-592.
    [46] Lin S H, Peng C F. Treatment of textile wastewater by electrochemical method[J]. Wat. Res.,1994, 28: 227-282.
    [47] Lin S H, Shye C T, Sun M C. Saline wastewater treatment by electrochemical method[J]. Wat. Res., 1998, 32: 1059-1066.
    [48] Morais L C, Freitas O M, Goncalves E P. Reactive dyes removal from wastewaters by adsorption on eucalyptus bard: variables that define the process[J]. Wat. Res, 1999, 33:979-988.
    [49] Oxsping D A, Smyth W F, Marchant R. Comparison of reversed-polarity capillary electrophoresis and adsorptive stripping voltammetry for the detection and determination of reactive textile dyes[J]. Analyst 120, 1995: 1995-2000.
    [50] Pouet M F, Grasmick A. Urban wastewater treatment by electrocoagulation and flotation[J]. War. Sci. Tech., 1995, 31: 275-283.
    [51] Daneshvar N, Ashassi-Sorkhabi H, Tizpar A. Decolorzation of orange Ⅱ by electrocoagulation method[J]. Separation and Purification Technology, 2003, 31:153-162.
    
    
    [52] 季民,张宏伟,杨秀文.染色废水混凝脱色机理的研究[J].中国给水排水,1992,8(5):4-8.
    [53] 陈永明,王黎明,关志成.电解染料废水中电极配置的研究[J].湖北民族学院学报(自然科学版)[J],2002,20(3):43-45.
    [54] 李长海,王元瑞,赵丽丽.导流电凝聚法印染废水脱色电解槽结构设计[J].吉林工学院学报,1998,19(3):21-25.
    [55] Kim Tak-Hyun, Park Chulhwan, Shin Eung-Bai, et al. Decolorization of disperse and reactive dyes by continuous electrocoagulation process[J]. Desalination, 2002, 150(2),165-175.
    [56] Mameri N, Yeddou A R, Lounici H. Dufluoridation of septentrional sahara water of north Africa by electrocoagulation process using bipolar aluminum electrodes[J]. War. Res., 1998,32(5): 1604-1612.
    [57] Lynch C F. Relation of fluorine in drinking waters to other drinking waters parameters[J]. Arch. Environ. Health, 1987, 42: 5-13.
    [58] Ming L, Sunrui Y, Zhangun H. Elimination of excess fluoride in potable water with coarcervation by electrolysis using aluminum anode[J]. Fluoride, 1983, 20(2): 54-63.
    [59] Prisyazhnyuk B L. Electrolytic defiuorination of waste water and natural water using alternating current[J]. Khim. Prom., 1992, 24(9): 520-521.
    [60] Saha S. Treatment of aqueous effluent for fluoride removal[J]. Wat. Res., 1993, 27(8):1347-1350.
    [61] 胡勇有,陈兰英.电凝聚法去除地热水中氟的研究[J].环境污染与防治,1997,19(4):14-15.
    [62] 王蓉沙,邓皓,肖遥,等.电絮凝法处理油田污水[J].环境科学实验研究工作,2000,12(4):20-30.
    [63] 邓皓,王蓉沙,肖遥,魏平方.钻井废水电絮凝浮选处理[J].水处理技术,1997,23(4):245-248.
    [64] Pouet M F, Grasmick A G. Urban wastewater treatment by electrocoagulation and flotation[J]. War. Sci. Tech., 1995, 31: 275-283.
    [65] Xueming Chen, Guohua Chen, Po Lock Yue. Separation of pollutants from restaurant wastewater by electrocoagulation[J]. Separation and Purification Technology, 2000, 19:65-76.
    [66] 黄纵雷.功率脉冲电源的优化设计—在电凝聚处理污水中的应用[D].杭州:浙江大学,1997.
    [67] 丁忠浩,卢寿慈.电凝聚法去除味精废水中悬浮物的机理及数学模型[J].中国粉体技术,2000,6:231-234.
    [68] Savas Koparal A. Removal of nitrate from water by electroreduction and
    
    electrocoagulation[J]. Jornal of Hazadous Materials B89, 2002: 83-94.
    [69] 王三反,王文琴,刘义安.电凝聚除氟条件的研究[J].水处理技术,1990,16(4),298-304.
    [70] Liu G, Wu t, Zhao J. Photoassisted degradation o dye pollutants 8 Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO_2 dispersions[J]. Environ Sci. Tech., 1999, 33: 2081-2087.
    [71] 李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997:74-75.
    [72] Solozhenko E G, Soboleva N M, Goncharuk V V. Decolorization of azodye solutions by Fenton's oxidation[J]. Water Res., 1995, 29(9): 2206-2210.
    [73] Jia J, Yang J, Liao J. Treatment of dyeing wastewater with ACF electrodes[J]. Water Res., 1999, 33(3): 881-884.
    [74] Alien S J, Khader K Y H, Bino M. Electrooxidation of dyestuffs in waste waters[J]. J. Chem. Tech. Biotechnol., 1995, 62: 111-117.
    [75] Halliday P J, Beszedits S. Color removal from textile mill wastewater[J]. Can. Textile J., 1986, 103: 78-74.
    [76] Kuo W G. Decolorization dye wastewater with Fenton's reagent. Water Res., 1992, 26(7), 881-886.
    [77] 熊方文,余蜀灵.脉冲电解处理工业污水技术[J].工业水处理,1990,10(2):10-16.
    [78] 詹伯君.植绒印花废水脉冲电解处理[J].污染防治技术,1997,10(3):167-172.
    [79] 詹伯君.脉冲电解电参数分析和电源试验设计[J].机电工程,1997,(4):38-39.
    [80] 黄清文.高压脉冲在污水处理中的应用[J].电子世界,1994,(1):10-11.
    [81] 贺雷鸣,张新胜,陈银生.脉冲电解处理废水的研究进展[J].河南化工,2003,(5):4-6.
    [82] 高良进,程岩法.高压脉冲电凝聚上浮法处理印染废水[J].环境污染与防治,1992,14(5):10-13.
    [83] 贺雷鸣,张新胜,陈银生.高频脉冲电解法降低香兰素废水COD[J].精细化工,2002,19(12):694-696.
    [84] Long W P. Uniflox EM dash a machine employing the method of electroflocculation for enhanced soap separation[C]. TAPPI Alkaline Pulping Conference Preprint Nov. 7-10, 1977, 347-354.
    [85] Svetashova, Dobrevskij. Effect of electric current pulse shape on efficiency of electrochemical treatment of waters containing petroleum products[J]. Khimiya I Technologiya Vody, 1992: 856-859.
    [86] Dikusar Zajdman. Anodic dissolution during electrochemical water purification from heavy metal ions[J]. Electronnyaya Obrabotka Materivalovn, 1993:27-31.
    [87] Labyak O V, Kostin N A. Extraction of nickel from rinsing water from galvanic plants using
    
    pulse elecrolysis[J]. Khimiya Ⅰ Technologiya Vody, 1996: 392-399.
    [88] Goncharov A. Activated coagulation of wastewater effluents[J]. Kozh. Obuvn. Prom-st(2),2000: 35-29.
    [89] 张立.脉冲镀和脉冲焊电源[M].北京:机械工业出版社,1988.
    [90] 詹伯君,王化能.电解净水机GTR脉冲电源的研制[J].电力电子技术,1995,(1):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700