高压脉冲电场杀菌动力学及处理室改进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从高压脉冲电场对微生物的杀灭效果入手,通过建立高压脉冲电场强度和处理时间与微生物相对存活率之间的一级动力学方程,从而获得微生物的临界场强E_C和模型的回归系数k;将PEF杀菌技术应用于杀灭橙汁中大肠杆菌O157:H7和致病性沙门氏菌,并对比PEF杀菌与热力杀菌对橙汁品质的影响;在此基础上,通过Laplace方程研究处理器中电场分布,开展PEF处理室改进及其微生物杀灭效果研究。所开展的研究简介如下:
     1.本论文所使用的高压脉冲电场杀菌试验装置,主要由高压脉冲发生系统、同芯连续式处理室(co-field chamber)、蠕动泵、温度探头、温度记录仪、物料贮罐和冷却部分构成,其主要参数如下:电压范围0~15 kV;脉冲宽度5~20μs;连续处理室,流速范围5~100 mL/min;脉冲周期10~1KHz;单极脉冲;波型为方波。
     2.使用内径2mm电极处理室,流量u=10mL/min,脉冲电场频率为32Hz,脉冲宽度τ=17μs,脉冲电场处理的脉冲数为80个。高压脉冲电场处理啤酒酵母、青霉、大肠杆菌和金黄色葡萄球菌,脉冲电场强度分别为2.5 kV/cm、5kV/cm、10kV/cm、12.5kV/cm、15kV/cm、17.5kV/cm以及20 kV/cm,研究高压脉冲电场强度对啤酒酵母、金黄色葡萄球菌、青霉和大肠杆菌杀菌效果的影响,其结果如下:
     (1)随着电场强度和脉冲数增加,高压脉冲电场对微生物的杀灭效果提高。
     (2)不同对象菌对脉冲电场的承受力不同,革兰氏阴性菌的杀灭效果比阳性菌好,各菌种对高压脉冲电场的承受力从大到小如下:霉菌、金黄色葡萄球菌、大肠杆菌、啤酒酵母。
     (3)以大肠杆菌为指标菌,研究不同的介质对高压脉冲电场杀菌效果的影响,结果表明:酸性介质条件有利于杀灭细菌。
     (4)当样液温度分别是25℃、30℃、和35℃时,温度协同高压脉冲电场灭菌的处理效果不是很显著。
     (5)对象菌所处的生长周期也对杀菌效果也有一定的影响,处于延滞生长期的菌体比处于稳定期和对数生长期的菌体对电场更为敏感。
     3.通过建立高压脉冲电场强度和啤酒酵母、大肠杆菌和青霉存活率关系的数学模型,得到电场强度对微生物的致死作用符合一个分段函数N/N_0=1 E大肠杆菌E_C=1.8085kV/cm>啤酒酵母E_C=0.3339kV/cm,青霉k=0.1139<大肠杆菌k=0.1629<啤酒酵母k=0.4339,临界场强表示微生物对脉冲电场的耐受能力;k是微生物对高压脉冲电场敏感性参数,其值越大,表明微生物的对电场越敏感。k与微生物的种类和介质有关,在本试验中,介质均为无菌水,因此,k的大小与微生物种类有关,更进一步说,是和微生物的大小和细胞壁的组成有关。
     4.通过微生物存活率与处理时间关系的数学模型S=k_1×e~(-k_2t),可知各种微生物对处理时间的耐受程度不一样,青霉k2=0.0036<大肠杆菌k2=0.0142<酵母k2=0.0153,k2是微生物对高压脉冲电场敏感性参数,其值越大,表明微生物的对电场越敏感。三种菌对高压脉冲电场处理时间的耐受能力为:青霉>大肠杆菌>啤酒酵母。
     5.在室温下,使用内径为3mm的处理室,电极距离为4mm,电场强度为12.5kV/cm,脉冲频率f=128Hz,脉冲宽度脉冲宽度τ=17μs,脉冲数为20个。研究此条件对大肠杆菌O157:H7和致病性沙门氏菌的杀菌效果,结果表明:高压脉冲电场可以有效地杀灭橙汁中的大肠杆菌O157:H7,其菌落数下降了2.12个对数值,而致病性沙门氏菌菌落数下降了4.00个对数值,但是该数值距离商业无菌还有差距,主要是由于在本试验中,高压脉冲电场强度有限,从另一方面来说,橙汁在常规预处理过程中不易产生10~2以上的致病菌,这点在我们对橙汁原汁进行检测时得到了验证(未发现致病菌),因此高压脉冲电场是可以用于杀灭酸性介质中的致病菌的。
     6.在5.所述的高压脉冲电场条件下,可以有效地杀灭鲜橙汁中的微生物,但杀灭效果不及热力杀菌,这是由于在本试验中,受到设备的限制,所采用的电场强度还不够高,仅12.5kV/cm,贮藏120d后,细菌菌落总数和酵母、霉菌菌落总数符合国家标准,这可能是因为鲜橙汁pH值偏低4.0左右,结合低温贮藏可以有效抑制部分微生物的生长繁殖。对比高压脉冲电场杀菌技术和热力杀菌技术对鲜橙汁可溶性固形物、总酸和Vc,结果表明无论是PEF杀菌还是热杀菌对鲜橙汁中的可溶性固形物和总酸影响不大,并且在贮藏过程中这两个指标也没有明显的变化;鲜榨橙汁在经过热杀菌后Vc含量降低7.7%,而PEF杀菌处理鲜橙汁中Vc降低5%,在贮藏120d后,从鲜橙原汁的Vc含量下降最快,其次是热杀菌处理鲜橙汁,最好的是PEF杀菌处理鲜橙汁。可见,PEF杀菌处理与热杀菌处理相比,可有效抑制Vc在贮藏期间的损失。
     7.应用有限差分法解Laplace方程研究处理室中电场分布,改进连续式同芯处理室。当流量u=30mL/min,脉冲电场频率为128Hz,脉冲宽度τ=17μs,脉冲处理时间为3.92ms。高压脉冲电场处理啤酒酵母、青霉和大肠杆菌,当电场强度为2.5kV/cm、5.0kV/cm、7.5kV/cm、10.0kV/cm、12.5kV/cm和15.0kV/cm时,对比研究改进前处理室(内径18.00mm,电极间距4.00mm)和改进后处理室(内径18.00mm,内有4对厚度为1.00mm的不锈钢导体,电极间距4.00mm)在相同的高压脉冲电场条件下,改进后处理室的杀菌效果明显由于改进前的,当电场强度达到15.0kV/cm时,改进后处理室中啤酒酵母、大肠杆菌和青霉菌的相对存活率仅为0.00、0.01和0.05,而未改进的处理室则高达0.30、0.77和0.76。
Based on the killing effect of Pulsed Electric Field(PEF) on microorganisms, the first order kinetics between PEF strength and treatment time and relative survival rate of microorganisms respectively were established with the critical PEF strength Ec and regression coefficients k . Then PEF was applied on killing Escherichia coli O157:H7 and pathogenic salmonella and the effects of PEF and thermal sterilization on orange juice quality were studied. At last, the Laplace equation was used to understand the distribution of electrical field strength in the treatment chamber of a pulse electric field process and improve the co-field chamber. Their effects on PEF sterilization were also investigated. The brief introduction of whole research was as follow:
     1. The pilot device of PEF was made up of high voltage pulse generator, co-field chamber, peristaltic pump, temperature sensors, temperature recorder, material tank and cooling system. The major parameters of PEF device were as follow: voltage from 0 to 15 kV; pulse duration from 5 to 20μs; flow rate from 5 to 100 mL/min; pulse frequency from 10 to 1000Hz; monopolar pulse and square waveform.
     2. The co-field chamber with inner diameter 2.00mm, and the PEF system with pulse frequency 32Hz, pulse duration 17μs was used in the research. Saccharomyces cerevisiae CICC 1001, Penicillium citrinum CICC4010 and Escherichia coli CGMCC1.90 were treated by PEF strength 2.5kV/cm, 5.0kV/cm, 7.5kV/cm, 10.0kV/cm, 12.5kV/cm and 15.0kV/cm respectively. The results were as follow:
     (1) With the strength and pulse number increasing, the killing effect of PEF was improved.
     (2) Different target microorganisms had different tolerance to PEF. The killing effect of Gram-negative Bacteria was better than Gram-positive Bacteria. The tolerance to PEF ranged from big to small as follow: Penicillium citrinum, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae.
     (3) The influence of different mediums on PEF kill effect on Escherichia coli CGMCC1.90 was investigated. The result showed that acid medium could benefit for killing bacteria.
     (4) When the medium temperatures were 25℃, 30℃and 35℃respectively, the effect of temperature combined with PEF on sterilization was not significant.
     (5) The growth period of target microorganism would also influence the killing effect. The microorganism staying in arrearage growth period was more sensitive to PEF than that in stationary or logarithmic growth period.
     3. By establishing the mathematical model of PEF strength and the survival rate of Saccharomyces cerevisiae, Penicillium citrinum and Escherichia coli, the effect of PEF strength on sterilization could be described as a piecewise functionIf the strength (E) was below a critical value (E_c),no lethal effect can be exerted to the microorganisms, while E was above E_c, there would be lethal effect. The fitting curve of lethal effect could be gained after series of mathematical operation. The critical field strength E_c was 1.9893kV/cm, 1.8085kV/cm and 0.3339kV/cm for P. citrinum CICC 4010, E. coli CGMCC1.90, and S. cerevisiae CICC1001, respectively. And the sensitivity coefficient k was 0.1139, 0.1629 and 0.4339 for P. citrinum CICC 4010, E. coli CGMCC1.90, and S. cerevisiae CICC 1001, respectively. E_c represented the tolerance to PEE and a large k value would suggest that the microorganism be more sensitive to the change in the field strength. In this research, with the same medium, k was relative to the kind of microorganism, furthermore to the size and the construction of microorganism.
     4. As the mathematical model of treatment time and survival rate could be describedas s = k_1×e~(-k_2t) , the results showed that the tolerance of microorganisms to thetreatment time was different. The sensitive parameter k2 was 0.0036, 0.0142 and 0.0153 for P. citrinum CICC 4010, E. coli CGMCC1.90, and S. cerevisiae CICC 1001, respectively. A large k_2 value would suggest that the microorganism be more sensitive to PEF.
     5. Under the room temperature, the co-field chamber with inner diameter 3mm and the distance between two electrodes 4.00mm and the PEF system with strength 12.5kV/cm, pulse frequency 128Hz, pulse duration 17μs, pulse number 20 was adopted for experiment. The killing effect of PEF on Escherichia coli O157:H7 and pathogenic salmonella was studied. The result showed that Escherichia coli O157:H7 decreased for 2.12 log-value while pathogenic salmonella went down for 4.00 log-value. However it's a long way for commercial sterilization because in our experiment the strength and treatment was limited. In another point, it's hard to get more than 10~2 pathogenic bacteria in orange juice which was verified in test. In the matter of fact, PEF could be used to kill the pathogenic bacteria in acid medium.
     6. PEF can effectively kill microorganisms in the fresh orange juice under conditions of 5, whose effect was inferior to the thermal sterilization. Restricted by the equipment, the electric filed strength was only 12.5kV/cm in this experiment, which was not intense enough. After 120 days storage, the total bacterial, yeast and mold colonies conformed to the national standards. That probably because comparatively low pH value about 4.0 combined with low temperature preservation can effectively inhibited the growth of some microorganisms. Compared the effect on soluble solid content, total acid and Vc content in fresh orange juice by PEF treatment with by thermal sterilization, the result showed that either PEF or thermal sterilization had little effect on the changes the soluble solid content and total acid, and the two indexes didn't change much during the storage; but Vc content decreased to 7.7% after thermal sterilization compared to 5% after PEF treatment, Vc content decreased fastest in untreated group followed by thermal sterilization, and PEF group was the slowest after 120 days storage. It is concluded that PEF treatment could effectively reduce Vc content losses compared to thermal sterilization during storage.
     7. Laplace equation solved by finite difference method was adopted to investigate the electric fields distribution in co-field chamber. The flow rate was 30mL/min, the pulse electric frequency was 128Hz, the square pulse duration time was 17μs and the treatment time was 3.92 ms. Saccharomyces cerevisiae CICC1001, Penicillium citrinum CICC4010 and Escherichia coli CGMCC1.90 were treated by PEF strength 2.5kV/cm, 5.0kV/cm, 7.5kV/cm, 10.0kV/cm, 12.5kV/cmand 15.0kV/cm respectively. And effects of unimproved (the inner diameter was 18.0mm and the distance between two electrodes was 4mm) and improved (the inner diameter was 18.0mm, the distance between two electrodes was 4mm, and 4 pairs of stainless steel conductors with thickness of 1 mm were included) chamber on relative survival rate were studied. Under the same PEF conditions the inactivation effect of improved chamber was much better than the conventional chamber design. When the electric filed strength was up to15.0kV/cm, relative survival rates in the improved chamber were 0.00, 0.0 and 0.05, respectively, for Saccharomyces cerevisiae CICC 1001, Escherichia coli CGMCC1.90 and Penicillium citrinum CICC4010, compared to the rates of 0.30, 0.77 and 0.76 in the unimproved chamber.
引文
[1] Abee,T., Wouters,J.A.. Microbial stress response in minimal processing[J]. International Journal of Food Microbiology, 1999(50): 65-71
    [2] Alvarez,I, Raso, J. et al. Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields[J]. J.Innovative Food Science & Emerging Technologies,2003,11 (4): 195-202
    [3] Alvarez,I, Raso,J.,Palop,A., et al. Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields[J].Int.Food Microbiol,2000(55):43-146
    [4] Amiali M, Ngadi M O, Smith J P, et al. Raghavan.Synergistic effect of temperature and pulsed electric fields on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk [J].Journal of Food Engineering,2007,79(2):689-694
    [5] Avanish. Parmar, Paul E. Gottschall, Martin Muschol. Pre-assembled clusters distort crystal nucleation kinetics in supersaturated lysozyme solutions[J].Biophysical Chemistry,2007(129):224-234
    [6] Ayhan Z , Yeom H W, Zhang Q H et al. Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials [J] Journal of Agricultural an Food Chemistry,2001,49(2):669-674
    [7] B. Sen Gupta, F. Masterson,T. R. A. Magee. Inactivation of E. coli K12 in apple juice by high voltage pulsed electric field[J].Eur Food Res Technol,2003(217):434-437
    [8] Bai-Lin Qin, Fu-Jung Chang, Gustavo.V, etal.Nonthermal Inactivation of Saccharomyces cerevisiae Apple Juice Using Pulsed Electric Fields[J].ebensm TechnoL,1995(28):564-568
    [9] Barbosa-Canovas G V, Pothakamury U R, Palou E, et al. Nonthermal Preservation of foods [M]. New York:MarceI Derkker Inc.,I998:73-111
    [10] Barbosa-Canovas, G V Pierson, Zhang,Q H, etal. Kinetics of microbial inactivation for alternative food processing technologies[J]. J. Food Sci.,2001,34(4):65-77
    [11] Bart Roodenburga,Johan Morrena,H.E. Bergb, etal.Metal release in a stainless steel pulsed electric field (PEF) system Part II. The treatment of orange juice; related to legislation and treatment chamber lifetime[J].Innovative Food Science and Emerging Technologies, 2005(6):337-345
    [12] Boyton B B, Sims C A, Sargen S, et al. Quality and stability of precut mangos and carambolas subjected to high pressure processing[J] J of Food Sci, 2002(67):409-415
    [13] C.Corte's.M.J., Esteve, D. Rodrigo, etal. Changes of colour and carotenoids contents during high intensity pulsed electric field treatment in orange juices[J]. Food and Chemical Toxicology,2006(44): 1932-1939
    [14] Corwin H,Shellhammer T H. Combined carbon dioxide and high pressure inactivation of pectin medthylesterase,polyphenol oxidase,Lactobacillus plantarum and Escherichia coli[J].J of Food Sci,2002(2):697-701
    [15] D.Garcia,N. Gomez,P. Manas, etal. Pagan.Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated[J].International Journal of Food Microbiology,2007(113):219-227
    [16] D.Knorrt,B. I.O.Ade-Omowaye,V. Heinz. Nutritional improvement of plant foods by non-thermal processing[J] .Proceedings of the Nutrition Society,2001(61):311-318
    [17] D.R. Sepulveda, J.A. Guerrero,G.V. Barbosa-Ca'novas. Influence of electric current density on the bactericidal effectiveness of pulsed electric field treatments [J]. Journal of Food Engineering,2006(27):656-663
    [18] Eshtiaghi M N, Knorr D.. High electric field pulse pretreatment: potential for sugar beet processing[J]. Journal of Food Engineering,2002(52):265-272
    [19] Ewelina, Tadeusz Trziszka. Evaluation of the use of pulsed electrical field as a factor with antimicrobial activity [J] Journal of Food Engineering,2007(78):1320-1325
    [20] F.Noci,J. Riener,M. Walkling-Ribeiro,D.A. Cronin,D.J. Morgan,J.G. Lyng.Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple Juice[J] Journal of Food Engineering,2008(58):141-146
    [21] Fincan M., DeVito F, Dejmek P. Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment[J]. Journal of Food Engineering,2004(64):381-388
    [22] G. Dons,G. Ferrari,G. Pataro.Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: The effect of electric field unevenness and initial cell concentration[J] Journal of Food Engineering,2007(78):784-792
    [23] G.A. Evrendilek,Q.H. Zhang. Richter.Application of Pulsed Electric Fields to Skim Milk inoculated with Staphylococcus aureus[J], Biosystems Engineering,2004,87(2):137-144
    [24] Garcia D, Gomez N, Raso J, etal. Bacterial resistance after pulsed electric fields depending on the treatment medium pH[J]. Innovative Food Science and Emerging Technologies, 2005(6):388-395
    [25] Gomez N, Gareia D, Alvarez I, etal. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of diferent pH[J]. International Journal of Food Microbiology, 2005(103):199-206
    [26] Gomez N, Gareia D, Alvarez I, Raso J, etal. A model describing the kinetics of inactivation of Lactoba cillus plantarum in a buffer system of different pH and in orange and apple juice[J]. Food Engineering,2005(70):7-14
    [27] Grahl T and Markl H. Killing of microorganisms by pulsed electric fields[J]. Applied Microbiology and Biotechnology,1996,45:148-157
    [28] Gustavo V, Barbosa-Canovas, M Marcela Gongora-Nieto, et al. Preservation of foods with pulsed electric fields [M]. Academic Press, 1999:1-193
    [29] H. E. Zakhem, J.L. Lanoiselle, N.I. Lebovka, etal.The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields[J].Colloids and Surfaces B:Biointerfaces,2006,47(2):189-197
    [30] Hayakawa, I., Kanna, T., Yoshiyama, K., etal. Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores[J]. J. Food Sci, 1994 (59):164-167
    [31] Hong-Joo Lee,Seung-Hyeon Moon,Shih-Perng Tsai. Effects of pulsed electric fields on membrane fouling inelectrodialysis of NaCl solution containing humate[J].Separation and Purification Technology,2002(27):89-95
    [32] Hulsheger H, Potel J, Niemann E G. Killing of bacteria with electric pulses of high field strength[J]. Radiation and Environmental Biophysics, 1981(20):53-65
    [33] Hulsheger, H., Pottel, J., &Niemann, E. G. Eletric field effects on bacteria and yeast cells[J]. Radiation and Environmental Biophysics, 1983(22), 149-162
    [34] Humberto M, Olga M B, Qin B L, et al. Nonthermal food preservation:pulsed electric fields[J]. Trend in food science & technology, 1997(8): 151-153
    [35] I. A'lvarez, R. Paga'n, S. Condo'n, J. Raso. The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields[J].International Journal of Food Microbiology,2003(17):87-95
    [36] Ignacio A'lvarez, Javier Raso, Alfredo Palopl,etal. Sala.Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields[J].International Journal of Food Microbiology,2000(55): 143-146
    [37] Iurie Praporscic,Veaceslav Muravetchi, Eugene Vorobiev. Constant Rate Expressing of Juice from Biological Tissue Enhanced by Pulsed Electric Field[J].Drying Technology,2002,22(10):2395-2408
    [38] Jayaram. Kinetics of sterilization of Lactobacillus brevil cells by the application of High voltage pulses[J]. Biotechnology and Bioengineering, 1992,4(12):1412
    [39] Jin T Z, Zhang Q H. Pulsed electric field inactivation of microorganisms and preservation of quality of cranberry juice [J].Food Proc Pres,1999,23:481-497
    [40] Johan Morren, Bart Roodenburg, Sjoerd W.H. de Haan. Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers[J].Innovative Food Science and Emerging Technologies,2003(4):285-295
    [41] John H. Mathews, Kurtis D. Fink. Numerical methods using Matlab[M]. Beijing: Electronics Industry Press,2002:406-412
    [42] Jonathan Mosqueda-Melgar,Rosa M, etal. Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields[J].International Journal of Food Microbiology,2007(117): 192-200
    [43] Joseph Dunn. Pulsed-light Treatment of Food and Packaging. Food Technology, 1995,49(9):95-98
    [44] Joseph H. Hulse.Biotechnologies:past history,present state and future prospects[J].Trends in Food Science & Technology,2004(15):3-18
    [45] Jozef Korolczuk,Jose' Rippoll Mc Keag,Jose' Carballeira Fernandez. Effect of pulsed electric field processing parameters on Salmonella enteritidis inactivation[J] Journal of Food Engineering,2005(12): 1-13
    [46] Knbbers B.Master A M, Kooets M. Quality and storage-stability of high-pressure Preserved green beans[J].J of Food Engineering,2002(54): 27-33
    [47] Knorr D. Impact of non- thermal processing on plant emtabolites [J]. Journal of Food Engineering,2003(56):131-134
    [48] L. Schrive, A. Grasmick, S. Moussiere, etal. Pulsed electric field treatment of Saccharomyces cerevisiae suspensions: A mechanistic approach coupling energy transfer, mass transfer and hydrodynamics[J].Biochemical Engineering ,2006(27):212-224
    [49] Leistner,L. Further developments in the utilization of hurdle technology for food preservation. Journal of Food Engineering,1994,22(1):421-432
    [50] Limaye , M. S., Coakley, W. T.. Clarification of small volume microbial suspensions in an ultrasonic standing wave[J]. Journal of Applied Microbiology, 1998,84 (6):1035-1042
    [51] M. Amiali, M O Ngadi, J PSmit, etal. Raghavan.Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk[J].Journal of Food Engineering,2007,79(2):689-694
    [52] Martin Lindgrena, Kristina Aronssona, Sheila Galtb,etal. Simulation of the temperature increase in pulsed electric field (PEF) continuous flow treatment chambers [J]. Innovative Food Science and Emerging Technologies ,2002(3):233-245
    [53] Martin-Belloso O, Vega-Mercado H, Qin B L, et al. Inactivation of Escheriachia coli suspended in liquid egg using pulsed electric fields [J]. Journal of Food Processing and Preservation, 1997,21(3): 193-203
    [54] Mckenna D R.Nanke K E.Olson D G. The effects of irradiation,high hydrostatic pressure and temperature during pressurization on the characteristics of cooked-reheated salmon and catfishs[J] J of Food Sci,2003(1):368-377
    [55] N. Dutreuxa, S. Notermansa, T. Wijtzesa, etal. Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions[J].InternationaI Journal of Food Microbiology,2000(54):97-98
    [56] Neumann,E. The relaxation hysteresis of membrane electroporation[M]. New York: Plenum Press, 1989:61-82
    [57] N. Gomez, D. Garcia, I. alvarez, S. Condon,et al. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH[J]. International Journal of Food Microbiology, 2005,103(2): 199-20
    [58] N. I. Boyko,L. S. Evdoshenko,A. N. Tour, etal. Working chamber for processing foodstuffs by a complex action of strong pulsed electric fields[J].Instruments and Experimental Techniques,2002,45(6):824-833
    [59] N.Dutreuxa, S.Notermansa, M.M.Go'ngora-Nietob, etal. Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields[J].International Journal of Food Microbiology,2004(60): 147-152
    [60] Oyton B B, Sims C A, Sargen S, etal. Quality and stability of precut mangos and carambolas subjected to high pressure processing[J]. J of Food Sci, 2002(67):409-415
    [61] P. Molinari, A.M.R. Pilosof, R.J. Jagus. Effect of growth phase and inoculum size on the inactivation of Saccharomyces cerevisiae in fruit juices, by pulsed electric fields[J].Food Research International,2004(37):793-798
    [62] P. Nguyen, G.S.Mittal. Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials[J].Chemical Engineering and Processing,2007(46):360-365
    [63] Park S J, Lee J I, Park J. Effects of a combined Process of high-pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice[J]. J. of Food Sci,2002(5):1827-1834
    [64] Patrick C.Wouters. Critical factors determining inactivation kinetics by pulsed electric field food processing. Food Science &Technology,2001,23(12): 112-121
    [65] Pothakamury U R, Monsalve-Gonzalez A, Barbosa-Canovas G V, et al. Inactivation of Escheriachia coli and Staphylococcus aereus in model food by pulsed electric fields technology [J]. Food Research Internationa], 1995, 28(2): 167-171
    [66] Qin.B.L., Barbosa-Canovas,G.V., Swanson,B.G.,etal. Inactivation microorganisms using a pulsed electric field continuous treatment system[J]. IEEE Transactions on Industry Application,1998,34(1):43-50
    [67] Raso J, Calderon M, Monsalve-Gonzalez A, etal. Inactivation of mold ascospores and conidiospores suspended in fruit juice by pulsed electric fields[J]. LWT-Food Science and Technology, 1998,4:668-672
    [68] Reina L D, Jin Z T, Zhang Q H, etal. Inactivation of Listeria monocytogenes in milk by pulsed electric fields [J].Journal of Food Protection, 1998(61):1203-1206
    [69] Rodrigo,D.. Kinetic model for the inactivation of Lactobacillus plantarum by pulsed electric fields[J].International Journal of Food Microbiology, 2001(81):223-229
    [70] S. Toepfl, V. Heinz, D. Knorr. High intensity pulsed electric fields applied for food preservation[J].Chemical Engineering and Processing,2007(46):537-546
    [71] Sale A J H, Hamilton W A. Effects of high electric fields on microorganisms killing of bacteria and yeasts[J]. Biochemistry and Biophysics,1967(148):781-788
    [72] Sale A J H, Hamilton W A.. Efects of hish electric fields on microorganism.Lysis of erythrocytes protoplasts[J]. Biochim Biophys Acta, 1968(163):37-43
    [73] Sato M, Clements S. Formation of chemical speciea and their effects on microorganisms using a pulsed high-voltage dischage in water[J]. TeaTransactions on Industry Applications, 1996,32(1,2): 106
    [74] Scherba G. , Weigel R. M., O'Brien W. D.. Quantitative assessment of t he germicidal efficacy of ult rasonic energy[J], Applied and Environmental Microbiology, 1991,57(7) :2079-2084
    [75] Sensoy I, Zhang Q H, Sastry S K. Inactivation kinetics of Salmonella Dublin by pulsed electric fields [J]. Journal of Food Process Engineering, 1997, 20(5):367-381
    [76] Sheshakamal Jayaram, G. S. P. Castle, Argyrios Margaritis. The effects of high field DC pulse and liquid medium conductivity on survivability of Lactobacillus brevis[J].Apply Microbial Biotechnology, 1993(40): 117-122
    [77] Sojka, B. and Ludwig, H. Effect of rapid pressure changes on the inactive of Bacillus stubtilus spore[J]. Pharmazeutische industrie, 1997 (59):436-438
    [78] Susanne Schilling, Stefan Toepfl, Michael Ludwig,etal. Comparative study of juice production by pulsed electric field treatment and enzymatic maceration of apple mash[J].Biosystems Engineering,2006,93(1):57-68
    [79] Toepfla V and Knorra D. High intensity pulsed electric fields applied for food preservation [J].Chemical Engineering and Processing,2007,46(6):537-546
    [80] Vega-Mercado H, Martin-Belloso O, Chang F J, etal. Inactivation of Escheriachia coli and??Bacillus subtilis suspended in pea soup by high intensity pulsed electric fields [J]. Journal ofFood Processing and Preservation, 1996,20(1):501-510
    
    [81] Weibull W. A statistical distribution function of wide applicability[J]. Journal of AppliedMechanics, 1951 (51 ):293-297
    
    [82] Wouters P C, Dutreux N, Smelt M, etal. Effects of pulsed electric fields on inactivationkinetics of Listeria monocytogenes [J].Applied and Environmental Microbiology, 1999,65(12):5364-5371
    
    [83] Yeom H W, Streaker C B , Zhang Q H etal. Effects of pulsed electric fields on the quality oforange juice and comparison with heat pasteurization[J] Journal of Agricultural and FoodChemistry,2000,48:4597-4605
    
    [84] Zakhem H E, Lanoiselle J L, Lebovka N I, etal. The early stages of Saccharomyces cerevisiaeyeast suspensions damage in moderate pulsed electric fields [J]. Colloids and Surfaces B:Biointerfaces, 2006, 47(2):189-197
    
    [85] Zhang Q H, Monsalve-Gonzalez A, Barbosa-Canovas G V, et al. Inactivation of E.coli andS.cereisiae by pulsed electric fields under controlled temperature conditions [J].Transactions ofthe ASAE, 1994(37):387-394
    
    [86] Zimmermann U. Electrical breakdown, electropermeabilization and electrofusion[J]. RevPhysiol Biochem Pharmacol,1986(106):176-256
    
    [87] Ziwei Liang,Z. Cheng,G.S..Inactivation of spoilage microorganisms in apple cider using acontinuous flow pulsed electric field system[J].LWT,2006(39:350-356
    
    [88] Zs. Cserhalmia, I. Vid'acsa, J. Becznerb, etal. Inactivation of Saccharomyces cereisiae andBacillus cereus by pulsed electric fields technology [J].Innovative Food Science & EmergingTechnologies,2002(26) :41 -45
    
    [89]陈复生.食品超高压加工技术[M].北京:化学工业出版社,2005
    
    [90]陈秀伟.高电压脉冲杀菌技术的研究进展[J].食品与机械,1994(4):13
    
    [91]池元斌等.高压对鲜牛奶中细菌行为的影响[J].2000年全国首届高压食品暨超高压技术应用论文集,包头:2000:45-50
    
    [92]但果,邹积岩,吴为民.脉冲电场的非热效应及在液态食品处理中的应用[J].农业机械学报,2002,5(3):129-133
    
    [93]德力格尔桑.食品加工中超高压灭菌的机理[J].实用技术,2003(11):21-22
    
    [94]丁宏伟,殷涌光,崔彦如.高压脉冲电场(PEF)对发酵乳的非热杀菌研究[J].乳业科学与技术,2005,112(3):100-102
    
    [95]杜存臣,颜惠庚.高压脉冲电场非热杀菌技术研究进展[J].现代食品科技,2005,21(3):151-54
    
    [96]方胜,孙学兵,陆守道,等.冷冻食品的高压脉冲电场处理[J].包装与食品机械,2003,21(6):1-5
    
    [97]方兴东,关志成.高压脉冲放电在水处理中的应用及发展[J].高电压技术,2000,26(1):29-31
    
    [98]房俊龙,朴在林,张长利,等.脉冲电场部分参数对牛乳灭菌效率影响的试验分析[J].农机化研究,2004(7):158-159
    
    [99]房俊龙,朴在林,张喜海.30kV液体食品灭菌用高电压脉冲发生器的设计[J].农机化研究,2006(8):95-98
    
    [100]冯根源,韩金瑛.高压在食品加工中的开发利用[J].食品研究与开发,1999(1):28-30
    
    [101]冯艳丽,余翔.超高压杀菌技术在乳品生产中的探索[J].食品工业,2005,(1):30-31
    
    [102]葛松华.高压脉冲电场技术在液体食品杀菌中的应用[J].物理与工程,2005,15(1):42-44
    
    [103]葛英亮.臭氧杀菌真空包装保鲜珍禽蛋研究[J].西华大学学报:自然科学版,2005,24(1):60-62
    
    [104]郭丽娟,丘泰球,范晓丹.超声波协同臭氧处理对梨汁中微生物的影响[J].食品科技,2007,32(5):73-75
    
    [105]何照范.保健食品化学及其检测技术[M].北京:中国轻工业出版社,1998:5
    
    [106]黄丽,孙远明,潘科,等.超高压处理对荔枝果汁品质的影响[J].农业工程学报,2007,23(2):259-262
    
    [107]黄训端,潘见,谢慧明,等.菌液浓度对大肠杆菌超高压杀灭效果的影响[J].食品科学,2007,28(02):169-172
    
    [108]黄亚东,董明盛.超高压技术在胡萝卜-花生奶茶生产中的应用研究[J].饮料工业,2004,7(6):24-27
    
    [109]纪滨,乔振先.高新技术在保鲜贮藏领域中的运用[J].安徽农业科学,2003,31(2):238-240
    
    [110]江天宝,曹玉兰,陆蒸.脉冲强光对烤鳗的杀菌效果及感官品质的影响[J].农业工程学报2006,22(12):200-204
    
    [111]江天宝,陆蒸,陆则坚.脉冲强光对竹笋制品(玉兰片)杀菌效果及品质的影响[J].中国食品学报2007,7(3):101-106
    
    [112]江天宝,陆蒸,陆则坚.脉冲强光对熟地瓜干杀菌效果及品质的影响[J].福建农林大学学报:自然科学版2007,36(2):201-204
    
    [113]焦宇知.冷杀菌技术在果汁饮料生产中的应用研究[J].食品科技,2006(9):8-11
    
    [114]李钢,栾海.高压脉冲电场杀菌技术在食品工业中的应用[J].哈尔滨商业大学学报(自然科学版),2003,19(2):203-205
    
    [115]李恒,汪清民,黄润秋.杀菌素的研究进展[J].农药学学报,2003(5):1-12
    
    [116]李儒苟,袁锡昌,工跃进.超声波-激光联合杀菌的研究[J].包装与食品机械,2002,??16(3):11-12
    
    [117]李文炳.电离辐射杀菌保鲜水果和蔬菜的研究现状[J].辐射研究与辐射工艺学报,2001,19(2):18-20
    
    [118]李艺琳,李钢,李国忱.高压脉冲电场杀菌电力系统的研究[J].包装与食品机械,2003,21(3):10-13
    
    [119]李艺琳,李钢.应用于食品杀菌的高循环线性脉冲调制器研究[J].哈尔滨商业大学学报,2003,19(4):451-452
    
    [120]李宗军,徐建兴.超高压处理对微生物生理特性的影响[J].微生物学报,2005,45(4):521-525
    
    [121]励建荣,王泓.超高压技术在食品工业中的应用及前景[J].现代食品科技,2006,22(1):171-173
    
    [122]梁淑如,赵国建,吉慧明,等.超高压技术在食品工业中的最新研究进展[J].食品研究与开发,2006,27(8):1-4
    
    [123]梁彦,赵鹏,宋人楷.冷杀菌技术及其在包装与食品加工机械上的应用[J],包装与食品机械,2003,21(3):23-26
    
    [124]廖小军.高压脉冲电场系统设计及其杀菌灭酶效果与对苹果汁品质影响研究[D].北京:中国农业大学食品学院,2004
    
    [125]廖小军,钟葵,王黎明,等.高压脉冲电场对橙汁大肠杆菌和理化性质的影响效果[J].食品科学,2003,24,(6):59-61
    
    [126]廖小军,钟葵,王黎明,等.高压脉冲电场对酵母和大肠杆菌的杀灭效果[J].食品与发酵工业,2003,29(10):19-22
    
    [127]廖小军,钟葵,王黎明,等.高压脉冲电场杀菌装置[P].中国专利:ZL200420112379.7,2005-12-7
    
    [128]林淑英,孔保华.超高压对食品中的酶的影响[J].食品与机械,1999,73(5):30-31
    
    [129]林向阳,陈金海,郑丹丹,等.超高压杀菌技术在食品中的应用[J].农产品加工,2005(1):8-12
    
    [130]林向阳,阮榕生,朱榕璧.流体食品的非热冷杀菌新技术的研究[J].食品科学,2006,27(1):57-61
    
    [131]刘丽艳,张喜梅.李琳超声波杀菌技术在食品中的应用[J].食品科学,2006,27(12):778-780
    
    [132]刘骞,骆承庠,孔保华,等.臭氧杀菌在食品工业中应用的广阔前景[J].肉类工业,2006(1):26-29
    
    [133]刘苏宜,郭烈恩,李华栋.高压脉冲电场食品杀菌装置控制系统的设计[J].南昌大学学报(工科版),2004,26(2):19-21
    
    [134]刘铮,杨瑞金,赵伟.高压脉冲电场破壁法提取废啤酒酵母中的蛋白质与核酸[J].食品工业科技,2007,28(3):85-88
    
    [135]卢家暄,连宾.高压脉冲电场杀菌机理及影响因素分析[J].安徽农业科学,2007,35(2):7601-7603
    
    [136]陆蒸.食品冷杀菌技术-脉冲强光杀菌[J].浙江农村机电,2005(2):17
    
    [137]宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,2001:317
    
    [138]潘见,曾庆梅,谢慧明.草莓汁的超高压杀菌研究[J].食品科学,2004,25(1):31-34
    
    [139]潘见,张文成,陈从贵.超高压食品杀菌工艺及设备的设计[J].食品与机械,1999(5):32-33
    
    [140]潘巨忠,薛旭初,杨公明.超高压技术及其在食品加工中应用[J].现代农业科技,2005(9):60-61
    
    [141]潘瑶.超高压杀菌技术在乳品中的应用[J].技术博览,2007(4):4-8
    
    [142]钱建亚,孙芝杨.超高压技术在食品加工中的应用[J].扬州大学烹饪学报,2006(3):57-61
    
    [143]邱伟芬,高瑀珑.超高压番茄汁杀菌条件的优化研究[J].食品科学,2007,28(02):59-63
    
    [144]邱伟芬,江汉湖.食品超高压杀菌技术及其研究进展[J].食品科学,2001,22(5):21-24
    
    [145]石秀东.液态食品非加热杀菌技术的研究进展[J].冷饮与速冻食品工业,2002,8(4):37-41
    
    [146]时兰春,王伯初.高压电脉冲灭菌理论的研究进展[J].重庆大学学报(自然科学版),2004,25(4):144-147
    
    [147]孙静,孔繁东,祖国仁等.高压脉冲电场对酵母菌和大肠杆菌存活率的影响[J].食品科学,2004,25(2):87-90
    
    [148]孙沈鲁.高压脉冲电场对酶的影响及结合冷冻浓缩橙汁技术研究[D].福州:福建农林大学食品科学学院,2007
    
    [149]孙学兵,方胜,陆守道.高压脉冲电场杀菌的工业化展望[J].食品与机械,2002(1):6-8
    
    [150]孙艳丽,木泰华.高压食品加工技术的研究及应用现状[J].中国食物与营养,2005(7):32-35
    
    [151]藤沼一信.高压力杀菌技术的现状及展望[J].食品科学,1998(4):59-66
    
    [152]田晓琴,宋社果.超高压对鲜牛奶杀菌效果研究[J].安徽农业科学,2006,34(17):4397-4398
    
    [153]王黎明,史梓男,关志成等.脉冲电场非热杀菌效果分析[J].高电压技术,2005,31(2):64-66
    
    [154]王丽颖,刘秋丽,周庆祥,等.高压脉冲电场加工牛初乳的研究[J].食品工业科技2005,26(1):49-51
    
    [155]王茉,杨瑞金.高压脉冲电场对绿茶饮料杀菌的研究[J].食品与发酵工业,2005,31(11):133-136
    
    [156]王蕊,高翔.超声波在原料乳保鲜中应用的研究[J].中国乳品工业,2004,32(6):35-37
    
    [157]王启军,何国庆.臭氧技术在食品加工中的应用[J].粮油加工与食品机械,2002(1):33-35
    
    [158]王维琴,王剑平.高压脉冲电场在食品灭菌方面的应用[J].农机化研究,2004,1(1):205-208
    
    [159]王雪青,兰风英,邵汝梅.高压对猕猴桃酱质量的影响[J].食品与发酵工业,2001,27(8):28-30
    
    [160]王越男,德力格尔桑,钱宏光.超高压杀菌处理对乳中蛋白质的影响[J].食品科学,2004(3):46-48
    
    [161]吴海霞,韩学孟.食品冷杀菌技术研究进展[J].食品科学,2005(12):67-69
    
    [162]吴继军,肖更生,陈卫东,等.高压脉冲电场在桑果汁杀菌中的应用[J].农产品加工·学刊,2005,50(12):41-43
    
    [163]吴晓梅,孙志栋,陈惠云.食品超高压技术的发展及应用前景[J].贮藏与加工,2006(1):51-52
    
    [164]吴肖.物理杀菌技术[J].食品与机械,1996(6):17-18
    
    [165]吴秀兰,唐文武.臭氧在果蔬贮藏保鲜中的应用[J].江西农业学报,2007,19(3):75-75
    
    [166]吴雅红,罗宗明,杨哲.绿茶饮料的超声波与微波杀菌及防褐变的比较研究[J].广东化工,2004,(1):33-35
    
    [167]夏朝勇,朱文学,张仲欣.红外辐射技术在农副产品加工中的应用与进展[J].农机化研究,2006(1):196-199
    
    [168]夏文水,钟秋平.食品冷杀菌技术研究进展[J].中国食品卫生杂志,2003,15(6):539-543
    
    [169]肖更生,粱多,曾新安,等.高压脉冲电场处理桑果汁的初步研究[J].广州食品工业科技,2004,20(1):30-31
    
    [170]肖丽霞,陈计峦,赵晓丹,等.绿竹笋超高压处理和热处理加工品品质比较研究[J].食品科学,2005,26(3):148-150
    
    [171]徐刚,梁红波,施文芳.辐射技术在食品加工中的应用[J].辐射研究与辐射工艺学报,2002,20(1):1-6
    
    [172]徐敏,孙贵,董铁有,等.食品超高压加工技术及其应用前景[J].河南科技大学学报(农学版),2003(3):63-66
    
    [173]徐振,徐幸莲,周光宏.超高压用于食品灭菌的研究进展[J].食品科技,2007,35(20):6001-6002
    
    [174]薛旭初,杨公明,康孟利.超高压食品加工技术的研究进展[J].农产品加工,2005(3):16-17
    
    [175]严志明.橙汁高压脉冲电场非热杀菌研究[D].福州:福建农林大学食品科学学院,2007
    
    [176]杨巧绒,陈迎春.高压设备及其在食品加工中的应用[J].江苏理工大学学报,1999,20(6):13-17
    
    [177]叶蕙,陈建勋,余让才.辐照对草菇保鲜及期生理机制的研究[J].核农学??报,2000,14(1):24-28
    
    [178]殷涌光,崔彦如,王婷.高压脉冲电场提取桦褐孔菌多糖的试验[J].农业机械学报,2008,39(2):89-92
    
    [179]殷涌光,金声琅.高压脉冲电场非热杀菌技术对原料奶的预处理[J].乳品加工,2005(6):36-39
    
    [180]殷涌光,金哲雄,王春利,等.利用PEF从牛脾脏中快速提取食用DNA[J].食品工业科技2007,28(3):166-169
    
    [181]殷涌光,金哲雄,王春利,等.茶叶中茶多糖茶多酚茶咖啡碱的高压脉冲电场快速提取[J].食品与机械,2007,23(2):12-14
    
    [182]殷涌光,刘峰,李敬贤.一种流体食品杀菌灭酶的方法[P].中国专利:200610016890.0,2006-10-25
    
    [183]殷涌光,殷锦捷,孙东升.用高压脉冲电场杀细菌孢子[J].农业工程学报,1997,13(1):190-193
    
    [184]殷涌光.一种高压脉冲电场处理装置[P].中国专利:ZL200410011305.9,2006-5-31
    
    [185]曾庆梅,潘见,谢慧明.西瓜汁的超高压杀菌效果研究[J].高压物理学报,2004,18(1):70-74
    
    [186]曾庆梅,谓十慧明,潘见,等.超高压处理对枯草芽孢杆菌超微结构的影响[J].高压物理学报,2006,20(1):83-87
    
    [187]曾新安,陈勇.脉冲电场非热灭菌技术[M].北京:中国轻工业出版社,2005
    
    [188]曾新安,扶雄,于淑娟,等.高压脉冲电场杀菌方法及其装置[P].中国专利:01130064.7,2001-12-12
    
    [189]张百刚,张宝善.生物杀菌素在食品防腐中的应用研究进展[J].饮料工业,2005,8(4):1-5
    
    [190]张佰清,罗莹.高压静电场对啤酒酵母的杀菌试验研究[J].食品与机械,2006,22(4):22-24
    
    [191]张敏,贺家亮.超高压技术及其在食品工业中的应用[J].食品研究与开发,2007,28(09):175-177
    
    [192]张铁华,陈琦昌,陈玉江.冷杀菌技术在食品加工保藏中的应用[J].食品工业科技,1999,20(4):63-66
    
    [193]张喜海,张长利,房俊龙,等.高强度脉冲电场灭菌关键因素的分析[J].东北农业大学学报,2005,36(6):825-827
    
    [194]张燕,李玉杰,胡小松,等.高压脉冲电场(PEF)处理对红莓花色苷提取过程的影响[J].食品与发酵工业,2006,32(2):129-132
    
    [195]张鹰,曾新安,温其标.脉冲电场与其它栅栏因子联合灭菌的研究进展[J].食品工业科技,2007(1):234-236
    
    [196]张永林,杜先锋.超声波及其在粮食食品工业中的应用[J].西部粮油科技,1999,24(2):??14-16
    
    [197]张勇,段旭昌,白艳红,等.超高压牛乳杀菌工艺参数的优化研究[J].食品工业科技,2007,28(06):138-141
    
    [198]张勇,段旭昌,白燕红,等.超高压杀菌处理对牛乳感官和理化特性的影响[J].中国乳品工业,2007,35(6):13-16
    
    [199]张勇,段旭昌,李绍峰,等.超高压杀菌、灭酶影响因素探讨[J].食品研究与开发,2007,28(40):140-144
    
    [200]赵俊芳,赵玉生.初探食品工业中的超高压灭菌技术[J].包装与食品机械,2006,24(5):27-30
    
    [201]赵武奇,殷涌光,关伟,等.高压脉冲电场杀菌系统设计与试验[J].农业机械学报,2002,33(3):67-71
    
    [202]赵武奇,殷涌光,王忠东.高压脉冲电场杀菌技术研究现状及发展[J].农业工程学报,2001,17(5):139-141
    
    [203]赵玉生,于然.啤酒保鲜的新技术-超高压[J].酿酒科技,2007(4):46-48
    
    [204]赵玉生,赵俊芳,周异异.初探非热力杀菌技术在食品工业中的应用[J].食品工业科技,2006,27(09):175-176
    
    [205]赵玉生,赵俊芳.猕猴桃汁的超高压杀菌效果[J].食品科学,2007(4):146-148
    
    [206]赵玉生,赵俊芳.食品工业中超高压灭菌技术[J].粮油与油脂,2006(3):25-26
    
    [207]钟葵,廖小军,梁楚霖,等.脉冲电场和热处理对鲜榨苹果汁贮藏期品质的影响[J].食品与发酵工业,2004,30(8):49-54
    
    [208]钟葵,吴继红,廖小军,等.高压脉冲电场对植物乳杆菌的杀菌效果及三种模型的比较分析[J].农业科学工程学报,2006,22(11):238-241
    
    [209]周媛,陈中,杨严俊.高压脉冲电场对全蛋液杀菌的研究[J].食品与发酵工业,2006,32(5):36-38
    
    [210]朱军.线性模型分析原理[M].北京:科学出版社,1999:104-107
    
    [211]朱绍华.超声波灭菌试验初探[J].食品工业科技,1998(1):12-14
    
    [212]纵伟,陈怡平.花生奶的超高压杀菌工艺研究[J].食品研究与开发,2007,28(7):4-7
    
    [213]邹积岩,吴为民.脉冲电场食品处理技术[J].高电压技术,2000,26(6):30-33
    
    [214]祖国仁,孔繁东,刘阳,等.高压方波脉冲电场对微生物的致死作用[J].高电压技术,2004,30(8):47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700