天然沸石对肉鸡的营养效应与有害物减控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然沸石是一种性质独特、用途广泛的功能性材料,在生命科学领域中极具应用潜力。本研究以天然斜发沸石为试验材料,采用化学和X射线衍射法对其原料矿粉和改性产品品位及在体外模拟消化道pH环境中的稳定性进行分析评价;比较不同品位与粒度以及改性天然斜发沸石对肉鸡的营养和其它生物学效应;从肉鸡生产性能、血清二胺氧化酶与一氧化氮、胸腺细胞凋亡等方面研究沸石对产气荚膜梭菌感染所致负面影响的缓解作用,并探索相关机制;从肉鸡生产性能、铅在肌肉中的残留、血清HSP70的0D值、细胞凋亡相关基因的表达等指标着手,探讨天然斜发沸石对铅毒性的减控作用及相关机制。
     1、天然沸石的品位及稳定性评价
     采集两种天然沸石样品,进行改性处理和模拟消化道pH环境以及加NH4+处理,采用X射线衍射、阳离子交换容量(吸铵值)和电镜扫描进行测定分析。结果表明:样品I的主成分为斜发沸石,含量达50%以上,其杂质主要是长石和水云母,并含有部分闪石和二氧化硅,化学成分主要是Si和Al,并含有一定量的Ca、Fe、K、Mg、Na;样品Ⅱ的斜发沸石含量较低,杂质主要是长石和蒙脱石。经模拟消化道环境处理后,样品I斜发沸石的含量稍有下降,Pb含量分别下降了39.2%和36.8%;样品II斜发沸石含量未改变,但出现了海泡石。改性提高了沸石的阳离子交换容量;结果提示试验所用沸石具有良好的稳定性。
     2、不同品位及改性沸石对肉鸡生产性能、养分表观代谢率、血液生化指标的影响
     将504只1日龄AA肉鸡随机分为四个处理,每个处理6个重复,分别饲喂对照日粮,对照日粮添加5%普通沸石、高品位沸石和高品位改性沸石的试验日粮,研究不同品位沸石及改性沸石对肉鸡生产性能、养分表观消化率、血液生化指标的影响。结果表明:添加沸石后肉鸡后期的体增重分别比对照组提高了2.05%、7.62%(P<0.05)和4.73%(P<0.05),饲料转化率改善了0.98%、5.39%(P<0.05)和3.43%(P<0.05);高品位和改性高品位沸石使肉鸡全期的体重提高了4.10%和2.41%,饲料转化率均改善1.56%;但添加沸石降低了肉鸡前期体重,而提高了饲料转化率(P<0.05)。与对照组相比,三种沸石使饲料干物质的表观消化率分别提高了4.05%、5.86%及3.03%,粗蛋白消化率分别提高了2.25%、6.16%和11.410%,能量消化率分别提高了3.59%、7.60%和7.16%;但未能提高钙的消化率,高品位和改性高品位沸石提高了磷的消化率;除蛋氨酸外,添加沸石提高了其他氨基酸的消化率,分别使总必需氨基酸表观消化率提高了2.69%、4.79%和4.53%(P>0.05),总非必需氨基酸表观消化率提高了2.77%、7.56%和6.080%(P>0.05),总氨基酸表观消化率提高了2.74%、6.1l%和5.26%(P>0.05);改性高品位沸石降低了肉鸡粪便中的水分含量;沸石对肉鸡血液生化指标无明显影响。
     3、不同品位及改性沸石对肉鸡肠道消化酶活性、DNA与RNA含量及黏膜形态的影响
     就普通沸石、高品位沸石和高品位改性沸石对肉鸡肠道粘膜中的RNA及DNA含量、消化酶活性和形态结构的影响进行了测定分析。结果表明,日粮中分别添加5%普通沸石、高品位沸石和高品位改性沸石,可提高肉鸡前期和后期肠道粘膜中RNA含量及后期空肠粘膜中的DNA含量;普通和高品位沸石使肉鸡前期空肠粘膜中的DNA含量有所提高(P>0.05),但均降低了前期回肠粘膜中的DNA含量(P>0.05);对肉鸡后期肠道粘膜中的DNA含量则影响不一。饲料中添加三种沸石分别使肉鸡前期肠道淀粉酶和蛋白酶活性提高了23.4%、8.3%、15.9%和17.4%、17.2%、2.90%,后期蛋白酶活性提高了4.0%、25.2%、22.8%(P>0.05),普通沸石使肉鸡后期内源淀粉酶活性提高了12.8%,但高品位沸石和改性沸石却使其分别下降了25.1%和14.1%(P>0.05)。结果提示,沸石具有改善肉鸡肠道粘膜形态的功能。
     4、不同粒度沸石对肉鸡生产性能、肠道菌群及组织重金属残留的影响以及沸石在不同料型饲料中的应用效果
     在饲料中分别添加三种不同粒度的沸石粉,研究其对肉鸡生产性能、肠道菌群及肝脏与肌肉中重金属残留量的影响及沸石在不同料型饲料中的应用效果。结果表明,与对照组相比,在饲料中添加5%三种不同粒度的沸石均未影响肉鸡增重,但改善了饲料转化率(P<0.05),降低了死淘率;粗、中、细三种粒度沸石使肉鸡肌肉中的铅含量分别降低了10.06%、43.02%、39.11%,肝脏中砷含量分别下降了34.00%、29.85%、16.12%,粗、中粒度沸石使肝脏中铅含量分别降低了32.61%、24.78%,沸石对肌肉中的砷含量影响不大;沸石降低了血氨浓度及空肠中的大肠杆菌数,使空肠中的乳酸菌数有所提高。
     饲喂颗粒饲料的肉鸡生产性能明显优于粉料(P<0.05)。颗粒饲料中添加沸石对肉鸡前期生产性能无影响,但在粉料中添加则显著降低了肉鸡生长速度、采食量和饲料转化率(P<0.05)。后期在颗粒饲料中添加沸石则降低了肉鸡生长速度(P<0.05)和饲料转化率(P>0.05),但不影响采食量;粉料后期对增重无影响,但明显降低了采食量和料重比(P<0.05)。颗粒料和粉料中添加沸石均不影响肉鸡全期增重,但颗粒料的饲料转化率有所上升(P>0.05),而粉料则明显降低(P<0.05)。
     5、天然沸石缓解产气荚膜梭茵对肉鸡的有害影响及相关机制研究
     384只1日龄的AA肉鸡随机分为4个处理,每个处理6个重复,分别为对照组(饲喂基础日粮)、肉鸡感染产气荚膜梭菌组(饲喂基础日粮)、感染产气荚膜梭菌肉鸡饲喂添加杆菌肽锌(40mg.kg-1)日粮和感染产气荚膜梭菌肉鸡饲喂添加5%沸石日粮,研究天然沸石缓解产气荚膜梭菌对肉鸡的有害影响及相关机制。结果表明:沸石明显提高了感染产气荚膜组肉鸡前期的饲料转化率(P<0.05),但对免疫器官指数和血清各生化指标均影响不明显(P>0.05)。与感染组相比,饲料中添加沸石使肉鸡前期血清SOD极显著提高(P<0.01),沸石缓解了产气荚膜梭菌对肉鸡造成的氧化损伤;抗生素也有相同效果。产气荚膜梭菌感染明显提高了肉鸡前期NO和后期DAO;沸石显著降低了肉鸡前期血清NO(P<0.01)和后期DAO(P<0.05),沸石可缓解产气荚膜梭菌对肠道的损伤;抗生素亦具同样作用。沸石和抗生素对肉鸡血清T3、T4、IgA和IgG均无影响(P>0.05);但添加沸石可减少产气荚膜梭菌导致的胸腺细胞死亡数,提高活细胞数量(P>0.05)。
     6、沸石对感染产气荚膜梭菌肉鸡生产性能、免疫器官及屠宰性能的影响
     本试验设5个处理,分别为对照组(饲喂基础日粮)、肉鸡感染产气荚膜梭菌组(饲喂基础日粮)、感染产气荚膜梭菌肉鸡饲喂添加杆菌肽锌(40mg-kg-1)日粮、感染产气荚膜梭菌肉鸡饲喂添加5%沸石日粮和感染产气荚膜梭菌肉鸡饲喂添加5%沸石日粮及杆菌肽锌(40mg.kg-1),研究沸石对感染产气荚膜梭菌的肉鸡生产性能、免疫器官及屠宰性能的影响。结果表明:添加沸石显著提高了肉鸡前期平均体重和平均日增重(P<0.05),抗生素明显提高了肉鸡生产性能,但抗生素与沸石同时添加不影响肉鸡各阶段生产性能(P>0.05)。对免疫器官指数影响不明显(P>0.05)。感染产气荚膜梭菌使肉鸡血清唾液酸含量提高了21.64%(P>0.05),但各处理对感染产气荚膜梭菌肉鸡的血清唾液酸含量影响不明显(P>0.05)。添加抗生素、沸石、抗生素与沸石后则使肉鸡胸肌率和全净膛率均有不同程度的提高(P>0.05)。
     7、天然沸石缓解饲料中低剂量铅对肉鸡毒性作用及相关机理研究
     试验一:将720只1日龄AA肉鸡随机分成6组,分别为基础日粮对照组、基础日粮+3%沸石组、基础日粮+5%沸石组、基础日粮+硝酸铅(10mg.kg-1Pb)组、基础日粮+硝酸铅+3%沸石组、基础日粮+硝酸铅+5%沸石组,研究天然沸石和饲料中低剂量铅对肉鸡生产性能及血清HSP70的影响。结果表明:饲料中低剂量污染铅不影响肉鸡生产性能;添加3%沸石、低剂量污染铅并添加3%和5%的沸石则显著提高了肉鸡后期增重和降低了料重比(P<0.05),低剂量污染铅并添加5%的沸石使肉鸡全期平均日增重、饲料转化率均显著改善(P<0.05)。单独添加沸石和低剂量污染铅均不同程度的提高了肉鸡血清HSP70的(P>0.05),低剂量污染铅并添加3%和5%的沸石则显著提高了21日龄肉鸡血清HSP70水平(P<0.05),42日龄时肉鸡血清HSP70水平也有一定程度提高。
     试验二:本试验设4个处理,分别为基础日粮对照组、基础日粮+硝酸铅(10mg-kg-1Pb)组、基础日粮十5%沸石、基础日粮+硝酸铅+5%沸石(10mg.kg-1Pb),研究天然沸石和饲料中低剂量铅对肉鸡抗体滴度、肝脏抗氧化功能与金属硫蛋白、胸腺细胞凋亡相关基因表达的影响。结果表明:16日龄时,沸石使肉鸡免疫抗体效价有所提高,37日龄时铅和沸石均显著提高了免疫抗体效价(P<0.05),其它则无明显差异。沸石可以减少铅在肉鸡肌肉中的残留,且沸石均极显著地降低了42日龄肉鸡肌肉中的铅残留(P<0.01),但各处理对肉鸡后期肝脏的抗氧化功能影响不大。污染铅显著提高了肉鸡21日龄时肝脏中的金属硫蛋白含量(P<0.05),添加沸石和污染铅再添加沸石对肉鸡肝脏中金属硫蛋白的含量影响不大(P>0.05)。污染铅显著提高了42日龄肉鸡胸腺bax基因的表达量(P<0.05);污染铅并添加沸石有下调bax基因表达的趋势,并显著提高了21日龄时肉鸡胸腺bc1-2基因的表达量(P<0.05),各处理均显著提高了42日龄时bcl-2基因的表达。污染铅和添加沸石均显著降低了肉鸡21日龄时p53基因的表达量(P<0.05),污染铅使42日龄时的表达量明显提高(P<0.05),添加沸石则极显著地提高了42日龄时的p53基因表达量(P<0.01)。
The zeolites are functional materials with unique properties and wide uses, and have potentiality in the life science. This study was conducted to evaluate the quality and stability of natural zeolite (clinoptilolite) in vitro by chemical and X-ray diffraction. The effects of different quality and particle sizes, and modified natural zeolite on nutrition and other biological function in broilers were compared. The ameliorative effects of dietary natural zeolite (clinoptilolite) on performance, serum diamine oxidase (DAO) and nitric oxide (NO) level, apoptosis of thymocytes in broilers after Clostridium Perfringens infection were studied. The ameliorative effects of dietary natural zeolite (clinoptilolite) on performance, lead residual in breast muscle, OD value of serum HSP70, and gene expression of apoptosis cell in broilers after low dose lead exposure were researched. Then, the mechanism of harmful agent reduction by zeolite in broilers was explained.
     1Evaluation of the quality and stability of natural zeolite (clinoptilolite)
     Two zeolite samples were modified and treated under pH environment of broiler digestive tract and added NH4+, and then all samples were analyzed with X-ray diffraction, cationic exchange capacity and scanning electron microscopy method. The results showed that the composition of sample I mainly consisted of clinoptilolite above50%, and feldspar, hydromica, amphibole, silica. The chemical composition of sample I mainly contained Si and Al, and also contained Ca, Fe, K, Mg, and Na. The clinoptilolite content of sample Ⅱ was lower, and also occurred feldspar, montmorillonite. After the samples were treated under pH environment of broiler digestive tract, the clinoptilolite content of sample I decreased slightly, and Pb content decreased by39.2%and36.8%with or without NH4+, respectively. The treatments had no effect on the clinoptilolite content of sample Ⅱ, but sepiolite occurred. The cationic exchange capacity of zeolites increased by modification. The zeolites had good stability.
     2Effects of different quality and modified zeolite on performance,digestibility of nutrients and biochemical indexes in blood of broilers
     An experiment was conducted to study the effect of different quality and modified zeolites added in diets on the performance,the digestibility of nutrients and biochemical indexes in blood of broiler. A total of504one-day-old Arbor Acres broiler chickens were assigned randomly to four treatments with six replicates for each.The broilers were fed control diet and the same diet added with5%common zeolite, high quality zeolite and modified high quality zeolite, respectively. The results indicated that the supplementation of common zeolite, high quality zeolite and modified high quality zeolite in diet increased BWG of broiler by2.05%,7.62%(P<0.05) and4.73%(P<00.05),improved FCR by0.98%,5.39%(P<00.05) and3.43%(P<00.05) in finisher phase, respectively. The high quality zeolite and modified zeolite increased BWG of broiler by4.10%and2.41%,respectively, improved FCR by1.56%in whole growing phase. But the supplementation of all zeolites decreased the performance of broiler in starter phase (P<0.05).Compared with control group, the digestibility of dry matter, protein, energy of diets increased by4.05%,5.86%and3.03%;2.25%,6.16%and11.41%;3.59%,7.60%and7.16%with addition of three zeolites, but there was no effect on digestibility of calcium. The high quality zeolite and modified zeolite improved the digestibility of phosphorus. Three zeolites increased digestibility of all amino acid except methionine, the apparent digestibility of total essential amino acid increased, total non-essential amino acid increased and total amino acid by2.69%,4.79%and4.53%(P>0.05), by2.77%,7.56%and6.08%(P>0.05) and by2.74%,6.11%and5.26%(P>0.05) respectively. The modified high quality zeolite reduced the moisture of broiler feces. In conclusion, the supplementation of zeolites in diet improved the performance of broiler chicks and the digestibility of dietary nutrients, and the high quality zeolite was more effective. The addition of zeolites in diets had no effect on biochemical indexes in blood of broilers.
     3Effects of different quality and modified zeolite on the enzyme activities, morphological structure and the DNA and RNA content of the small intestine for broilers
     The experiment was conducted to analyze the effect of different quality and modified zeolites added in diets on the DNA and RNA content, activities of digestive enzymes, and morphological structure of the small intestine in broilers. The results indicated that, addition of all zeolites increased the RNA content in intestinal mucosa of broiler, and increased the DNA content of jejunum for finisher broiler(P<0.05).The common zeolite and high quality zeolite enhanced the DNA content of jejunum of starter broilers (P>0.05), but, all zeolites decreased the DNA content of ileum for starter broilers (P>0.05). The addition of three kinds of zeolites increased the amylase and protease activity in small intestine23.4%,8.3%,15.9%, and17.4%,17.2%,2.9%at starter phase (P>0.05),and protease activity increased by4.0%,25.2%,2.8%(P>0.05) at grower phase for broilers. The common zeolite increased the amylase activity by12.8%at grower phase,but high quality zeolite and modified quality zeolite decreased the amylase activity by25.1%and14.1%(P>0.05).The zeolites improved the morphological structure of the small intestine in broilers.
     4Effects of different particle sizes zeolites on the performance, intestinal microflora and residual of heavy metal and effect of zeolite added into different form of feed on performance in broilers
     This experiment was conducted to study the effects of zeolites of three different particle sizes added to diets on the performance, intestinal microflora and residual of heavy metal in broilers. The results indicated that the supplementation of5%zeolite of coarse, middle and fine size to diets had no effect on BWG for broilers,but improved FCR (P<0.05), decreased the mortality of broilers. The diets added with coarse, middle and fine size zeolite decreased the Pb concentration of breast muscle by10.06%,43.02%and39.11%, and reduced the As content of liver by34.00%,29.85%and16.12%, respectively, but the As content of breast muscle was unaffected. The coarse and middle size zeolite decreased the Pb concentration of liver by32.61%and24.78%. Blood ammonia level and the number of E.coil in jejunum were decreased markedly with zeolite treatment, and the number of Lactobacillus in jejunum was increased.
     The performance of broilers fed with pellet feed was better than that with mash form (P<0.05). The addition of zeolite in pellet feed had no effect on performance of broilers at starter phase, but addition of zeolite in mash feed reduced growth, feed consumption, and FCR (P<0.05). The pellet feed added with zeolite decreased growth and FCR, but no effect on feed intake. The zeolite in mash feed had no effect on growth at finisher phase, but reduced feed intake and FCR (P<0.05). The zeolite added in pellet or mash feed had no effect on gain, but dencreased FCR for pellet (P<0.05),and increased for mash during full growth period.
     5The alleviative effects of dietary natural zeolite (clinoptilolite) on broilers after Clostridium Perfringens infection
     3841-day-old Arbor Acres chicks were randomly assigned to4treatment groups consisting of6replicates to study the alleviative effect of natural zeolite on broilers after Clostridium Perfringens infection. The details of four treatments were described as follows: Control(broilers fed with basal diet), Clostridium Perfringens infection broilers fed with basal diet, Clostridium Perfringens infection broilers fed with basal diet added zinc bacitracin at40mg·kg-1, and Clostridium Perfringens infection broilers fed with basal diet added5%natural zeolite. The results showed that the natural zeolite significantly increased FCR(P<0.05) at starter phase, but all treatments had no significant effect on organ index and serum biochemical parameters of broilers by Clostridium Perfringens infection. Compared to the infection treatment, the zeolite increased the activity of T-SOD level in serum at starter phase (P<0.01). The result documented that the natural zeolite alleviated the decline of antioxidation by Clostridium Perfringens infection in broilers. The addition of zinc bacitracin in diet had the same effect. The Clostridium Perfringens infection increased serum NO level at starter phase (P<0.01) and the activity of DAO at grower phase for broilers. The zeolite decreased the serum NO production at starter phase (P<0.01) and the activity of DAO in serum at grower phase(P<0.05), and the result implied the natural zeolite alleviated the entero-lesion of broilers by Clostridium Perfringens. The zeolite and zinc bacitracin had no significant effect on T3, T4, IgA, and IgG in serum of broilers (P>0.05). The supplementation of natural zeolite in diet decreased the dead cells and increased the living cell of thymus in broilers after Clostridium Perfringen infection
     6The effects of dietary natural zeolite (clinoptilolite) on performance, immune organ and carcass trait after Clostridium Perfringens infection in broilers
     This trial was conducted to study the effects of natural zeolite on performance, immune organ and carcass trait of broilers after Clostridium Perfringens infection. There were5treatments consisted of Control(broilers fed with basal diet), Clostridium Perfringens infection broilers fed with basal diet, Clostridium Perfringens infection broilers fed with basal diet added zinc bacitracin at40mg·-kg-1, Clostridium Perfringens infection broilers fed with basal diet added5%natural zeolite, and Clostridium Perfringens infection broilers fed with basal diet added zinc bacitracin at40mg·kg-1and5%natural zeolite. The results showed that natural zeolite significantly increased the body weight and ADG (P<0.05), and zinc bacitracin improved all parameters of performance of broilers at starter phase, but the combining addition of natural zeolite with zinc bacitracin in diet had no effect on the performance of broilers(P>0.05). All treatments had no significant effect on organ index of broilers. The content of SA in serum increased by21.64%after Clostridium Perfringens infection, but natural zeolite or/and zinc bacitracin in diet had no effect on the content of SA in serum. The supplementation of natural zeolite or/and zinc bacitracin slightly increased breast meat rate and dressing yield.
     7The alleviative effects and mechanism of dietary natural zeolite (clinoptilolite) on broilers after low dose lead exposure
     Trial1720I-day-old AA broilers were randomly assigned to six treatment groups consisting of8replicates to study effects of natural zeolite and low dose lead added in diet on performance and serum HSP70of broilers. The treatments were:control (broilers fed with basal diet), basal diet added with3%natural zeolite,5%natural zeolite,10mg·kg-1Pb,3%natural zeolite with10mg·kg-1Pb,5%natural zeolite with10mg·kg-1Pb, respectively. The results showed that low dose lead had no effect on performance of broilers. The addition of3%natural zeolite, the low dose lead with3%and5zeolite increased BWG and decreased FCR at grower phase (P<0.05), and the addition of5%natural zeolite and lead of10mg·kg-1increased BWG and FCR (P<0.05) in whole period. The supplementation of natural zeolite or low dose lead in diet increased the serum HSP70OD value (P>0.05), the low dose lead with3%or5%natural zeolite increased HSP70level at grower phase (P<0.05)
     Trial2This experiment was carried out to study alleviative effects of natural zeolite on antibody titer、liver antioxidation function and expression of apoptosis associated genes of broilers during broiler fed diet with low dose lead addition. The treatments included: control (broilers fed with basal diet), basal diet added with10mg·kg-1Pb,5%natural zeolite,10mg·kg-1Pb with5%natural zeolite, respectively. The results showed that natural zeolite increased antibody titer of ND for broilers at16d and at37d (P<0.05), the supplementation of low dose lead did too(P<0.05). The natural zeolite reduced the residual of lead in breast of broilers, especially at42d (P<0.01).But all treatments had no significant effect on antioxidation function of broiler liver. The MT content of liver was increased in starter phase of chickens fed diet with low dose lead addition(P<0.05), but natural zeolite with or without low dose lead had no effect on the content of MT (P>0.05) The low dose lead increased the expression level of bax gene at42d (P<0.05), the zeolite decreased slightly bax gene level which result in increasing by lead (P>0.05), and significantly increased the expression level of bcl-2gene in thymus of broilers at21d. All treatments significantly enhanced bcl-2level. The supplementation of low dose lead or natural zeolite decreased the expression level of p53gene at21d (P<0.05),the low dose lead (P<0.05) or natural zeolite (P<0.01) in diet enhanced p53level of broilers at42d.
引文
[1]佘振宝,宋乃忠编著.沸石加工与应用[M].北京:化学工业出版社,2005.
    [2]王立本编译.关于沸石类矿物命名法的建议[J].矿物岩石地球化学通报,2002,2l(3):158-170.
    [3]徐如人,庞文琴,于吉红等著.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [4]胡宏杰,金梅.沸石的结构和性能及应用展望[J].矿产保护与利用,1996,(6):25-29(51).
    [5]唐启祥.沸石及其开发应用[J].玉溪师范学院学报,2004,20(8):34-38.
    [6]申少华,张术根,王大伟.天然沸石及其开发利用研究进展[J].矿产保护与利用,2000,(4):34-38.
    [7]鸟居一雄著,张承泰译,李智谦校.沸石的特性和利用[J].国外金属矿选矿,1979,(9):28-34.
    [8]薛玉,李广贺.沸石结构对氨氮吸附性能的影响[J].环境污染与防治,2003,25(4):209-210(239).
    [9]张寿庭,赵鹏大,徐旃章.天然沸石矿矿石不同物化性能间的相关性研究[J].地质科技情报,2004,23(1):42-46.
    [10]张寿庭,赵鹏大,陈建平等.天然沸石吸附性能与阳离子组分之间的关系[J].地球化学,200l,30(5):477-482.
    [11]朱建华.沸石化学的新进展[J].大学化学,1997,12(2):6-9.
    [12]潘忠华,潘兆橹.非金属矿物的改型改性及其在环境保护中的应用[J].地质科技情报,1995,14(3):51-55.
    [13]曹建劲.沸石改性及其吸附性能研究[J].化工矿物与加工,2002,(12):10-11(33).
    [14]张秀英.沸石的改性处理及吸附性能研究[J].化工矿物与加工,2006,(12):1l-12(16).
    [15]施惠生,刘艳红.改性沸石对Cr(VI)的吸附作用研究[J].建筑材料学报,2006,9(4):408-411.
    [16]詹予忠,杨向东,章培培等.改性斜发沸石吸附除水中铬(VI)的研究[J].中国矿业,2006,15(8):57-59(62).
    [17]沈振华,张玉先.改性沸石用于饮用水除氟的试验研究[J].新疆环境保护,2005,27(4):24-27.
    [18]张晖,周明达,张利民.改性沸石处理水中砷的研究[J].贵州化工,2006,31(2):7-9.
    [19]任刚,崔福义.改性天然沸石去除水中氨氮的研究[J].环境污染治理技术与设备,2006,7(3):75-79.
    [20]胡存杰,陈南春.红辉沸石对重金属铅离子的吸附性能[J].桂林工学院学报,2006,26(3):392-394.
    [21]李曼尼,江雅新,新民.白庙子斜发沸石的化学改性及重金属离子交换性能的研究:II化学改性与pb2+、Cd2+交换性能[J].内蒙古大学学报(自然科学版),1996,27(5):654-658.
    [22]刘莺,刘学良,王俊德.有机沸石对水中BTEX及铬酸根离子的吸附[J].环境化学,2003,22(4):373-376.
    [23]李曼尼,杨睿媛,吴瑞凤等.微波法磷改性斜发沸石的结构及水中除砷的研究[J].环境化学,2003,22(6):591-595.
    [24]李长洪,李华兴,张新明等.天然沸石的微量元素生物有效性研究[J].土壤与环境,2000,9(4):298-300.
    [25]王宁,李博文,李惠文等.非金属矿物在抗菌材料中的应用[J].高校地质学报,2000,6(2):306-309.
    [26]何娟,苏雪筠.载银无机抗菌剂及其应用[J].广州大学学报(自然科学版),2004,3(3):215-218.
    [27]严玉蓉,赵耀明.无机抗菌材料[J].化工进展,2001,(7):5-9.
    [28]甘舸,肖士民,曾光明.铜型抗菌沸石的合成与应用[J].华南理工大学学报(自然科学版),2001,29(6):36-39.
    [29]肖士民,邓新华,曾光明.熔盐离子交换法制备抗菌锌型沸石[J].硅酸盐学报,1998,26(5):624-629.
    [30]谌喜珠.金属离子沸石的制备及其抗菌活性[J].贵金属,1999,20(1):29-32.
    [31]王慧华,邱军,方庆红等.液相离子交换法制备沸石抗菌剂[J].沈阳化工学院学报,2004,18(3):200-203.
    [32]肖士民,李玲华,祁雁蓉等.用天然沸石离子交换制备抗菌沸石-斜发和丝光沸石的应用[J].华南理工大学学报(自然科学版),1997,25(12):12-16.
    [33]何丽新,赵临远,崔天顺.双金属抗菌沸石研究[J].非金属矿,2003,26(1):13-15.
    [34]俞波,王芳.复合金属离子抗菌沸石的制备及研究[J].无机材料学报,2005,20(4):921-926.
    [35]李殿超,蒋引珊,姚爱华等.载银沸石的抗菌性能及热稳定性研究[J].非金属矿,2003,26(3):8-9(28).
    [36]严建华,冯乃谦,翟凡等.载银天然沸石抗菌耐久性的研究[J].硅酸盐通报,2002,(3,):7-10.
    [37]李博威.我国对斜发沸石和丝光沸石的应用研究[J].矿产综合利用,1990,(4):32-37(15).
    [38]毕宏达,李学拥,王玉等.沸石对猪血管损伤止血的作用及对组织影响的初步研究[J].第四军医大学学报,2006,27(9):851-854.
    [39]高宏伟,马振凯.利用天然沸石富集酒精糟水中B族维生素、氨基酸和矿物质的基础试验[J].兽医大学学报,1989,9(3):292-296.
    [40]李晓芬,何静,马润宇等.青霉素酰化酶在介孔分子筛MCM-41上的固定化研究[J].化学学报,2000,58(2):167-171.
    [41]薛屏,卢冠忠,郭杨龙等,青霉素酰化酶在含铁MCM-4l介孔分子筛上的固定化研究[J].化学通报,2003,(10):68l-683.
    [42]高波,朱广山,傅学奇等.介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究[J].高等学校化学学报,2003,24(6):l100-1102.
    [43]徐坚,杨立明,王玉军等.介孔分子筛SBA-15的表面改性对脂肪酶固定化的强化作用[J].化工学报,2006,57(10):2407-2410.
    [44]肖宁,赵炳超,王艳辉等.介孔分子筛MCM-41固定化胰蛋白酶的研究[J].食品工业科技,2005,26(10):151-153.
    [45]赵炳超,马润宇,石波.介孔分子筛MCM-48固定化木瓜蛋白酶性质的研究[J].食品与发酵工业,2005,31(10):60-63.
    [46]连宾,张永玲,辛克敏.天然沸石对饲料发酵影响的研究初报[J].贵州农院学报,1993,12(1):82-85.
    [47]由善智,史同瑞,刘力威.应用沸石凝集反应进行猪瘟免疫监测的试验研究[J].黑龙江畜牧兽医,1997,(2):1-4.
    [48]周春芳,朱建华.沸石在生物医药中的新应用[J].江苏化工,2002,30(5):37-39.
    [49]杨柳青,温鹏宇,吉向飞等.沸石分子筛材料在医药领域中的应用[J].化工新型材料,2004,32(4):39442.
    [50]尤文涟,王世成,林英美等.莱阳沸石作肉鸡饲料添加剂的初步研究[J].莱阳农学院学报,1990,7(1):67-69.
    [51]陈守义,胡仲明,李文武等.“MFP"复合添加剂对肉鸡生产性能的影响[J].兽医大学学报,1993,13(3):277-280.
    [52]张云琦,张继.天然沸石对肉鸡生理生化指标的影响[J].中国饲料,1997,(22):23-25.
    [53]杨彩梅,陈安国.沸石对黄羽肉鸡的饲用效果及作用机理[J].浙江大学学报(农业与生命科学版),1999,25(6):619-622.
    [54]王军,汪植山,廖新弟等.添加沸石对肉仔鸡饲养效果的影响[J].家畜生态,2002,23(3): 14-16.
    [55]施正香,曲萍.不同营养水平添加沸石的饲喂效果[J].饲料研究,1999,(9):29-31.
    [56]邓波,杨淑晶,王淑萍等.沸石粉对肉鸡日粮能量和蛋白质利用的影响[J].吉林农业大学学报,2003,25(4):442-444(450).
    [57]卜祥斌,陈洁,刘红艳等.沸石粉、寡糖及益生素在黄鸡饲料中的应用效果研究[J].家畜生态学报,2006,27(1):37-40.
    [58]吕东海,王冉,周岩民等.不同品位沸石在肉鸡生产中的应用效果研究[J].粮食与饲料工业,2003,(3):32-34.
    [59]王玉江,韩维中,崔宝瑚等.饲粮中添加沸石、膨润土对肉仔鸡生产性能的影响[J].吉林农业大学学报,1990,12(3):113-115.
    [60]马富九,童红达,沈坚等.麦饭石及沸石饲喂肉用仔鸡的效果比较[J].上海畜牧兽医通讯,1993,(1):16-17.
    [61]张正珊,黄仁录,李峰.天然沸石饲喂艾维因肉鸡试验[J].河北农业大学学报,1992,15(3):71-74.
    [62]余佳胜,张继.广东沸石饲养肉鸡的效果及机理:(一)广东沸石对肉鸡生产性能的影响[J].饲料研究,1995,(9):4-5.
    [63]余佳胜,张继.广东沸石饲养肉鸡的效果及机理:(二)对肉鸡血液生理生化指标的影响[J].饲料研究,1995,(10):10-11.
    [64]余佳胜,张继.广东沸石饲养肉鸡的效果及机理:(三)肉鸡料中沸石作用机理初探[J].饲料研究,1995,(11):8-10.
    [65]吕东海,周岩民,姚建国.不同品位沸石对蛋鸡生产性能影响的试验研究[J].粮食与饲料工业,2002(7):39-40.
    [66]刘卫东.沸石粉对蛋鸡生产性能的影响[J].中国饲料,1999,(5):9-10.
    [67]陈承祯,任汉林,牛淑玲.日粮中添加沸石对蛋鸡生产性能的影响[J].山东家禽,2002,(2):27-28,52.
    [68]范官厚.日粮中添加沸石对笼养蛋鸡生产性能和营养物质代谢的影响[J].饲料博览,1990,(14):12-15.
    [69]曹建劲.用沸石和膨润土替代部分饲粮饲喂蛋鸡试验[J].非金属矿,2002,25(5):48-49.
    [70]杨久仙,李志莲.饲喂沸石添加剂对蛋用种鸡生产性能的影响[J].当代畜牧,1999,(2):36,38.
    [71]夏中生,王振权,覃崇谦.肉鸭饲粮中添加沸石的效果[M].广西农学院学报,1992,11(1):85-88.
    [72]吴灵千.饲料中不同沸石粉添加量对蛋鹌鹑生产性能的影响[J].饲料工业,1998,19(7):10-11.
    [73]夏中生,王振权.生长肥育猪饲粮中添加沸石和麦饭石试验[J].广西农业科学,199l,(5):234-237.
    [74]夏成兴.沸石添加剂喂猪试验[J].中国畜牧杂志,1988,(3):48.
    [75]杨茂正,张凤安,孙运超.沸石喂猪试验报告[J].辽宁畜牧兽医,1998,(1):8-9.
    [76]陈安国,项雷生,陈小平等.沸石粉在生长猪饲粮中应用效果的研究[J].浙江畜牧兽医,1999,(2):4-6.
    [77]崔宝瑚,韩维中,王玉江等.饲粮中添加沸对生长肥育猪生产性能的影响[J].吉林农业大学学报,1989,11(2):92-95.
    [78]夏中生,王振权,覃树华.添加广西沸石和麦饭石饲喂生长肥育猪的试验研究[J].广西农学院学报,1991,10(2):43-52.
    [79]吴秋玉,程潮清.肉猪饲粮中添加沸石粉效果试验[J].养猪,1999,(1):28.
    [80]姚光光,姚五四,傅瑞江.肉猪日粮中添加沸石粉的效果研究[J].当代畜牧,1999,(6):35-36.
    [81]颜培实.生长肥育猪日粮添加沸石的效果[J].饲料博览,1989,(5)12-13.
    [82]王岗,李钟乐,陈志敏.天然沸石和膨润土的复合制剂对延边黄牛一些血液指标的影响[J].内蒙古畜牧科学,2000,21(2):3-5.
    [83]徐春城,李钟乐.天然沸石在肉牛饲养上的应用研究[J].延边农学院学报,1994,16(4):218-223.
    [84]韩成,苏振东.天然沸石用于育肥羊饲养试验研究[J].中国非金属矿工业导刊,1999,(2): 17-18(20).
    [85]赵国成.日粮中添加沸石对肉兔生长的影响[J].经济动物学报,1998,2(4):10-12.
    [86]陈建明,吴文,吴海林.沸石粉作草鱼饲料矿物添加剂的研究[J].水利渔业,1992,(6):14-16.
    [87]陈多序,杜秀华,岳金妹等.斜发沸石作鲤饲料矿物添加剂的研究[J].水利渔业,1991,(5):3-7.
    [88]郑松周,林义浩,钟良明等.添加人造沸石提高运输鱼种成活率试验[J].淡水渔业,1987,(2):13-14.
    [89]章云,唐银凤,王永忠等.育成期水貂饲料中添加沸石的应用效果初探[J].江苏农业科学,1990,(4):61(封三).
    [90]董毓兴,仲秀珍,张秀芬等.沸石对肉鸡增重及禽舍小气候影响的研究[J].吉林农业大学学报,1986,8(4):74-77(82).
    [91]周庆民,王观悦,孙宏远.添饲沸石粉对畜舍氨含量影响的实验[J].黑龙江畜牧兽医,1997,(9):21-22.
    [92]黄仁录,王振权,梁鸿唐等.肉鸡饲料使用广西沸石与麦饭石效果的研究[J].广西畜牧兽医,1989,(4):2-7.
    [93]刘开容,蒲德伦,冯元信等.几种环保添加剂对蛋鸡舍除臭效果的研究[J].家畜生态1998,19(4):1-6.
    [94]韩成.北京地区天然沸石饲料添加剂试验与应用[J].北京农业科学,1999,17(4):34-36.
    [95]王凯军主编.畜禽养殖污染防治技术与政策[M].北京:化学工业出版社,2004.
    [96]潘涌璋,饶斌.沸石对猪场废水深度脱氮除磷的效果研究[J].家畜生态学报,2005,26(3):47-49.
    [97]吴逢春,邓建军,赵世泉.纤维状矿物粉尘对肺泡巨噬细胞膜损伤的机制研究[J].川北医学院学报,1999,14(1):2-4.
    [98]鞠玉琳,金香莲,曹丽等.斜发沸石的毒性试验研究[J].延边大学农学学报,2001,23(1):58-61.
    [99]吴卫东综述,刘树春审校.沸石及其危害[J].国外医学卫生学分册,1989,(6):321-324.
    [100]吴卫东,刘树春.沸石尘体外细胞毒性研究[J].职业医学,1992,19(2):76-77(128).
    [101]吴天德,俞联平,李青.天然饲用沸石有效开发利用品位的研究[J].粮食与饲料工业,2000,(2):23-24.
    [102]董志岩,童斌,李忠荣等.要选用吸值大的沸石[J].中国饲料,1999,(9):26-27.
    [103]刘兴义摘译.俄罗斯农业部兽医总局关于沸石在动物医学中的应用规程[J].畜禽业,1995,12:15-16.
    [104]孟紫强主编.环境毒理学基础[M].北京:高等教育出版社,2003.
    [105]史志诚主编.动物毒物学[M].北京:中国农业出版社,2001.
    [106]刘宗平.环境铅镉污染对动物健康影响的研究[J].中国农业科学,2005,38(1):185-190.
    [107]侯彦喜.重金属类环境激素对食品安的生态风险分析[J].河南工业大学学报(自然科学版),2005,26(3):84-86(90).
    [108]袁慧,赵文魁,文利新等.湖南省部分地区饲料中镉含量的调查研究[J].湖南畜牧兽医,1997,(2):27-28.
    [109]陈琦昌,马成林,孔崇华.吉林省土壤、饲料、猪体内镉、铬、汞、铅、砷含量及相关性分析[J].兽医大学学报,1992,12(3):271-275.
    [110]何祥来,王捍东,袁燕等.上市肉鸡组织样品中铅、镉、铜、铬含量的测定[J].畜牧与兽医,2005,37(1):15-17.
    [111]胡忠泽,杨久峰,谭志静等.18种动物性食品中铅污染状况分析研究[J].粮油食品科技,2004,12(1):31-33.
    [112]马龙江,张红,王萍等.铅砷汞镉在鸭肉中的含量调查[J].中国兽医杂志,1997,23(8): 58.
    [113]刘均,马振苓,史可江.济宁南四湖鸭肉中砷、铅、汞、镉含量调查[J].卫生研究,1992,2l(6):313-315.
    [114]王若军,苗朝华,张振雄等.中国饲料及饲料原料受霉菌毒素污染的调查报告[J].饲料工业,2003,24(7):53-54.
    [115]史莹华,王成章,孙宇.饲料中霉菌毒素的危害及其控制[J].河南农业大学学报,2006,40(6):683-686.
    [116]宋铁山,郑曦.铅中毒患者血清一氧化氮水平的变化[J].咸宁医学院学报,2002,16(3)176-177.
    [117]安兰敏,牛玉杰,安宝恒等.铅对大鼠脑细胞一氧化氮合酶表达的影响[J].环境与健康杂志,2004,21(5):296-297.
    [118]安兰敏,牛玉杰,徐兵等.铅对大鼠脑细胞凋亡的诱发作用及对fos、jun、p53基因和一氧化氮合酶表达的影响[J].癌变·畸变·突变,2006,18(5):359-362.
    [119]安兰敏,杨军,徐兵.铅对大鼠脑细胞凋亡的诱发作用及对p53基因表达影响的研究[J].癌变·畸变·突变,2003,15(4):209-212.
    [120]王桂兰,刘双军,侯玉春等.铅对大鼠脑细胞膜脂质过氧化和超氧化物歧化酶活性的影响[J].卫生毒理学杂志,1995,9(3):175-176.
    [121]吴萍,申东晓,赵冰樵等.铅对大鼠脑组织脂质过氧化及自由基作用的研究[J].铁道劳动安全卫生与环保,1998,25(2):91-93.
    [122]简弘晨,曾宗鹏,惠秀娟等.铅化合物体外诱导人的淋巴细胞DNA损伤的遗传毒性[J].辽宁大学学报(自然科学版),1999,6(1):84-87.
    [123]董淑英,应长青,闻颖等.醋酸铅对小鼠免疫细胞增殖和DNA损伤的研究[J].中华劳动卫生职业病杂志,2005,23(6):457-458.
    [124]张荣,牛玉杰,程云会.醋酸铅对大鼠脑细胞凋亡及bcl-2基因表达的影响[J].中华劳动卫生职业病杂志,2000,18(4):232-234.
    [125]张荣,牛玉杰,程云会等.醋酸铅对大鼠脑细胞凋亡及的影响[J].中国公共卫生,200l,17(10):959-960.
    [126]刘倩琦,陈荣华,秦锐等.长期低铅染毒大鼠脾脏超微结构的观察[J].电子显微学报,2000,19(6):825-829.
    [127]牛侨,何淑嫦,王建英等.低水平长期铅接触对作业工人淋巴细胞亚群的影响[J].劳动医学,2001,18(1):8-9.
    [128]王兰芳,马西艺,荣强.禽坏死性肠炎的发生及其影响因素[J].饲料研究,2005,(3):41-43.
    [129]StephenA著,崔水保摘译,杨圣典校.鸡坏死性肠炎的防制[J].国外畜牧科技,1998,25(3): 48.
    [130]Norton,R.A等著,王成明摘译,江家晴校.家禽梭状芽胞杆菌病[J].国外畜牧科技,2000,27(3):49-50.
    [131]郑磊,颜晓慧.热应激时热休克蛋白70及其细胞保护作用[J].国外医学一卫生学分册,1999,26(4):209-212.
    [132]王启军,张宏福,王永军.热应激蛋白在动物应激反应中的作用机制[J].饲料工业,2006,27(11):14-17.
    [133]彭黎明,王曾礼主编.细胞凋亡的基础与临床[M].北京:人民卫生出版社,2000.
    [134]胡野,凌志强,单小云.细胞凋亡的分子医学[M].第一版.北京:军事医学科学出版社,2000.
    [135]温进坤,韩梅主编.医学分子生物学理论与研究技术(第二版)[M].北京:科学出版社,2002.
    [136]方允中,郑荣梁主编.自由基生物学的理论与应用[M].北京:科学出版社,2002.
    [137]G.克劳斯著,孙超,刘景生等译.信号转导与调控的生物化学(原著第三版)[M].北京:化学工业出版社,2005.
    [138]田茂友,金作衡.一氧化氮的性质及其生理学作用[J].四川生理科学杂志,2006,28(3):12l-122.
    [139]陈江综述,舒志军,彭炜审校.一氧化氮与肠屏障功能[J].肠外与肠内营养,2006, 13(1): 51-54.
    [140]王亚珍,刘莹综述,彭望明审校,对一氧化氮作用的新认识[J].江汉大学学报(自然科学版),2006,34(3):37-40.
    [141]季清州,王立波,周元等.金属硫蛋白结合铅离子的竞争反应和置换反应研究[J].北京大学学报(自然科学版),2000,30:503-508.
    [142]龚伟,金宁一,王哲等.铅引起细胞急性死亡的途径[J].中国兽医学报,2000,20(1):6-9.
    [143]牛玉杰,张荣,程云会等.醋酸铅对大鼠脑细胞凋亡及bcl-2、bax基因表达的影响[J].中华预防医学杂志,2002,36(1):30-33.
    [144]孙家寿,刘羽,鲍世聪等.天然沸石吸附剂的除铅性能研究[J].化工矿山技术,1997,26(7):41-44.
    [145]曹伟,傅佩玉,韩中华等.天然沸石处理含铅废水的试验研究[J].环境导报,1998,(2):20-22.
    [146]李虎杰,田煦,易发成.活化沸石对pb2+的吸附性能研究[J].非金属矿,2001,24(2):49-51.
    [147]马万山,许春萱,郭鹏.多孔质天然沸石颗粒吸附剂对镉的吸附性能及再生研究[J].非金属矿,2002,25(3):46-47.
    [148]李爱阳,褚宏伟.改性斜发沸石处理电镀废水中的重金属离子[J].材料保护,2004,37(6):37-38,45.
    [149]谢华林,李立波.改性沸石对重金属离子吸附性能的试验研究[J].非金属矿,2005,28(1):47-49.
    [150]李宁摘译,王彩虹校.在饲料中添加沸石可防止汞在肉鸡内脏中蓄积[J].中国畜牧兽医,2002,29(3):40.
    [153]卢永红,吕玉华,夏来发等.饲料霉菌毒素脱毒剂晶体的电镜观察[J].上海畜牧兽医通讯,2006,(4):18-19.
    [154]王世荣,任俊源.沸石对肠道菌的作用[J].中国兽医杂志,1991,17(4):24-25.
    [155]阴天榜.沸石的药理与应用[J].河南农业科学,1987,(3):22-24.
    [156]马丽清.应用天然沸石预防仔猪腹泻的试验[J].黑龙江畜牧兽医,2003,(6):37-38.
    [157]Abbes S,Salah-Abbes J B,Ouanes Z,et al. Preventive role of phyllosilicate clay on the Immunological and Biochemical toxicity of zearalenone in Balb/c mice[J]. International Immunopharmacology,2006,6:1251-1258.
    [158]Abou-Arab A A K. Heavy metal contents in Egyptian meat and the role of detergent washing on their levels[J]. Food and chemical Toxicology,2001,39:593-599.
    [159]Aleksandra D,Magdalena T C,Vera D,et al. Adsorption of mycotoxins by organozeolites[J]. Colloids and Surfaces B:Biointerfaces,2005(46):20-25.
    [160]Alexander H, Stefan F,Othmar K,et al. Mycotoxin detoxication of animal feed by different adsorbents[J]. Toxicology Letters,2001,122:179-188.
    [161]Alexopoulos C,Papaioannou D S,Fortomaris P,et al. Experimental study on the effect of in-feed administration of a clinoptilolite-rich tuff on certain biochemical and hematological parameters of growing and fattening pigs[J]. Livestock Science,2007,111:230-241.
    [162]Aly S E,Abdel-Galil M M,Abdel-Wahhab M A. Application of adsorbent agents technology in the removal of aflatoxin B1 and fumonisin B1 from malt extract[J]. Food and Chemical Toxicology,2004,42:1825-1831.
    [163]Avantaggiato G,Havenaar R,Visconti A. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model And the binding efficacy of activated carbon and other adsorbent materials [J].Food and Chemical Toxicology,2004,41: 817-824.
    [164]Ayben T,Semra U. Silver, zinc and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity[J]. Applied Clay Science,2004,27:13-19.
    [165]Bafundo K W,Baker D H,Fitzgerald P R. Lead toxicity in the chick as affected by excess copper and zinc and by Eimeria acervulina infection[J].Poultry Science,1984,63:1594-1603.
    [166]Bakalli R I,Pesti G M,Ragland W L,et al. The magnitude of lead toxicity in broiler chicken[J]. Veterinary and Human Toxicology,1995,37:15-23.
    [167]Ballard R,Edwards J R H M. Effect of dietary zeolite and vitamin A on the tibial dyschondroplasia in chickens[J]. Poultry Science,1988,67:113-119.
    [168]Basanez C,Nechushtan A,Drozhinin O,et al Bax,but not Bcl-XL decreases to life time of planar phospholipid bilayer membranes at subnaomdar concentrations [J]. Proceedings of the National Academy of Sciences,1999,9(10):5492-5497.
    [169]Bernal M P,Lopez-Real J M. Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials[J]. Bioresource Technology,1993,43:27-33.
    [170]Bensaad K,Vousden K H. P53:new roles in metabolism[J]. Trends in Cell Biology,2007,17: 286-291.
    [171]Cakicioglu-Ozkan F,Ulku S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite[J]. Microporous and Mesoporous Materials, 2005,77:47-53.
    [172]Chiku H,Matsui M,Murakami S,et al. Zeolites as new chromatographic carriers for proteins-easy recovery of proteins adsorbed on zeolites by polyethylene glycol[J]. Analytical Biochemistry,2003,318:80-85.
    [173]Clark.K.J,Sarr A B,Grant P G,et al. In vitro studies on the use of clay Clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus[J]. Veterinary Microbiology,1998,63: 137-146.
    [174]Concepcion-Rosabal B,Rodriguez-Fuentes G,Simon-Carballo R. Development and featuring of the zeolitic activeprinciple FZ:a glucose adsorbent[J]. Zeolites,1997 19:47-50.
    [175]Corner D E.Mycotoxicosis:mechanisms of immmosuppression[J]. Veterinary Immunology and Immunopathology,1991,30:73-87.
    [176]Culfaz M,Melek Yagiz M. Ion exchange properties of natural clinoptilolite:lead-sodium and cadmium-sodium equilibria[J]. Separation and Purification Technology 2004,37:93-105.
    [177]Dahiya J P,Wilkie D C,Van Kessel A G,et al. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era[J]. Animal Feed Science and Technology,2006,129:60-88.
    [178]Dakovic A,Tomasevic-Canovic M,Rottinghaus G,et al. Adsorption of ochratoxin A on octadecyldimethyl benzyl ammonium exchanged-clinoptilolite- heulandite tuff[J]. Colloids and Surfaces B:Biointerfaces,2003,30:157-165.
    [179]Dakovic A,Tomasevic-Canovic M,Dondur V. Adsorption of mycotoxins by organozeolites[J]. Colloids and Surfaces B:Biointerfaces,2005,46:20-25.
    [180]Dakovic A,Matijasevic S,Rottinghaus G E,et al. Adsorption of zearalenone by organomodified natural zeolitic tuff[J]. Journal of Colloid and Interface Sciencc,2007,311:8-13.
    [181]Deligiannisa K,Lainasb Th,Arsenosc G,et al. The effect of feeding clinoptilolite on food intake and performance of growing lambs infected or not with gastrointestinal nematodes[J]. Livestock Production Science,2005,96:195-203.
    [182]Dietert R R,Lee J E,Hussain I,et al. Developmental immunotoxicology of lead[J]. Toxicology and Applied Pharmacology,2004,198:86-94.
    [183]Dong X,Zhou C F,Yue M B,et al. New application of hierarchical zeolite in life science:Fast trapping nitrosamines in artificial gastric juice by alkaline-tailored HZSM-5[J]. Materials Letters,2007,61:3154-3158.
    [184]Edwards JR H M. Effect of dietary calcium Phosphorus Chloride And zeolite on the development of tibial dyschondroplasia[J]. Poultry Science,1988,67:1436-1446.
    [185]Elliot M A,Edwards JR H M. Comparison of the effects of synthetic and natural zeolite on laying hen and broiler chicken performance[J]. Poultry Science,1991,70:2115-2130.
    [186]Fachini A M,Fernanda C,Leal M F C,Vasconcelos M T S D. Are zeolites capable of modifying the yield of marine micro-algae cultures? A case study with Emiliania huxleyi and a product of zeolitic nature [J]. Aquaculture,2004,237:407-419.
    [187]Fernando L P,Wei D Y. Glen K.A Structure and expression of chicken metallothionein[J]. Nutrition 1989,1109:309-18.
    [188]Fethiere R,Miles R D,Harms R H. The utilization of sodium in sodium zeolite A by broilers[J]. Poultry Science,1994,73:118-121.
    [189]Fokas P G.,Zervas K,Fegeros,et al Assessment of Pb retention coefficient and nutrient utilization in growing pigs fed diets with added clinoptilolite[J]. Animal Feed Science and Technology 2004,117:121-129.
    [190]Gabai V L,Meriin A B,Yaglom J A,et al. Role of Hsp70 in regulation of stress-kinase JNK:implications in apoptosis and aging[J]. Federation of European Biochemical Societies Letters,1998,438:1-4.
    [191]Gibert M,Jolivet-Beynancl C,Popott M.R,et al. Beta 2 toxin A novel toxin produced by Clostridium perfringens[J]. Gene,1997,203:65-73.
    [192]Grce M,Pavelic K. Antiviral properties of clinoptilolite[J]. Microporous and Mesoporous Materials,2005,79:165-169.
    [193]Harris J A,Birch P. The effect of zeolite on the toxicity of lead to fungi[J]. Environmental Pollution,1988,49:235-241.
    [194]Harvey R B,Kubena L F,Phillips T D,et al. Prevention of aflatoxicosis by addition of hydrated sodium calcium aluminosilicate to the diets of growing barrows [J]. American Journal of Veterinary Research,1989,50:416-420.
    [195]Harvey R B,Kubena L F,Elissalde M H,et al. Comparison of two hydrated sodium calcium aluminosilicate compounds to experimentally protect growing barrows from aflatoxicosis [J]. Journal of Veterinary Diagnostic Investigation,1994,6:88-92.
    [196]Harvey R B,Phillips T D,Ellis J A,et al. Effects on aflatoxin M1 residues in milk by addition of hydrated sodium calcium aluminosilicate to aflatoxin-contaminated diets of dairy cows[J]. Am J Vet Res 1991.52:1556-1559.
    [197]Houot F G,Rasset L,Magnouxb P,et al. Catalytic transformation of cholesterol over HFAU zeolites[J]. Journal of Molecular Catalysis A:Chemical,2007,265:117-126.
    [198]Hussein S H,Brasel J M. Toxicity Metabolism And impact of mycotoxins on humans and animals[J]. Toxicology,2001,167:101-134.
    [199]Inoue Y,Kanzaki Y. The mechanism of antibacterial activity of silver-loaded zeolite[J]. Journal of Inorganic Biochemistry 1997 67:377.
    [200]Ishiyama T, Koike Y, Akimoto.Y, et al. Heat shock-enhanced T-cell apoptosis with heat shock protein70 on T-cell surface in multicentric Castlemans disease[J]. Clinical & Experimental Immunology,1996,106:351.
    [201]Jain S K. Protective role of zeolite on short-and long-term lead toxicity in the teleost fish Heteropneustesfossilis[J]. Chemosphere,1999,39:247-251.
    [202]Kim C J,Choe Y J,Yoon B H,et al. Patterns of Bcl-2 expression in placenta[J]. Pathology Research and Practice,1995,191:1239-1244.
    [203]Korkuna O,Leboda R,Skubiszewska-Zieba J,et al. T Structural and physicochemical properties of natural zeolites:clinoptilolite and mordenite[J]. Microporous and Mesoporous Materials,2006,87:243-254.
    [204]Kubena L F,Harvey R.B,Phillips T D,et al. Diminution of aflatoxicosis in growing chickens by the dietary addition of a hydrated sodium Calcium aluminosilicates[J]. Poultry Science 1990 69(5):727-735.
    [205]Kubena L F,Harvey R B,Phillips T D,et al. Effect of hydrated sodium calcium aluminosilicates on aflatoxicosis in broiler chicks[J]. Poultry Science,1993b,72:651-657.
    [206]Kyriakis S C,Papaioannou D S,Alexopoulos C,et al. Experimental studies on safety and efficacy of the dietary use of a clinoptilolite-rich tuff in sows:a review of recent research in Greece[J]. Microporous and Mesoporous Materials,2002,51:65-74.
    [207]Lam A,Rivera A,Rodriguez-fuentes G. Theoretical study of metronidazole adsorption on clinoptilolite[J]. Microporous and Mesoporous Materials 2001.49,157-162.
    [208]Lam A,Sierra L R,Rojas G,et al. Theoretical study of the physical adsorption of aspirin on natural clinoptilolite[J]. Microporous and Mesoporous Material,1998,23:247-252.
    [209]Lee J E,Chen S,Golemboski K A,et al. Developmental windows of differential lead-induced immunotoxicity in chickens[J]. Toxicology,2001,156:161-170.
    [210]Lee Y J,Chen Y P,Wang S H,et al. Structure and ex pression of metallothionein gene in ducks[J]. Gene,1996,176:85-92.
    [211]Lemke S L,Ottinger S E,Mayura K,et al. Development of a multi-tiered approach to the in vitro prescreening of clay-based enterosorbents[J]. Animal Feed Science and Technology,2001, 93:17-29.
    [212]Leung S,Barrington S,Wan Y,et al. Zeolite (clinoptilolite) as feed additive to reduce manure mineral content[J]. Bioresource Technology,2006,98:3309-3316.
    [213]Li K,Li Y,Shelton J M,et al. Cytochrome C deficiency causes embryonic lethality and attenuates stress-induced apoptosis[J]. Cell,2000,101(4):389-399.
    [214]Li Q. Framework and properties of zeolites[J]. Neijiang Teachers College,2000,15(4):28-34.
    [215]Lindsten T,Ross A J,King A,et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for nomal development of multiple tissues[J]. Molecular Cell, 2000,6:1389-1399.
    [216]Liu J X,Zua Y G,Shi X G,et al. BjMT2 A metallothionein type-2 from Brassica juncea May effectively remove excess lead from erythrocytes and kidneys of rats[J]. Environmental Toxicology and Pharmacology,2007,23:168-173.
    [217]Maciorowski K G,Herrera P,Jones F T,et al. Effects on poultry and livestock of feed contamination with bacteria and fungi [J]. Animal Feed Science and Technology,2007, 133:109-136.
    [218]Magdalena T C, Aleksandra D,George R,et al. Surfactant modified zeolite-new efficient adsorbents for mycotoxins[J]. Microporous and Mesoporous Materials,2003,61:173-180.
    [219]Martin-Kleiner I,Flegar-Mestric Z,Zardro Z,et al. The effect of the zeolite clinoptilolite on serum chemistry and hematopoiesis in mice[J]. Food and Chemical Toxicology,2001,39:717-727.
    [220]Mauro F R,Wolfgang C P,Hamilton D S F. Clong and detection of metallothionein mRNA by RT-PCR in mangrove oyster(Crassostrea rhizphorae)[J]. Aquatic Toxicology,2003,64:359-362.
    [221]Mayura K,Abdel-Wahhab M A.McKenzie K S,et al. Prevention of maternal and developmental toxicity in rats via dietary inclusion of common aflatoxin sorbents:potential for hidden risks [J]. Toxicological Science,1998,41:175-182.
    [222]Miazzo R,Rosa C A R,Cavalho D Q,et al. Efficacy of Synthetic Zeolite to Reduce the Toxicity of Aflatoxin in Broiler Chicks [J]. Poultry Science,2000,79 (1):1-6.
    [223]Mitrovic B,Vitorovic G,Vitorovic D,et al. AFCF and clinoptilolite use in reduction of 137Cs deposition in several days' contaminated broiler chicks[J]. Journal of Environmental Radioactivity,2007,95:171-177.
    [224]Mosser D D,Caron A W,Bourget L,et al. Role of human heat shock protein hsp70 in protection against stress-induced apoptosis[J]. Molecular and Cellular Biology,1997,17:5317.
    [225]Mumpton F A,Fishman P H. The application of natural zeolites in animal science and aquaculture[J]. Journal of Animal Science,1977,45:1188-1203.
    [226]Numata T,Saito T,Maekawa K,et al. Bcl-2-linked apoptosis due to increase in NO synthase in brain of SAMP10[J]. Biochemical and Biophysical Research Communications,2002,297: 517-522.
    [227]Oberto A,Marks N,Evans H L,et al. Lead(Pb2+) promotes apoptosis in new born rat cerebellar neurons:pathological implications [J]. Journal of Pharmacology and Experimental Therapeutics,1996,279:435-442.
    [228]Oguz H,Kececi T,Birdane.Y O,et al. Effect of clinoptilolite on serum biochemical and haematological characters of broiler chickens during aflatoxicosis[J]. Research in Veterinary Science 2000,69:89-93.
    [229]Oguz H,Kurtogglu V,Coskun B. Preventive efficacy of clinoptilolite in broilers during chronic aflatoxin (50 and 100 ppb) exposure[J]. Research in Veterinary Science 2000,69:197-201.
    [230]Oguz H,Ortatatli M. Evaluation of biochemical characters of broilers chickens during dietary aflatoxin (50 and 100 ppb) and clinoptilolite exposure Research in Veterinary Science, 2002,73:101-103.
    [231]Olver M D. Effect of feeding clinoptilolite (zeolite) on the performance of three strains of laying hens[J]. British Poultry Sciemce,1997,38:220-222.
    [232]Ortatatli M,Oguz H,Hatipoglu F. Evaluation of pathological changes in broilers during chronic aflatoxin (50and100ppb) and clinoptilolite exposure [J]. Research in Veterinary Science,2005,78:61-68.
    [233]Ortatatli M,Oguz H. Ameliorative effects of dietary clinoptilolite on pathological changes in broiler chickens during aflatoxicosis[J]. Research in Veterinary Science,2001,71:59-66.
    [234]Otker H M,Akmehmet-Balcioglu I. Adsorption and degradation of enrofloxacin A veterinary antibiotic on natural zeolite[J]. Journal of Hazardous Materials,2005,122:251-258.
    [235]Pack C D,Kumaraguru U,Suvas S,et al. Heat-shock protein 70 acts as an effective adjuvant in neonatal mice and confers protection against challenge with Herpes Simplex Virus[J]. Vaccine,2005,23:3526-3534.
    [236]Papaioannou D,Katsoulos P D,Panousis N,et al. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farmanimal diseases:A review[J]. Microporous and Mesoporous Materials,2005,84:161-170.
    [237]Papaioannou D S,Kyriakis C S,Alexopoulos C,et al. A field study on the effect of the dietary use of a clinoptilolite-rich tuff Alone or in combination with certain antimicrobials On the health status and performance of weaned G rowing and finishing pigs[J]. Research in Veterinary Science, 2004,76:19-29.
    [238]Papaioannou D S,Kyriakis S C,Papasteriadis A,et al. A field study on the effect of in-feed inclusion of a natural zeolite (clinoptilolite) on health status and performance of sows/gilts and their litters[J]. Research in Veterinary Science,2002,72:51-59.
    [239]Papaioannou D S,Kyriakis S C,Papasteriadis A,et al. Effect of in-feed inclusion of a natural zeolite (clinoptilolite) on certain vitamin Macro and trace element concentration in the blood Liver and kidney tissues of sows[J]. Research in Veterinary Science,2002 72:61-68.
    [240]Parton R F,Vankelecom I F J,Casselman M J A,et al. An efficient mimic of cytochrome P-450 from a zeolite-encaged iron complex in a polymer membrane[J]. Nature,1994,370:541-544.
    [241]Pavelic K,Hadzija M,Bedrica L,et al. Natural zeolitic clinoptilolite:new adjuvant in anticancer therapy[J]. Journal of Molecular Medicine,2001,78:708-720.
    [242]Pavelic K,Katic M,Sverko V. Immunostimulatory effect of natural Clinoptilolite as a possible mechanism of its antimetastatic ability[J]. Journal of Cancer Research and Clinical Oncology.2002,128:37-44.
    [243]Peyghan R,Takamy G A. Histopathological Serum enzyme Cholesterol and urea changes in experimental acute toxicity of ammonia in common carp Cyprinus carpio and use of natural zeolite for prevention[J]. Aquaculture International,2002,10:317-325.
    [244]Phillips T D,Kubena L F,Harvey R B,et al. Hydrated sodium calcium aluminosilicate:a high affinity sorbent for aflatoxin[J]. Poultry Science,1988,67:243-247.
    [245]Placinta C M D,Mello J P F,MacDonald A M C. A review of worldwide contamination of cereal grains and animal feed with Fusariam mycotoxins[J]. Animal Feed Science and Technology, 1999,78:21-37.
    [246]Poccia F,Piselli P,Vendetti S,et al. Heat-shock protein expression on the membrane of T cells undergoing apoptosis[J]. Immunology,1996,88:6.
    [247]Portejoie S,Martinez J G,Uiziou F,et al. Effect of covering pig slurry stores on the ammonia emission processes[J]. Bioresource Technology,2003,87:199-207.
    [248]Poulsen H D,Oksbjerg N. Effects of dietary inclusion of a zeolite (clinoptilolite) on performance and protein metabolism of young growing pigs[J]. Animal Feed Science and Technology,1995,53:297-303.
    [249]Quintavalla S,Vicini L. Antimicrobial food packaging in meat industry[J]. Meat Science, 2002,62:373-380.
    [250]Ramos A J,Hemhdez E. Prevention of aflatoxicosis in farm animals by means of hydrated sodium calcium aluminosilicate addition to feedstuffs:a review[J]. Animal Feed Science and Technology,1997,65:197-206.
    [251]Ramu J,Clark K,Woode G N,et al..Adsorbtion of cholera and heat-labile Escherichia coli enterotoxins by various adsorbents:an in vitro study[J]. Journal of Food Protection,1997, 60:358-362.
    [252]Rehakova M,Cuvanova S,Dzivak M,et al. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type[J]. Current Opinion in Solid State and Materials Science,2004, 8:397-404.
    [253]Rivera A,Farias T. Clinoptilolite-surfactant composites as drug support:A new potential application[J]. Microporous and Mesoporous Materials,2005,80:337-346.
    [254]Rivera A,Farias.T,Ruiz-Salvador A R,et al. Preliminary characterization of drug support systems based on natural clinoptilolite[J]. Microporous and Mesoporous Materials,2003,61:249-259
    [255]Rivera-Garza M,Olguin M T G,Arcia-Sosa I,et al. Silver Supported on natural mexican zeolite as an antibacterial material[J]. Microporous and Mesoporous Materials,2000,39:431-444.
    [256]Robert S,Bowman R S. Applications of surfactant-modified zeolites to environmental remediation [J]. Microporous and Mesoporous Materials,2003,61:43-56.
    [257]Rodriguez-Fuentes G,Barrios M A,Iraizoz A,et al.Enterex:Anti-diarrheic drug based on purified natural clinoptilolite [J]. Zeolites,1997,19:441-448.
    [258]Rodriguez-Fuentes G,Denis A R,Alvarez M A B,et al. Antacid drug based on purified natural clinoptilolite[J]. Microporous and Mesoporous Materials,2006,94:200-207.
    [259]Roland SR D A,Laurent S M,Orloff H D. Shell quality as influenced by zeolite with high ion-exchange capability[J]. Poultry Sciemce,1985,64:1177-1187.
    [260]Roland SR D A. Further studies of effects of sodium aluminosilicate on egg shell quality[J]. Poultry Sciemce,1988,67:577-584.
    [261]Roland D A.Sr,Rabon H W Jr, Rao K S,et al. Evidence for absorption of silicon and aluminum by hens fed sodium zeolite A[J]. Poultry Sciemce,1993,72:447-455.
    [262]Roos W P,Kaina B. DNA damage-induced cell death by apoptosis[J]. Trends in Molecular Medicine,2006,12:440-450.
    [267]Sato S,Okabe M M,et al. Metallothionein in the ovaries of laying hens exposed to cadmium[J]. Life Science,1996; 58:1561-1567.
    [268]Sato M,Apostolova M D,Hamaya M,et al. Susceptibity of metallothionein-nullmice to paraquat[J]. Environmental Toxicology and Pharmacology.l996.(1):221-225.
    [269]Scheideler S E. Effects of various types of aluminosilicates and aflatoxin B On aflatoxin toxicity Chick performance And mineral status[J]. Poultry Sciemce,,1993,72:282-288.
    [270]Schmitt C A,Lewe S W. Apoptosis and therapy[J]. J Phato,1999,187:127-137.
    [271]Sellins K S,Cohen J J. Hyperthermia induces apoptosis in thymocytes[J]. Radiation Research,1991,126:88-94.
    [272]Sharifi A M,Baniasadi S,Jorjani M,et al. Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo[J]. Neuroscience Letters,2002,329:45-48.
    [273]Shurson G C,Ku P K,Miller E R,et al. Effects of zeolite A or clinoptilolite in diets of growing swine[J]. Journal of Animal Science,1984,59:1536-1545.
    [274]Singh R K,Vartak V R,Balange A K. Water quality management during transportation of fry of Indian major carps Catla catla (Hamilton) Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton)[J]. Aquaculture,2004,235:297-302.
    [275]Singer C,Zimmermann S,Sures B. Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum Palladium and rhodium):Comparison with lead and cadmium exposures[J]. Aquatic Toxicology,2005:75 65-75.
    [276]Smaili S S,Hsu Y T,Sanders K M,et al. Bax translocation to mitochondria subsequent to a rapid loss of mitochondria membrane potential[J]. Cell death Differ,2001,8(9):909-920.
    [277]Smith E E,Phillips T D,Ellis J A,et al. Dietary hydrated sodium calcium aluminosilicate reduction of aflatoxin M Residue in dairy goat milk and effects on milk production and components [J]. Journal of Animal Science,1994.72:677-682.
    [278]Spotti M,Fracchiolla M L,Arioli.F,et al. Aflatoxin B1 binding to sorbents in bovine ruminal fluid[J]. Veterinary Research Communication,2005,29:507-515.
    [279]Sprynskyy M,Buszewski B,Terzyk A. P,et al. Study of the selection mechanism of heavy metal (Pb2+,Cu2+,Ni2+ And Cd2+) adsorption on clinoptilolite [J]. Journal of Colloid and Interface Science,2006,304:21-28.
    [280]Sreedhar A S,Csermely P. Heat shock proteins in the regulation of apoptosis:new strategies in tumor therapy A comprehensive review[J]. Pharmacology & Therapeutics,2004,101:227-257.
    [281]Stylianou M A,Hadjiconstantinou M P,Inglezakis V I. Use of natural clinoptilolite for the removal of lead Copper and zinc in fixed bed column[J]. Journal of Hazardous Materials, 2007,143:575-581.
    [282]Thilsing-Hansen T,Jorgensen R J. Prevention of parturient paresis and subclinical hypocalcemia in dairy cows by zeolite A administration in the dry period[J]. Journal of Dairy Science,2001,84:691-693.
    [283]Thilsing-Hansen T,Jorgensen R J,Enemark J M D,et al. The effect of zeolite A supplementation in the dry period on periparturient calcium Phosphorus And magnesium homeostasis[J]. Journal of Dairy Science,2002,85:1855-1862.
    [284]Tlda M M,Robert Michael W P. Metallothionein gene expression in testicular interstitial cells and liver of rats treated with cadmium[J].Toxocology,1996,107:121-130.
    [285]Tomasevic-Canovic M,Dakovic A,Rottinghaus G,et al. Surfactant modified zeolite-new efficient adsorbents for mycotoxins[J]. Microporous and Mesoporous Materials,2003,61:173-180.
    [286]Top A,Ulku S. Silver Zinc And copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity[J]. Applied Clay Science,2004,27:13-19.
    [287]Ueki A,Yamaguchi M,Ueki H,et al. Polyclonal humanT-cell activation by silicate in vitro[J]. Immunology,1994,82:332-335.
    [288]Unsworth E F,Pearce J,McMurray C H,et al. Investigations of the use of clay minerals and Prussian blue in reducing the transfer of dietary radiocaesium to milk[J]. The Science of The Total Environment,1989,85:339-347.
    [289]Vallance P,Leone A,Calver A,et al. A ccumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure[J]. Lancet,1992;339:572-575.
    [290]Van D,Sluis W. Clostridial enteritis-a syndrome emerging world wide[J]. World Poultry,2000a,16:56-57.
    [291]Van D,Sluis W. Clostridial enteritis is an often underestimated problem[J]. World Poultry, 2000b,16:42-43.
    [292]Van Faassen E,Vanin. A NO trapping in biological systems with a functionalized zeolite network[J]. Nitric Oxide,2006,15:233-240.
    [293]Vegelstein B,Lane D,Levine A J. The Surfing p53 network[J]. Nature,2000,408(6810): 307-310.
    [294]Venglovsky J,Sasakova N,Vargova M.,et al. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite[J]. Bioresource Technology,2005,96:181-189.
    [295]Waldroup P W,Spencer G K,Smith N K. Evaluation of zeolite in the diet of broiler chickens[J]. Poultry Science,1984,63:1833-1836.
    [296]Wang Y F,Lina F,Pang W Q. Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite[J]. Journal of Hazardous Materials,2007,142:160-164.
    [297]Ward T L,Watkins K L,Southern L L,et al. Interactive effects of sodium zeolite-A and copper in growing swine:growth And bone and tissue mineral concentrations[J]. Journal of Animal Science,1991,69:726-735.
    [298]Ward T L,Watkins K L,Southern L L. Interactive effects of sodium zeolite A(Ethacal) and Monensin in uninfected and Eimeria acervulina-infected chicks[J]. Poultry Science,1990,69:276-280.
    [299]Watkins K L,Vagnoni D B,Southern L L. Effects of dietary sodium zeolite A and excess calcium on gain Feed intake G ain/feed and tibia calcium and phoaphous of Eimeria acervulina-infected chicks[J]. Poultry Science,1989,68:1236-1240.
    [300]Weisenhorn A L,Mac Dougall J E,Gould S A C,et al. Imaging and manipulating molecules on a zeolite surface with an atomic force microscope[J]. Science,1990,247:1330-1333.
    [301]Wells P D,McHugh M. Effect of dietary zeolite on host and parasite in rats infected with the nematode Nippostrongylus brasiliensis[J]. Zeolites,1983,3:353-359.
    [302]Wells P D,Kilduff P. a-Amylase,a-D-glucosidase and aminopeptidase activity in zeolite fed male rats infected with the nematode Nippostrongylus brasiliensis[J]. Zeolites,1985,5:145-152.
    [303]Wernert V,Schaf O G,Hobarkar H,et al. Adsorption properties of zeolites for artificial kidney applications [J]. Microporous and Mesoporous Materials,2005,83:101-113.
    [304]Willis W L,Quarles C L,Fagerberg D J,.et al Evaluation of zeolite fed to male broiler chicken[J]. Poultry Science,1982,61:438-442.
    [305]Wingenfelder U,Nowack B G erhard Furrer G,et al. Adsorption of Pb and Cd by amine-modified zeolite[J]. Water Research,2005,39:3287-3297.
    [306]Yannakopoulos A L,Tserveni-Gousi A S,Christaki E,et al. Effect of natural zeolite on yolk-albumen ratio in hen eggs[J]. British Poultry Science,1998,39:506-510.
    [307]Yoonkyung D O,Ryu S,Nagarkatti M,et al. Role of death receptor pathway in estradiol-induced T-cell apoptosis in vivo[J]. Toxicological Science,2002,70:63-72.
    [308]Zamzami N,Kroemer G. P53 in apoptosis control:An introduction[J]. Biochemical and Biophysical Research Communications,2005,331:685-687.
    [1]佘振宝,宋乃忠编著.沸石加工与应用[M].北京:化学工业出版社,2005.
    [2]徐如人,庞文琴,于吉红等著.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [3]胡宏杰,金梅.沸石的结构和性能及应用展望[J].矿产保护与利用,1996,(6):25-29(51).
    [4]唐启祥.沸石及其开发应用[J].玉溪师范学院学报,2004,20(8):34-38.
    [5]申少华,张术根,王大伟.天然沸石及其开发利用研究进展[J].矿产保护与利用,2000,(4):34-38.
    [6]Mumpton, F.A.,Fishman, P.H.. The application of natural zeolites in animal science and aquaculture[J]. Journal of Animal Science,1977,45:1188-1203.
    [7]Papaioannou, D., Katsoulos,P.D., Panousis,N., et al.. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farmanimal diseases:A review[J]. Microporous and Mesoporous Materials,2005,84:161-170.
    [8]吕东海,王冉,周岩民等.不同品位沸石在肉鸡生产中的应用效果研究[J].粮食与饲料工业,2003,(3):32-34.
    [9]吕东海,周岩民,姚建国.不同品位沸石对蛋鸡生产性能影响的试验研究[J].粮食与饲料工业,2002,(7):39-40.
    [10]蔡玉曼,夏明飞,曹磊等.江苏镇江沸石矿石特征研究[J].江苏地质,2008,32(1):12-15.
    [11]吴天德,俞联平,李青.天然饲用沸石有效开发利用品位的研究[J].粮食与饲料工业,2000,(2): 23-24.
    [12]陈庆春.影响沸石晶体形成和种类的因素正交实验法考察[J].化工矿物与加工,2004,(12):15-17.
    [13]齐德生,刘凡,于炎湖等.膨润土对饲料中营养成分的吸附[J].中国粮油学报,2003,18(3):85-88.
    [14]杨贯只,朱路,李延虎等.天然沸石红外光谱X粉末衍射及扫描电镜分析[J].安阳师范学院学报,2006,(2):77-78.
    [1]Mumpton.F.A.,Fishman.P.H. The Application of Natural Zeolites in Animal Science and Aquaculture[J]. Journal of Animal Science.1977,45:1188-3203.
    [2]Papaioannou D, Katsoulos P D, Panousis N, et al. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases:A review[J]. Microporous and Mesoporous Materials,2005,84:161-170.
    [3]吕东海,周岩民,姚建国.不同品位沸石对蛋鸡生产性能影响的试验研究[J].粮食与饲料工业.2002,7:39-40.
    [4]吕东海,王冉,周岩民等.不同品位沸石在肉鸡生产中的应用效果研究[J].粮食与饲料工业.2003,(3):32-34.
    [5]邓波,杨淑晶,王淑萍等.沸石粉对肉鸡日粮能量和蛋白质利用的影响[J].吉林农业大学学报.2003,25(4):442-444(450).
    [6]王玉红,韩维中,崔宝瑚等.饲粮中添加沸石、膨润土对肉仔鸡生产性能的影响[J].吉林农业大学学报.1990,12(3):113-115.
    [7]杨彩梅,陈安国.沸石对黄羽肉鸡的饲用效果及作用机理[J].浙江大学学报(农业与生命科学版),1999,25(6):619-622.
    [8]WiIIis.W.L.,Quarles.C.L.,Fagerberg,D.J.et al.Evaluation of zeolites fed to male broiler chicken[J].Poultry Science.1982,61:438-442.
    [9]Waldroup.P.W.,Spencer.G.K.,Smirh.N.K. Evaluationof zeolites in the diet of broiler chickensfJ]. Poultry Science.1984,63:1833-1836.
    [10]余佳胜,张继.广东沸石饲养肉鸡的效果及机理(一)广东沸石对肉鸡生产性能的影响[J].饲料研究,1995,(9):4-5.
    [11]余佳胜,张继.广东沸石饲养肉鸡的效果及机理(二)对肉鸡血液生理生化指标的影响[J].饲料研究,1995,(10):10-11.
    [12]余佳胜,张继.广东沸石饲养肉鸡的效果及机理(三)肉鸡料中沸石作用机理初探[J].饲料研究,1995,(11):8-9.
    [13]王军,汪植山,廖新弟等.添加沸石对肉仔鸡饲养效果的影响[J].家畜生态学报.2002,23(3):14-16.
    [1]Mumpton. F. A., Fishman. P. H. The application of natural zeolites in animal science and aquaculture[J]. Journal of Animal.Science,1977,45:1188-1203.
    [2]佘振宝,宋乃忠编著.沸石加工与应用[M].北京:化学工业出版社,2005.
    [3]Papaioannou. D., Katsoulos. P. D., Panousis. N., et al. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases:A review[J]. Microporous and Mesoporous Materials,2005,84:161-170.
    [4]张伟.沸石在畜牧养殖及饲料工业中的应用研究进展[J].饲料工业,2003,24(3):23-27.
    [5]余佳胜,张继.广东沸石饲养肉鸡的效果及机理(三)肉鸡料中沸石作用机理初探[J].饲料研究,1995,11:8-9.
    [6]吕东海,王冉,周岩民等.不同品位沸石在肉鸡生产中的应用效果研究[J].粮食与饲料工业,2003(3):32-34.
    [7]Willis. W. L., Quarles. C. L., Fagerberg. D.J., et al. Evaluation of zeolites fed to male broiler chicken[J]. Poultry Science.1982,61:438-442.
    [8]Waldroup. P. W., Spencer. G. K., Smith. N. K. Evaluation of zeolites in the diet of broiler chickens[J]. Poultry Science.1984,63:1833-1836.
    [9]邓波,杨淑晶,王淑萍等.沸石粉对肉鸡日粮能量和蛋白质利用的影响[J].吉林农业大学学报,2003,25(4):442-444(450).
    [10]王玉红,韩维中,崔宝瑚等.饲粮中添加沸石、膨润土对肉仔鸡生产性能的影响[J].吉林农业大学学报,1990,12(3):113-115.
    [11]杨彩梅,陈安国.沸石对黄羽肉鸡的饲用效果及作用机理[J].浙江大学学报(农业与生命科学版),1999,25(6):619-622.
    [12]余佳胜,张继.广东沸石饲养肉鸡的效果及机理(一)广东沸石对肉鸡生产性能的影响[J].饲料研究,1995,9:4-5.
    [13]王军,汪植山,廖新弟等.添加沸石对肉仔鸡饲养效果的影响[J].家畜生态,2002,23(3):14-16.
    [14]张正珊,黄仁录,李峰.天然沸石饲喂艾维因肉鸡试验[J].河北农业大学学报,1992,15(3):71-74.
    [15]Johnson. L. R., Chandler. A. M. RNA and DNA of gastric and duodenal mucosa in antractomized and gastrin-treated rats[J]. American Journal of Physiology,1973,224:937-940.
    [16]Giles. K. W., Myers. A. An improved diphenylamine method for the estimation for deoxyribonucleic acid[J]. Nature,1965,206:93.
    [17]Fleck. A., Begg. D. The estimation of ribonucleic acid using ultraviolet absorption measurements[J]. Biochemica Biophysica Acta,1965,108:333-339.
    [1]Mumpton F A, Fishman P H. The application of natural zeolites in animal science and aquaculture[J] Journal of Animal Science,1977,45:1188-1203.
    [2]Papaioannou D, Katsoulos P D, Panousis N, et al. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases:A review[J]. Microporous and Mesoporous Materials,2005,84:161-170.
    [3]吕东海,周岩民,姚建国.不同品位沸石对蛋鸡生产性能影响的试验研究[J].粮食与饲料工业,2002(7):39-40.
    [4]吕东海,王冉,周岩民等.不同品位沸石在肉鸡生产中的应用效果研究[J].粮食与饲料工业,2003(3):32-34.
    [5]王军,汪植山,廖新弟等.添加沸石对肉仔鸡饲养效果的影响[J].家畜生态,2002,23(3):14-16.
    [6]Willis W L, Quarles C L, Fagerber D J, et al. Evaluation of zeolites fed to male broiler chicken[J]. Poultry Science,1982,61:438-442.
    [7]Elliot M A, Edwards JR H M. Comparison of the effects of synthetic and natural zeolite on laying hen and broiler chicken performance[J].Poultry Science,1991,70:2115-2130.
    [8]Ballard R, Edwards JR H M. Effect of dietary zeolite and vitamin A on the tibial dyschondroplasia in chickens[J].Poultry Science,1988,67:113-119.
    [9]Nakaue H S, Koelliker J K, Pierson M L. Studies with clinoptilolite in poultry:11.Effect of feeding broilers and the direct application of clinoptilolite (zeolite) on clean and reused broilers litter on broilers performance and house environment[J].Poultry Science,1981,60:1221-1228.
    [10]Oguz H, Kececi T, Birdane Y.O, et al. Effect of clinoptilolite on serum biochemical and haematological characters of broiler chickens during aflatoxicosis[J].Research in Veterinary Science 2000,69:89-93.
    [11]Ortatatli M, Oguz H. Ameliorative effects of dietary clinoptilolite on pathological changes in broiler chickens during aflatoxicosis[J].Research in Veterinary Science,2001,71:59-66.
    [12]Oguz H, Kurtogglu V, Coskun B. Preventive efficacy of clinoptilolite in broilers during chronic aflatoxin (50 and 100 ppb) exposure[J].Research in Veterinary Science,2000,69:197-201.
    [13]Oguz H, Ortatatli M. Evaluation of biochemical characters of broilers chickens during dietary aflatoxin (50 and 100 ppb) and clinoptilolite exposure[J].Research in Veterinary Science,2002,73: 101-103.
    [14]Ortatatli M, Oguz H, Hatipoglu F. Evaluation of pathological changes in broilers during chronic aflatoxin (50 and 100ppb) and clinoptilolite exposure[J].Research in Veterinary Science,2005,78:61-68.
    [15]Ramu J, Clark K, Woode G N, et al. Adsorption of cholera and heat-labile Escherichia coli enterotoxins by various adsorbents:an in vitro study[J]. Journal of Food Protection,1997,60:358-362.
    [16]Rodriguez-Fuentes G, Barrios M A, Iraizoz.A, et al. Enterex:Anti-diarrheic drug based on purified natural clinoptilolite[J].Zeolites,1997,19:441-448.
    [17]刘宗平.环境重金属污染物的生物有效性[J].生态学报,2005,25(2):273-278.
    [18]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605.
    [19]周启星,孔繁翔,朱琳主编.生态毒理学[M].北京:科学出版社,2004.
    [20]胡忠泽,杨久峰,谭志静等.18种动物性食品中铅污染状况分析研究[J].粮油食品科技,2004,12(1): 31-33.
    [21]何祥来,王悍东,袁燕等.上市肉鸡组织样品中铅、镉、铜、铬含量的测定[J].畜牧与兽医,2005,37(1):15-17.
    [22]马龙江,张红,王萍等.铅砷汞镉在鸭肉中的含量调查[J].中国兽医杂志,1997,23(8):58.
    [23]宋和付,夏畅斌,何湘柱等.天然沸石对Pb(II)和Ni(II)离子的吸附作用研究[J].矿产与地质,2000,14(78):276-278.
    [24]谢献胜,周俊,陈锡平等.颗粒饲料和粉状饲料饲养肉鸡比较试验[J].动物科学与动物医学,2001,18(3):64-66.
    [25]顾敏清编译. 饲料形状对商品代肉鸡生产性能的影响[J].家禽科学,2005,(5):23-24.
    [26]余佳胜,张继.广东沸石饲养肉鸡的效果及机理(三)肉鸡料中沸石作用机理初探[J].饲料研究,1995,(11):8-9.
    [27]Fokas P, Zervas G, Fegeros K, et al. Assessment of Pb retention coefficient and nutrient utilization in growing pigs fed diets with added clinoptilolite[J].Animal Feed Science and Technology,2004, 117:121-129.
    [1]Van der Sluis, W.. Clostridial enteritis-a syndrome emerging world wide[J]. World Poultry,2000a,16: 56-57.
    [2]Van der Sluis, W.. Clostridial enteritis is an often underestimated problem[J]. World Poultry,2000b, 16:42-43.
    [3]Gibert,M.,Jolivet-Beynancl,C.,Popott,M.R.,et al.. Beta 2 toxin, a novel toxin produced by Clostridium perfringens[J].Gene,1997,203:65-73.
    [4]王兰芳,马西艺,荣强.禽坏死性肠炎的发生及其影响因素[J].饲料研究,2005,(3):41-43.
    [5]Dahiya,J.P., Wilkie, D.C., Van Kessel, A.G.,et al..Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era[J].Animal Feed Science and Technology,2006,129:60-88.
    [6]胡少昶译,陈伟光校.坏死性肠炎与日粮原料的关系[J].国外畜牧学.猪与禽,2000,(6):53-54.
    [7]Kaldhusda M.I. Necrotic enteritis as affected by dietary ingredients[J]. World Poultry 2000,16: 42-43.
    [8]赵军,施志国综述,黎沾良等审校.二胺氧化酶与肠道损伤[J].国外医学-创伤与外科基本问题分册,1993,1l(1):ll-13.
    [9]Hoerr F J著,顾宪红摘译,舒文华校.动物肠道的完整性及其损害[J].中国畜牧兽医,2003,30(1):43-45.
    [10]柴同杰,马瑞华,常维山等.产气荚膜梭状芽孢杆菌病的流行与致病机制[J].中国预防兽医学报,2001,23(1):70-72.
    [11]文其乙综述,刘秀梵审校.产气荚膜梭菌肠毒素的致病机理研究进展[J].动物医学进展,2002,23(2): 17-18(32).
    [12]Ramu, J., Clark, K., Woode, GN., et al.. Adsorbtion of cholera and heat-labile Escherichia coli enterotoxins by various adsorbents:an in vitro study[J]. Journal of Food Protection,1997,60:358-362.
    [13]Clark.K.J., Sarr.A.B.,Grant.P.G.,et al.. In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus[J].Veterinary Microbiology,1998,63:137-146.
    [14]Grce.M., Pavelic.K.. Antiviral properties of clinoptilolite[J].Microporous and Mesoporous Materials,2005,79:165-169.
    [15]Rodriguez-Fuentes. G, Barrios.M.A, Iraizoz. A, et al. Enterex:Anti-diarrheic drug based on purified natural clinoptilolite[J].Zeolites,1997,19:441-448.
    [16]方允中,郑荣梁主编.自由基生物学的理论与应用[M].北京:科学出版社,2002.
    [17]吴承堂,黎沾良.二胺氧化酶在急性坏死性胰腺炎肠道损伤中的作用[J].世界华人消化杂志,1999,7(1):64-65.
    [18]黎君友,吕艺,付小兵等.二胺氧化酶在创伤后肠道损伤中变化及意义[J].中国危重病急救医学,2000,12(8):482-484.
    [19]陈秀凯,邱方,程爱国(审校).肠道屏障功能监测方法的现状及其进展[J].中国煤炭工业医学杂志,2002,5(5):413-414.
    [20]曾永梅综述,王琳琳审校.小儿胃肠功能障碍的研究进展[J].医学综述,2005,ll(10):909-910.
    [21]胡泉舟,侯永清,王猛.血中二胺氧化酶活性与仔猪腹泻程度的相关性分析[J].猪业科学,2007(12):73-74.
    [22]王亚珍,刘莹综述,彭望明审校.对一氧化氮作用的新认识[J].江汉大学学报(自然科学版),2006,34(3):37-40.
    [23]陈江综述,舒志军,彭炜审校.一氧化氮与肠屏障功能[J].肠外与肠内营养,2006,13(1):5l-54.
    [24]Pavelic.K,Hadzija,M.,Bedrica,L.,et al..Natural zeolitic clinoptilolite:new adjuvant in anticancer therapy [J]. Journal of Molecular Medicine,2001,78:708-720.
    [25]Pavelic.K,Katic.M,Sverko.V.,Immunostimulatory effect of natural Clinoptilolite as a possible mechanism of its antimetastatic ability[J]. Journal of Cancer Research and Clinical Oncology, 2002,128:37-44.
    [26]房慧伶,李翔,曾芸等.新城疫病毒488体内诱导鸡胸腺淋巴细胞凋亡的研究[J].畜牧与兽医,2007,39(4):17-19.
    [27]祈保民,姚金水,陈文列等.马立克氏病病毒人工感染鸡细胞凋亡病变及凋亡机制研究[J].畜牧兽医学报,2004,35(1):97-101.
    [28]刘爵,韦莉,姚炜光等.鸡传染性法氏囊病超强毒感染后鸡免疫器官病理学观察[J].畜牧兽医学报,2002,33(4):371-376.
    [29]张书霞,华荣虹,鲍恩东.热应激对鸡胸腺细胞凋亡的影响及其调节机理[J].南京农业大学学报,2003,26(1):66-69.
    [30]李奎,方丽云,李建华等.家禽免疫器官细胞凋亡研究进展[J].畜牧与兽医,2007,39(5):58-60.
    [1]Van der Sluis, W., Clostridial enteritis-a syndrome emerging world wide[J]. World Poultry,2000a,16: 56-57.
    [2]Van der Sluis, W.,.Clostridial enteritis is an often underestimated problem[J]. World Poultry,2000b, 16:42-43.
    [3]Gibert,M.,Jolivet-Beynancl,C.,Popott,M.R.,et al., Beta 2 toxin, a novel toxin produced by Clostridium perfringens[J].Gene,1997,203:65-73.
    [4]王兰芳,马西艺,荣强.禽坏死性肠炎的发生及其影响因素[J].饲料研究,2005,(3):41-43.
    [5]Dahiya,J.P., Wilkie, D.C., Van Kessel, A.G.,et al.,Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era[J].Animal Feed Science and Technology,2006,129:60-88.
    [5]Kaldhusda M.I. Necrotic enteritis as affected by dietary ingredients[J]. World Poultry 2000,16: 42-43.
    [6]Hoerr F J著,顾宪红摘译,舒文华校.动物肠道的完整性及其损害[J].中国畜牧兽医,2003,30(1):43-45.
    [7]柴同杰,马瑞华,常维山等.产气荚膜梭状芽孢杆菌病的流行与致病机制[J].中国预防兽医学报,2001,23(1):70-72.
    [8]文其乙综述,刘秀梵审校.产气荚膜梭菌肠毒素的致病机理研究进展[J].动物医学进展,2002,23(2): 17-18(32).
    [9]Ramu, J., Clark, K., Woode, G.N., et al.,.Adsorbtion of cholera and heat-labile Escherichia coli enterotoxins by various adsorbents:an in vitro study[J]. Journal of Food Protection,1997,60:358-362.
    [10]Clark.K.J., Sarr.A.B.,Grant.P.G.,et al.,In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus[J].Veterinary Microbiology,1998,63:137-146.
    [11]Grce.M., Pavelic.K., Antiviral properties of clinoptilolite[J].Microporous and Mesoporous Materials,2005,79:165-169.
    [12]Rodriguez-Fuentes. G, Barrios.M.A, Iraizoz. A, et al. Enterex:Anti-diarrheic drug based on purified natural clinoptilolite[J].Zeolites,1997,19:441-448.
    [13]刘国艳,柴春彦,康世良.氟对鸡红细胞膜唾液酸代谢的影响[J].中国地方病学杂志,2002,21(6):444-446.
    [14]陈秀凯,邱方,程爱国审校.肠道屏障功能监测方法的现状及其进展[J].中国煤炭工业医学杂志,2002,5(5):413-414.
    [15]曾永梅综述,王琳琳审校.小儿胃肠功能障碍的研究进展[J].医学综述,2005,11(10):909-910.
    [16]陈穗,许鸿举,陈韩秋等.血清唾液酸含量检测在不同类型感染性疾病中的临床意义[J].中国病理生理杂志,1999,(8):728.
    [17]马彦俊.血清唾液酸测定与急性感染的相关性分析[J].江西医学检验,2007,25(6):575-576.
    [18]杨亚伟,李剑勇,李学兵.唾液酸寡糖-壳聚糖复合物的制备及其对禽流感病毒的吸附作用[J].中国兽医科学,2008,38(9):80l-804.
    [19]李连生,刘克刚,姚祝军等.唾液酸类化合物的合成研究进展[J].有机化学,2002,22(10):718-734.
    [20]邓波,杨淑晶,王淑萍等.沸石粉对肉鸡日粮能量和蛋白质利用的影响[J].吉林农业大学学报,2003,25(4):442-444(450).
    [1]刘宗平.环境铅镉污染对动物健康影响的研究[J].中国农业科学,2005,38(1):185-190.
    [2]侯彦喜.重金属类环境激素对食品安的生态风险分析[J].河南工业大学学报(自然科学版),2005,26(3):84-86(90).
    [3]何祥来,王捍东,袁燕等.上市肉鸡组织样品中铅、镉、铜、铬含量的测定[J].畜牧与兽医,2005,37(1):15-17.
    [4]胡忠泽,杨久峰,谭志静等.18种动物性食品中铅污染状况分析研究[J].粮油食品科技,2004,12(1): 31 (33).
    [5]Abou-Arab, A.A.K., Heavy metal contents in Egyptian meat and the role of detergent washing on their levels[J]. Food and chemical Toxicology,2001,39:593-599.
    [6]宋和付,夏畅斌,何湘柱等.天然沸石对Pb(II)和Ni(II)离子的吸附作用研究[J].矿产与地质,2000,14(78):276-278.
    [7]佘振宝,宋乃忠编著.沸石加工与应用[M].北京:化学工业出版社,2005.
    [8]Bakalli,R.I.,Pesti,G.M.,Ragland,W.L.,et al.,The magnitude of lead toxicity in broiler chicken[J]. Veterinary and Human Toxicology,1995,37:15-23.
    [9]Berg, L.R., Nordstrom, B.O.,Ousterhout, L.E.,The prevention of chick growth depression due to dietary lead by increased dietary calcium and phosphorus[J]. Poultry Science,1980,59:1860-1863.
    [10]Wang Q, Luo W J, Zhang W B.,et al. Iron supplementation protects against lead-induced apoptosis through MAPK pathway in weanling rat cortex[J]. NeuroToxicology,2007,28:850-859.
    [11]张宜明,赵刚.抗氧化营养素与铅毒性研究进展[J].中国公共卫生,2004,20(8):1001-1003.
    [12]成军,高丰,潘耀谦.五种营养素与铅中毒的相关性[J].动物医学进展,2004,25(1):65-66.
    [13]赖建强综述,荫士安审校.某些营养素对铅毒性的影响[J].国外医学卫生学分册,1999,26(2):95-98.
    [14]郑磊,颜晓慧.热应激时热休克蛋白70及其细胞保护作用[J].国外医学一卫生学分册,1999,26(4):209-212.
    [15]王启军,张宏福,王永军.热应激蛋白在动物应激反应中的作用机制[J].饲料工业,2006,27(11):14-17.
    [16]Lee,J,E.,Chen,S.,Golemboski,K,A.,et al.,Developmental windows of differential lead-induced immunotoxicity in chickens[J].Toxicology,2001,156:161-170.
    [17]Dietert,R.R.,Lee,J.E.,Hussain,I.,et al., Developmental immunotoxicology of lead[J]. Toxicology and Applied Pharmacology,2004,198:86-94.
    [18]Bafundo,K.W.,Baker,D.H.,Fitzgerald,P.R.,Lead toxicity in the chick as affected by excess copper and zinc and by Eimeria acervulina infection[J].Poultry Science,1984,63:1594-1603.
    [20]张云琦,张继.天然沸石对肉鸡生理生化指标的影响[J].中国饲料,1997,(22):23-25.
    [22]Fokas P, Zervas G, Fegeros K, et al. Assessment of Pb retention coefficient and nutrient utilization in growing pigs fed diets with added clinoptilolite[J].Animal Feed Science and Technology,2004, 117:121-129.
    [23]王桂兰,刘双军,侯玉春等.铅对大鼠脑细胞膜脂质过氧化和超氧化物歧化酶活性的影响[J].卫生毒理学杂志,1995,9(3):175-176.
    [24]杨杏芬,庄志雄,魏青.铅对肾上腺皮质细胞线粒体的氧化损伤[J].中山医科大学学报200l,22(1): 14-18.
    [25]陈敏,谢吉民,高晓饮.铅对小鼠脏器脂质过氧化作用的影响[J].中国公共卫生,200016(12):1107-1108.
    [26]吴萍,申东晓,赵冰樵等.铅对大鼠脑组织脂质过氧化及自由基作用的研究[J].铁道劳动安全卫生与环保,1998,25(2):91-93.
    [27]季清州,王立波,周元等.金属硫蛋白结合铅离子的竞争反应和置换反应研究[J].北京大学学报(自然科学版),2000,30:503-508.
    [28]陈万东,王成国,马玉良等.金属硫蛋白对铅的细胞毒性和免疫毒性的保护作用[J].广东微量元素科学,1998,5(4):46-50.
    [29]张荣,牛玉杰,程云会.醋酸铅对大鼠脑细胞凋亡及bcl-2基因表达的影响,中华劳动卫生职业病杂志,2000,18(4):232-234.
    [30]张荣,牛玉杰,程云会等.醋酸铅对大鼠脑细胞凋亡及的影响,中国公共卫生,2001,17(10):959-960.
    [31]安兰敏,牛玉杰,徐兵等.铅对大鼠脑细胞凋亡的诱发作用及对fos、jun、p53基因和一氧化氮合酶表达的影响[J].癌变·畸变·突变,2006,18(5):359-362.
    [32]安兰敏,杨军,徐兵.铅对大鼠脑细胞凋亡的诱发作用及对p53基因表达影响的研究[J].癌变·畸变·突变,2003,15(4):209-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700