牛乳加热及乳粉热相关工艺对蛋白聚合及凝固特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛乳加热处理是乳制品工业的重要环节。虽然出于感官、营养的考虑,低杀菌强度的使用已经成为人们的普遍愿望,而由于工艺和安全的原因也有使用较高杀菌强度的要求。同时,我国的原料乳供应在地域和季节上的不平衡使乳粉的生产和使用始终受到重视,然而乳粉加工中的热相关处理使其复原乳凝固特性受到很大影响。本研究的目的是分析加热处理以及乳粉加工中热相关工艺对乳凝固特性,包括酶诱凝固和酸诱凝固的影响;研究牛乳蛋白聚合和理化特性变化与乳凝固特性的关系以及相关机理;通过化学控制牛乳蛋白聚合和利用特定乳酸菌分别在乳粉加工环节和复原乳干酪生产环节初步解决复原乳酶凝胶及在干酪中的应用问题。
     不同强度加热乳的酶诱凝固和酸诱凝固特性研究表明:高强度热处理乳显示出更强的酸凝固促进作用,以及更大的酶凝固抑制效果。与同批次原料乳相比,70℃/15s加热乳的酶凝胶硬度降低了16.45%,而90℃/8min则降低了37.27%。采用分子排阻色谱(SEC)技术,本文首次分析了凝胶前的加热乳中乳浆蛋白聚合体(SPA)以及凝胶后的乳清中蛋白聚合体残留随不同加热强度的变化规律。发现SPA的变化与乳凝固质地参数之间存在高度相关性(|r|>0.75,P<0.001);同时也发现乳清中蛋白聚合体残留与加热强度有高度依赖关系。
     采用SEC对SPA进行分离并对其性质和作用做进一步研究。结果表明SPA颗粒大小随着处理温度和时间的增加而增加,范围从低强度热处理的约30nm增加到高温处理的约100nm。在酶凝固添加试验中,发现SPA对酶凝固无抑制作用。随后考察了热诱酪蛋白胶束大小、表面疏水性以及活性钙离子浓度的变化,发现酪蛋白直径以及活性钙离子浓度变化是热诱酶凝固特性降低的主要因素。
     本文考察了乳粉加工中热相关工艺,包括预热杀菌、浓缩和喷雾干燥对乳凝固特性的影响。随着乳粉加工工艺的进行,乳样品酶凝胶的硬度逐步降低,同时,乳样品酸凝胶的硬度呈现逐步上升的趋势;发现经过加热、浓缩和干燥工艺后生产的乳粉,与同批次原料乳相比,其复原乳的酶凝胶硬度降低了73.99%-81.53%。对乳粉加工中不同乳样品的SPA变化、酪蛋白大小和钙离子浓度以及乳粉样品中蛋白二级结构进行了分析,结果表明这些属性均具有高度的热相关工艺及强度的相关性。
     为了考察热诱酪蛋白胶束与乳清蛋白,特别是与β-乳球蛋白之间的反应,以及其在乳凝固中的作用,本文采用蛋白免疫与电子显微镜结合技术研究了加热和乳粉工艺对乳蛋白聚合的影响。发现加热不会造成酪蛋白胶束的解离和聚集,然而加热会导致乳球蛋白在酪蛋白胶束表面的聚集反应;而在乳粉复原乳的微结构中,除上述发现外,也观察到酪蛋白胶束发生很大程度的解离和重排,因此认为酪蛋白胶束发生根本改变是造成乳粉复原乳酶凝胶特性降低的主要原因。
     研究了原料乳经碘酸钾(PI)或低聚异麦芽糖处理对随后热诱蛋白聚合分布的控制和修饰作用,SEC发现PI能明显增加SEC的乳清蛋白峰C的强度,降低SEC的蛋白聚合体峰B0和B1的强度。同时也发现这种修饰作用会提升加热乳和乳粉复原乳酶凝胶的质地特性。对PI处理乳的微结构观察也证明了热诱蛋白聚合是可控的,这为加热乳和乳粉复原乳酶凝固特性的改善提供了新的思路。
     在复原乳干酪(CRMP)的微生物改善研究中,发现直接酸化CRMP在成熟中会发生湿度的降低:从第1天的65.0%降低到第21天的62.5%再到45天的59.9%。而采用特定乳酸菌生产的CRMP能够在成熟期内保持湿度不变,同时使干酪质地得到改善,干酪产量轻微增加(4.6%);并能极大改变CRMP的蛋白网络微结构,据此认为这是其改善干酪质地和技术特性的主要原因,该研究为CRMP的生产开发提供了理论支撑。
The heat treatment of bovine milk is an important process in the dairy industry.For the reasons of sensory and nutritional requirements, the low intensity ofsterilization has become the universal desire of people. However, the high intensityof heat treatment was also used for the purpose of technological demands and safetyreasons. In China, the production of raw milk is imbalance in geography and season.Therefore, the use of milk powder has always received much attention. However, thethermal processes during the production of milk powder changed not only thenutritional characteristics of milk but also its technological applications. The aims ofthis study were to analyze the effects and mechanisms of the heat treatments and thethermal-related processes during the manufacturing of milk powder on thecoagulation properties, including the rennet-induced coagulation and acid-inducedcoagulation, to investigate the relationship of changes in the protein aggregation andphysiochemical characteristic with subsequent difference in the coagulationproperties of milk, and to solve the problems in rennet coagulation of reconstitutedmilk powder and its application in the production of cheese by chemicallycontrolling the aggregation of milk proteins during the production of milk powderand by use of certain lactic acid bacteria in the production of cheese, respectively.
     The research on the properties of rennet-induced gel and acid-induced gel fromdifferent heated milk showed that the high heat treatment had the increasinginhibitory effect on rennet coagulation and promoting effect on acid coagulation.Compared with raw milk in the same batch, heat treatment of70°C/15s decreasedthe hardness of texture by16.45%, while90°C/8min decreased by37.27%. Sizeexclusion chromatography (SEC) was used to analyze the protein distribution inmilk serum. The changes in serum protein aggregates (SPA) of heated milk beforecoagulation and in the residual SPA of whey after coagulation as affected bydifferent heat treatments were investigated for the first time. High correlations(|r|>0.75, P<0.001) were found between the changes of SPA and the variables ofcoagulation properties. The content of residual SPA depended on the heatingintensity of milk before coagulation.
     SPA was separated by SEC, and its characteristics and role in rennet-inducedcoagulation were studied. The results showed that the size of SPA increased with theincrease of heating temperature and time, ranging from~30nm at low intensity ofheat treatment to~100nm at high intensity of heat treatment. The rennet coagulationof raw milk with the addition of SPA was not inhibited, suggesting that the inhibition of heating on rennet coagulation did not derive from SPA. Subsequently,the heat-induced changes in casein micelle size, surface hydrophobicity and calciumion activity were investigated. In conclusion, the properties of casein micelles andcalcium ion activity were the main factors that caused the decrease of therennet-induced coagulation properties of milk.
     In this paper, the effects of thermal-related processes during the production ofmilk powder, including pre-heat treatment, concentration and spray drying on thecoagulation properties of milk were investigated. During the manufacture of milkpowder, the hardness of rennet gel gradually decreased, while that of acid gelshowed a gradual upward trend. The milk powder samples what experienced theprocesses of heat, concentration and drying decreased the hardness of their rennetgel by73.99-81.53%compared with raw milk in the same batch. In addition, thestudies on SPA, the sizes of casein micelles, the calcium ion activity and thecontents of protein secondary structures of milk powder showed that highdependence of these variables was found on the changes of the heat-relatedprocesses and their intensity.
     In order to investigate the heat-induced aggregation of the casein micelles withwhey proteins, especially with β-lactoglobulin and its role in milk coagulation, theelectron microscopy was used to study the microstructure of heated milk andreconstituted milk powder when combined with the technology of proteinimmunology. Using IPP software the differences of protein microstructures wereanalyzed. In results, the heat treatment did not cause dissociation and aggregation ofcasein micelles, but lead to the aggregation of β-lactoglobulin on the surface ofcasein micelles. It was also found that the casein micelles in reconstituted milkpowder displayed a large degree of dissociation and rearrangement as well as theaggregation of β-lactoglobulin with casein micelles. Therefore the qualitativechange in the microstructure of casein micelles was considered as the main reason ofdecrease of rennet coagulation properties in heated milk and reconstituted milkpowder.
     By addition of potassium iodate (PI) or isomaltooligosaccharide in raw milk,thecontrol and modification of SPA in subsequent heated milk and reconstituted milkpowder were studied. In results, PI significantly increased the concentration of wheyproteins and decreased the intensity of SEC protein aggregates peak B0and B1.Meanwhile, PI significantly improved the textural properties of rennet gel producedfrom heated milk or reconstituted milk powder. Furthermore, the microstructureresearch on the aggregation of casein micelle with in PI-processed milk alsocorroborated the modification of protein aggregation. Therefore, this finding provided a new idea for the improvement of rennet coagulation properties of heatedmilk and reconstituted milk powder.
     In addition, an improvements study of microbiology was performed on thecheese from reconstituted milk powder (CRMP). In results, the direct acidifiedCRMP resulted in a decrease of humidity: from65.0%in the first day to62.5%in21days and then to59.9%in45days. While the use of exopolysaccharide(EPS)-producing lactic acid bacteria kept the constant humidity of the cheese duringthe storage, improved the texture and increased slightly (4.6%) the yield of thecheese. Moreover, EPS-producing strain greatly changed the network of cheesemicrostructure, which was the main reason for the improvement of cheese textureand technical characteristics. In conclusion, the related theory and understanding ofthe study could provide the technical guidance for the development and productionof CRMP.
引文
[1]顾佳升.论我国液态奶加工中的“过度加热”倾向[J].中国乳业,2006(2):3.
    [2] Singh H, Waungana A. Influence of Heat Treatment of Milk on CheesemakingProperties[J]. International Dairy Journal,2001,11(4-7):543-551.
    [3] Dissanayake M, Vasiljevic T. Functional Properties of Whey Proteins Affectedby Heat Treatment and Hydrodynamic High-pressure Shearing[J]. Journal ofDairy Science,2009,92(4):1387-1397.
    [4] Sava N, Van der Plancken I, Claeys W, et al. The Kinetics of Heat-inducedStructural Changes of β-Lactoglobulin[J]. Journal of Dairy Science,2005,88(5):1646-1653.
    [5] Britten M, Giroux H J, Gaudin V. Effect of pH During Heat Processing ofPartially Hydrolyzed Whey Protein[J]. Journal of Dairy Science,1994,77(3):676-684.
    [6] Singh H. The Milk Fat Globule Membrane-a Biophysical System for FoodApplications[J]. Current Opinion in Colloid& Interface Science,2006,11(2-3):154-163.
    [7] Ye A, Singh H, Taylor M W, et al. Characterization of Protein Components ofNatural and Heat-treated Milk Fat Globule Membranes[J]. International DairyJournal,2002,12(4):393-402.
    [8] Ye A, Singh H, Oldfield J D, et al. Kinetics of Heat-induced Association ofβ-Lactoglobulin and α-Lactalbumin with Milk Fat Globule Membrane in WholeMilk[J]. International Dairy Journal,2004,14(5):389-398.
    [9] Morin P, Jimenez-Flores R, Pouliot Y. Effect of Processing on the Compositionand Microstructure of Buttermilk and Its Milk Fat Globule Membranes[J].International Dairy Journal,2007,17(10):1179-1187.
    [10] Seiquer I, Delgado-Andrade C, Haro A, et al. Assessing the Effects of SevereHeat Treatment of Milk on Calcium Bioavailability: In Vitro and in VivoStudies[J]. Journal of Dairy Science,2010,93(12):5635-5643.
    [11] Singh G, Arora S, Sharma G S, et al. Heat Stability and Calcium Bioavailabilityof Calcium-fortified Milk[J]. LWT-Food Science and Technology,2007,40(4):625-631.
    [12] Anema S G. Role of Colloidal Calcium Phosphate in the Acid GelationProperties of Heated Skim Milk[J]. Food Chemistry,2009,114(1):161-167.
    [13] Marabi A, Mayor G, Raemy A, et al. Solution Calorimetry: A Novel Perspectiveinto the Dissolution Process of Food Powders[J]. Food Research International,2007,40(10):1286-1298.
    [14] Lowe E K, Paterson A H J. A Mathematical Model for Lactose Dissolution, PartⅡ. Dissolution Below the Alpha Lactose Solubility Limit[J]. Journal of FoodEngineering,1998,38(1):15-25.
    [15] Hogekamp S, Schubert H. Rehydration of Food Powders[J]. Food Science andTechnology International,2003,9(3):223-235.
    [16] Marabi A, Raemy A, Bauwens I, et al. Effect of Fat Content on the DissolutionEnthalpy and Kinetics of a Model Food Powder[J]. Journal of FoodEngineering,2008,85(4):518-527.
    [17] Edwards M F, Instone T. Particulate Products-their Manufacture and Use[J].Powder Technology,2001,119(1):9-13.
    [18] Horne D S. Formation and Structure of Acidified Milk Gels[J]. InternationalDairy Journal,1999,9(3-6):261-268.
    [19] Modler H W, Kalab M. Microstructure of Yogurt Stabilized with MilkProteins[J]. Journal of Dairy Science,1983,66(3):430-437.
    [20] Lucey J A, Singh H. Formation and Physical Properties of Acid Milk Gels: AReview[J]. Food Research International,1997,30(7):529-542.
    [21] Dalgleish D G, Law A J R. pH-Induced Dissociation of Bovine Casein Micelles.I. Analysis of Liberated Caseins[J]. Journal of Dairy Research,1988,55(4):529-538.
    [22] de Kruif C G. Casein Micelle Interactions[J]. International Dairy Journal,1999,9(3-6):183-188.
    [23] Stauffer D. Gelation in Concentrated Critically Branched Polymer Solutions.Percolation Scaling Theory of Intramolecular Bond Cycles[J]. Journal of theChemical Society, Faraday Transactions2: Molecular and Chemical Physics,1976,72:1354-1364.
    [24] Shih W, Shih W Y, Kim S Y, et al. Scaling Behavior of the Elastic Properties ofColloidal Gels[J]. Physical Review A,1990,42(8):4772-4779.
    [25] Chaplain V, Mills P, Djabourov M. Elastic Properties of Networks of FractalClusters[J]. Colloid&Polymer Science,1994,272(8):991-999.
    [26] Singh H. Heat Stability of Milk[J]. International Journal of Dairy Technology,2004,57(2-3):111-119.
    [27] Singh H, Creamer L K. Denaturation, Aggregation and Heat Stability of MilkProtein During the Manufacture of Skim Milk Powder[J]. Journal of DairyResearch,1991,58(3):269-283.
    [28] Dalgleish D G, Pouliot Y, Paquin P. Studies on the Heat Stability of Milk: Ⅱ.Association and Dissociation of Particles and the Effect of Added Urea[J].Journal of Dairy Research,1987,54(1):39-49.
    [29] Shaker R R, Jumah R Y, Abu-Jdayil B. Rheological Properties of Plain YogurtDuring Coagulation Process: Impact of Fat Content and Preheat Treatment ofMilk[J]. Journal of Food Engineering,2000,44(3):175-180.
    [30] Lyster R L J. The Denaturation of α-Lactalbumin and β-Lactoglobulin inHeated Milk[J]. Journal of Dairy Research,1970,37(2):233-243.
    [31] Kinsella J E, Morr C V. Milk Proteins: Physicochemical and FunctionalProperties[J]. C R C Critical Reviews in Food Science and Nutrition,1984,21(3):197-262.
    [32] Ross-Murphy S B. Structure-property Relationships in Food Biopolymer Gelsand Solutions[J]. Journal of Rheology,1995,39(6):1451-1463.
    [33] Smits P, Brouwershaven J H V. Heat-induced Association of β-Lactoglobulinand Casein Micelles[J]. Journal of Dairy Research,1980,47(3):313-325.
    [34] Labropoulos A E, Collins W F, Stone W K. Effects of Ultra-high Temperatureand Vat Processes on Heat-induced Rheological Properties of Yogurt[J]. Journalof Dairy Science,1984,67(2):405-409.
    [35] Anema S G, Lee K S, Klostermeyer H. Effect of pH at Heat Treatment on theHydrolysis of κ-Casein and the Gelation of Skim Milk by Chymosin[J]. LWT-Food Science and Technology,2007,40(1):99-106.
    [36] Leaver J, Law A J R, Horne D S, et al. Influence of Heating Regime and pH onthe Primary Phase of Renneting of Whole Milk[J]. International Dairy Journal,1995,5(2):129-140.
    [37] Vasbinder A J, Rollema H S, de Kruif C G. Impaired Rennetability of HeatedMilk; Study of Enzymatic Hydrolysis and Gelation Kinetics[J]. Journal ofDairy Science,2003,86(5):1548-1555.
    [38] Martin G J O, Williams R P W, Choong C, et al. Comparison of RennetGelation Using Raw and Reconstituted Skim Milk[J]. International DairyJournal,2008,18(10-11):1077-1080.
    [39] Raynal K, Remeuf F. The Effect of Heating on Physicochemical and RennetingProperties of Milk: A Comparison between Caprine, Ovine and Bovine Milk[J].International Dairy Journal,1998,8(8):695-706.
    [40] Guillaume C, Jimenez L, Cuq J L, et al. An Original pH-Reversible Treatmentof Milk to Improve Rennet Gelation[J]. International Dairy Journal,2004,14(4):305-311.
    [41] Klandar A H, Chevalier-Lucia D, Lagaude A. Effects of Reverse CO2Acidification Cycles, Calcium Supplementation, pH Adjustment and ChilledStorage on Physico-chemical and Rennet Coagulation Properties ofReconstituted Low-and Medium-heat Skim Milk Powders[J]. FoodHydrocolloids,2009,23(3):806-815.
    [42] Metais A, Cambert M, Riaublanc A, et al. Influence of Fat Globule MembraneComposition on Water Holding Capacity and Water Mobility in Casein RennetGel: A Nuclear Magnetic Resonance Self-diffusion and Relaxation Study[J].International Dairy Journal,2006,16(4):344-353.
    [43] Guyomarc'h F, Law A J R, Dalgleish D G. Formation of Soluble andMicelle-bound Protein Aggregates in Heated Milk[J]. Journal of Agriculturaland Food Chemistry,2003,51(16):4652-4660.
    [44] van Vliet T, Lakemond C M M, Visschers R W. Rheology and Structure of MilkProtein Gels[J]. Current Opinion in Colloid&Interface Science,2004,9(5):298-304.
    [45] Graveland-Bikker J F, Anema S G. Effect of Individual Whey Proteins on theRheological Properties of Acid Gels Prepared from Heated Skim Milk[J].International Dairy Journal,2003,13(5):401-408.
    [46] Angel Rivero Martino F, Luisa Fernandez Sanchez M, Sanz Medel A.Multi-elemental Fractionation in Milk Whey by Size ExclusionChromatography Coupled on Line to ICP-MS[J]. Journal of Analytical AtomicSpectrometry,2002,17(10):1271-1277.
    [47] Jean K, Renan M, Famelart M-H, et al. Structure and Surface Properties of theSerum Heat-induced Protein Aggregates Isolated from Heated Skim Milk[J].International Dairy Journal,2006,16(4):303-315.
    [48] Donato L, Guyomarc’h F, Amiot S, et al. Formation of Whey Protein/κ-CaseinComplexes in Heated Milk: Preferential Reaction of Whey Protein withκ-Casein in the Casein Micelles[J]. International Dairy Journal,2007,17(10):1161-1167.
    [49] Chandrapala J, Augustin M A, McKinnon I, et al. Effects of pH,Calcium-complexing Agents and Milk Solids Concentration on Formation ofSoluble Protein Aggregates in Heated Reconstituted Skim Milk[J].International Dairy Journal,2010,20(11):777-784.
    [50] Alloggio V, Caponio F, Pasqualone A, et al. Effect of Heat Treatment on theRennet Clotting Time of Goat and Cow Milk[J]. Food Chemistry,2000,70(1):51-55.
    [51] Guinee T P, Auty M A E, Fenelon M A. The Effect of Fat Content on theRheology, Microstructure and Heat-induced Functional Characteristics ofCheddar Cheese[J]. International Dairy Journal,2000,10(4):277-288.
    [52] Almeida K E, Tamime A Y, Oliveira M N. Influence of Total Solids Contents ofMilk Whey on the Acidifying Profile and Viability of Various Lactic AcidBacteria[J]. LWT-Food Science and Technology,2009,42(2):672-678.
    [53] Lynch J M, Barbano D M, Fleming J R. Determination of the Total NitrogenContent of Hard, Semihard, and Processed Cheese by the Kjeldahl Method:Collaborative Study[J]. Journal of AOAC International,2002,85(2):445-455.
    [54]食品安全国家标准, GB-5413.3.婴幼儿食品和乳品中脂肪的测定[S].2010.
    [55] Sandra S, Dalgleish D G. Effects of Ultra-high-pressure Homogenization andHeating on Structural Properties of Casein Micelles in Reconstituted Skim MilkPowder[J]. International Dairy Journal,2005,15(11):1095-1104.
    [56] Laemmli U K. Cleavage of Structural Proteins During the Assembly of theHead of Bacteriophage T4[J]. Nature,1970,227(5259):680-685.
    [57] Marshall V M, Rawson H L. Effects of Exopolysaccharide-producing Strains ofThermophilic Lactic Acid Bacteria on the Texture of Stirred Yoghurt[J].International Journal of Food Science&Technology,1999,34(2):137-143.
    [58] Macheboeuf D, Coulon J-B, D'Hour P. Effect of Breed, Protein GeneticVariants and Feeding on Cows' Milk Coagulation Properties[J]. Journal ofDairy Research,1993,60(1):43-54.
    [59] Pandey P K, Ramaswamy H S, St-Gelais D. Water-holding Capacity and GelStrength of Rennet Curd as Affected by High-pressure Treatment of Milk[J].Food Research International,2000,33(8):655-663.
    [60] Beliciu C M, Moraru C I. Effect of Solvent and Temperature on the SizeDistribution of Casein Micelles Measured by Dynamic Light Scattering[J].Journal of Dairy Science,2009,92(5):1829-1839.
    [61] Kuntsche J, Koch M H J, Steiniger F, et al. Influence of Stabilizer Systems onthe Properties and Phase Behavior of Supercooled Smectic Nanoparticles[J].Journal of Colloid and Interface Science,2010,350(1):229-239.
    [62] Bradford M M. A Rapid and Sensitive Method for the Quantitation ofMicrogram Quantities of Protein Utilizing the Principle of Protein-dyeBinding[J]. Analytical biochemistry,1976,72(1-2):248-254
    [63] Bonomi F, Iametti S, Pagliarini E, et al. A Spectrofluorimetric Approach to theEstimation of the Surface Hydrophobicity Modifications in Milk Proteins UponThermal Treatment[J]. Milchwissenschaft,1988,43(5):281-285.
    [64] Erdem Y K. Influence of Ultrafiltration on Modification of SurfaceHydrophobic Sites of the Milk Protein System in the Course of Renneting[J].Journal of Food Engineering,2000,44(2):63-70.
    [65] Lin M J, Lewis M J, Grandison A S. Measurement of Ionic Calcium in Milk[J].International Journal of Dairy Technology,2006,59(3):192-199.
    [66] Faka M, Lewis M J, Grandison A S, et al. The Effect of Free Ca2+on the HeatStability and Other Characteristics of Low-heat Skim Milk Powder[J].International Dairy Journal,2009,19(6-7):386-392.
    [67] Lee S J, Sherbon J W. Chemical Changes in Bovine Milk Fat GlobuleMembrane Caused by Heat Treatment and Homogenization of Whole Milk[J].Journal of Dairy Research,2002,69(4):555-567.
    [68] Drohan D D, Tziboula A, McNulty D, et al. Milk Protein-carrageenanInteractions[J]. Food Hydrocolloids,1997,11(1):101-107.
    [69] Balabin R M, Smirnov S V. Melamine Detection by Mid-and near-Infrared(MIR/NIR) Spectroscopy: A Quick and Sensitive Method for Dairy ProductsAnalysis Including Liquid Milk, Infant Formula, and Milk Powder[J]. Talanta,2011,85(1):562-568.
    [70] Lei Y, Zhou Q, Zhang Y-l, et al. Analysis of Crystallized Lactose in MilkPowder by Fourier-transform Infrared Spectroscopy Combined withTwo-dimensional Correlation Infrared Spectroscopy[J]. Journal of MolecularStructure,2010,974(1-3):88-93.
    [71] Hillbrick G C, McMahon D J, McManus W R. Microstructure of Indirectly andDirectly Heated Ultra-high-temperature (UHT) Processed Milk ExaminedUsing Transmission Electron Microscopy and Immunogold Labelling[J]. LWT-Food Science and Technology,1999,32(8):486-494.
    [72] Enright E, Patricia Bland A, Needs E C, et al. Proteolysis and PhysicochemicalChanges in Milk on Storage as Affected by UHT Treatment, Plasmin Activityand KIO3Addition[J]. International Dairy Journal,1999,9(9):581-591.
    [73] Perry D B, McMahon D J, Oberg C J. Effect of Exopolysaccharide-producingCultures on Moisture Retention in Low Fat Mozzarella Cheese[J]. Journal ofDairy Science,1997,80(5):799-805.
    [74] Fajardo P, Martins J T, Fucinos C, et al. Evaluation of a Chitosan-based EdibleFilm as Carrier of Natamycin to Improve the Storability of Saloio Cheese[J].Journal of Food Engineering,2010,101(4):349-356.
    [75] Marshall R T. Standard Methods for the Examination of Dairy Products[M].Washington, DC: American Public Health Association,1993:234-237.
    [76] Delgado F, González-Crespo J, Cava R, et al. Proteolysis, Texture and Colourof a Raw Goat Milk Cheese Throughout the Maturation[J]. European FoodResearch and Technology,2011,233(3):483-488.
    [77] Ferrandini E, Lopez M B, Castillo M, et al. Influence of an Artisanal LambRennet Paste on Proteolysis and Textural Properties of Murcia Al VinoCheese[J]. Food Chemistry,2011,124(2):583-588.
    [78] Serrano J, Velazquez G, Lopetcharat K, et al. Effect of Moderate PressureTreatments on Microstructure, Texture, and Sensory Properties of Stirred-curdCheddar Shreds[J]. Journal of Dairy Science,2004,87(10):3172-3182.
    [79] Rynne N M, Beresford T P, Kelly A L, et al. Effect of Milk PasteurizationTemperature and in Situ Whey Protein Denaturation on the Composition,Texture and Heat-induced Functionality of Half-fat Cheddar Cheese[J].International Dairy Journal,2004,14(11):989-1001.
    [80] Trujillo A J, Castro N, Quevedo J M, et al. Effect of Heat and High-pressureTreatments on Microbiological Quality and Immunoglobulin G Stability ofCaprine Colostrum[J]. Journal of Dairy Science,2007,90(2):833-839.
    [81] Stabel J R. On-farm Batch Pasteurization Destroys MycobacteriumParatuberculosis in Waste Milk[J]. Journal of Dairy Science,2001,84(2):524-527.
    [82] Godden S, McMartin S, Feirtag J, et al. Heat-treatment of Bovine Colostrum.Ⅱ: Effects of Heating Duration on Pathogen Viability and ImmunoglobulinG[J]. Journal of Dairy Science,2006,89(9):3476-3483.
    [83] van Brandt L, van der Plancken I, De Block J, et al. Adequacy of CurrentPasteurization Standards to Inactivate Mycobacterium Paratuberculosis in Milkand Phosphate Buffer[J]. International Dairy Journal,2011,21(5):295-304.
    [84] Guinee T P, O'Callaghan D J, Pudja P D, et al. Rennet Coagulation Properties ofRetentates Obtained by Ultrafiltration of Skim Milks Heated to DifferentTemperatures[J]. International Dairy Journal,1996,6(6):581-596.
    [85] Pereira R, Matia-Merino L, Jones V, et al. Influence of Fat on the PerceivedTexture of Set Acid Milk Gels: A Sensory Perspective[J]. Food Hydrocolloids,2006,20(2-3):305-313.
    [86] Everett D W, Auty M A E. Cheese Structure and Current Methods ofAnalysis[J]. International Dairy Journal,2008,18(7):759-773.
    [87] Kucukcetin A. Effect of Heat Treatment and Casein to Whey Protein Ratio ofSkim Milk on Graininess and Roughness of Stirred Yoghurt[J]. Food ResearchInternational,2008,41(2):165-171.
    [88] del Angel C R, Dalgleish D G. Structures and Some Properties of SolubleProtein Complexes Formed by the Heating of Reconstituted Skim MilkPowder[J]. Food Research International,2006,39(4):472-479.
    [89] de la Flor St. Remy R R, Fernandez Sanchez M L, Lopez Sastre J B, et al.Multielemental Distribution Patterns in Premature Human Milk Whey andPre-term Formula Milk Whey by Size Exclusion Chromatography Coupled toInductively Coupled Plasma Mass Spectrometry with Octopole ReactionCell[J]. Journal of Analytical Atomic Spectrometry,2004,19(9):1104-1110.
    [90] Kethireddipalli P, Hill A R, Dalgleish D G. Protein Interactions in Heat-treatedMilk and Effect on Rennet Coagulation[J]. International Dairy Journal,2010,20(12):838-843.
    [91] Famelart M-H, Tomazewski J, Piot M, et al. Comprehensive Study of AcidGelation of Heated Milk with Model Protein Systems[J]. International DairyJournal,2004,14(4):313-321.
    [92] Emmons D B, Modler H W. Invited Review: A Commentary on PredictiveCheese Yield Formulas[J]. Journal of Dairy Science,2010,93(12):5517-5537.
    [93] Huppertz T, Fox P F, Kelly A L. Effects of High Pressure Treatment on theYield of Cheese Curd from Bovine Milk[J]. Innovative Food Science&Emerging Technologies,2004,5(1):1-8.
    [94] Zamora A, Ferragut V, Jaramillo P D, et al. Effects of Ultra-high PressureHomogenization on the Cheese-making Properties of Milk[J]. Journal of DairyScience,2007,90(1):13-23.
    [95] Anema S G, Klostermeyer H. Heat-induced, pH-Dependent Dissociation ofCasein Micelles on Heating Reconstituted Skim Milk at Temperatures Below100℃[J]. Journal of Agricultural and Food Chemistry,1997,45(4):1108-1115.
    [96] Menard O, Camier B, Guyomarc’h F. Effect of Heat Treatment at Alkaline pHon the Rennet Coagulation Properties of Skim Milk[J]. Lait,2005,85(6):515-526.
    [97] Renan M, Mekmene O, Famelart M-H, et al. pH-Dependent Behaviour ofSoluble Protein Aggregates Formed During Heat-treatment of Milk at pH6.5or7.2[J]. Journal of Dairy Research,2006,73(1):79-86.
    [98] Renan M, Guyomarc'h F, Chatriot M, et al. Limited Enzymatic Treatment ofSkim Milk Using Chymosin Affects the Micelle/Serum Distribution of theHeat-induced Whey Protein/κ-Casein Aggregates[J]. Journal of Agriculturaland Food Chemistry,2007,55(16):6736-6745.
    [99] Trejo R, Harte F. The Effect of Ethanol and Heat on the FunctionalHydrophobicity of Casein Micelles[J]. Journal of Dairy Science,2010,93(6):2338-2343.
    [100] Risso P, Borraccetti D, Araujo C, et al. Effect of Temperature and pH on theAggregation and the Surface Hydrophobicity of Bovine κ-Casein[J]. Colloid&Polymer Science,2008,286(12):1369-1378.
    [101] Morand M, Guyomarc'h F, Legland D, et al. Changing the Isoelectric Point ofthe Heat-induced Whey Protein Complexes Affects the Acid Gelation of SkimMilk[J]. International Dairy Journal,2012,23(1):9-17.
    [102] On-Nom N, Grandison A S, Lewis M J. Measurement of Ionic Calcium, pH,and Soluble Divalent Cations in Milk at High Temperature[J]. Journal of DairyScience,2010,93(2):515-523.
    [103] Boye J I, Alli I. Thermal Denaturation of Mixtures of α-Lactalbumin andβ-Lactoglobulin: A Differential Scanning Calorimetric Study[J]. Food ResearchInternational,2000,33(8):673-682.
    [104] Imafidon G I, Ng-Kwai-Hang K F, Harwalkar V R, et al. Differential ScanningCalorimetric Study of Different Genetic Variants of β-Lactoglobulin[J]. Journalof Dairy Science,1991,74(8):2416-2422.
    [105] Puyol P, Perez M D, Peiro J M, et al. Effect of Binding of Retinol and PalmiticAcid to Bovine β-Lactoglobulin on Its Resistance to Thermal Denaturation[J].Journal of Dairy Science,1994,77(6):1494-1502.
    [106] Eynard L, Iametti S, Relkin P, et al. Surface Hydrophobicity Changes andHeat-induced Modifications of α-Lactalbumin[J]. Journal of Agricultural andFood Chemistry,1992,40(10):1731-1736.
    [107] Yuksel Z, Erdem Y K. The Influence of Main Milk Components on theHydrophobic Interactions of Milk Protein System in the Course of HeatTreatment[J]. Journal of Food Engineering,2005,67(3):301-308.
    [108] Friedman M. Food Browning and Its Prevention: An Overview[J]. Journal ofAgricultural and Food Chemistry,1996,44(3):631-653.
    [109] Oldfield D J, Taylor M W, Singh H. Effect of Preheating and Other ProcessParameters on Whey Protein Reactions During Skim Milk PowderManufacture[J]. International Dairy Journal,2005,15(5):501-511.
    [110] Kelly J, Kelly P M, Harrington D. Influence of Processing Variables on thePhysicochemical Properties of Spray Dried Fat-Based Milk Powders[J]. Lait,2002,82(4):401-412.
    [111] Tsioulpas A, Lewis M J, Grandison A S. Effect of Minerals on Casein MicelleStability of Cows' Milk[J]. Journal of Dairy Research,2007,74(2):167-173.
    [112] Martin G J O, Williams R P W, Dunstan D E. Comparison of Casein Micellesin Raw and Reconstituted Skim Milk[J]. Journal of Dairy Science,2007,90(10):4543-4551.
    [113] Anema S G, Li Y. Re-Equilibration of the Minerals in Skim Milk DuringReconstitution[J]. Milchwissenschaft,2003,58(3-4):174-178.
    [114] Byler D M, Susi H. Examination of the Secondary Structure of Proteins byDeconvolved Ftir Spectra[J]. Biopolymers,1986,25(3):469-487.
    [115]李占龙,周密,左剑等.红外光谱和拉曼光谱法分析玉米种子的成分[J].分析化学,2007(11):1636-1638.
    [116]秦竹,许长华,周群等.二维相关红外光谱与奶粉的品质分析[J].分析化学,2004,32(9):5.
    [117]孙素琴,杜德国,梁曦云等.36种灵芝产品傅里叶变换红外光谱快速鉴别研究[J].分析化学,2001(3):309-312.
    [118]孙素琴,梁曦云,杨显荣.6种燕窝的傅里叶变换红外光谱法原性状快速鉴别[J].分析化学,2001(05):552-554.
    [119]孙素琴,刘军,周群.傅里叶变换红外光谱和傅里叶变换拉曼光谱法无损鉴别药材的真伪[J].分析化学,2002(2):140-143.
    [120] Surewicz W K, Mantsch H H, Chapman D. Determination of ProteinSecondary Structure by Fourier Transform Infrared Spectroscopy: A CriticalAssessment[J]. Biochemistry,1993,32(2):389-394.
    [121] Surewicz W K, Moscarello M A, Mantsch H H. Secondary Structure of theHydrophobic Myelin Protein in a Lipid Environment as Determined byFourier-transform Infrared Spectrometry[J]. Journal of Biological Chemistry,1987,262(18):8598-8602.
    [122] Surewicz W K, Moscarello M A, Mantsch H H. Fourier Transform InfraredSpectroscopic Investigation of the Interaction between Myelin Basic Proteinand Dimyristoylphosphatidylglycerol Bilayers[J]. Biochemistry,1987,26(13):3881-3886.
    [123] Purcell J M, Susi H. Solvent Denaturation of Proteins as Observed byResolution-enhanced Fourier Transform Infrared Spectroscopy[J]. Journal ofBiochemical and Biophysical Methods,1984,9(3):193-199.
    [124] Holt C, Sawyer L. Caseins as Rheomorphic Proteins: Interpretation of Primaryand Secondary Structures of the αS1-, β-and κ-Caseins[J]. Journal of theChemical Society, Faraday Transactions,1993,89(15):2683-2692.
    [125] Creamer L K, Richardson T, Parry D A D. Secondary Structure of Bovine αS1-and β-Casein in Solution[J]. Archives of Biochemistry and Biophysics,1981,211(2):689-696.
    [126] Caessens P W J R, De Jongh H H J, Norde W, et al. The Adsorption-inducedSecondary Structure of β-Casein and of Distinct Parts of Its Sequence inRelation to Foam and Emulsion Properties[J]. Biochimica et Biophysica Acta(BBA)-Protein Structure and Molecular Enzymology,1999,1430(1):73-83.
    [127] Paulsson M, Dejmek P. Thermal Denaturation of Whey Proteins in Mixtureswith Caseins Studied by Differential Scanning Calorimetry[J]. Journal of DairyScience,1990,73(3):590-600.
    [128] Hoagland P D, Unruh J J, Wickham E D, et al. Secondary Structure of BovineαS2-Casein: Theoretical and Experimental Approaches[J]. Journal of DairyScience,2001,84(9):1944-1949.
    [129] Farrell Jr H M, Wickham E D, Unruh J J, et al. Secondary Structural Studiesof Bovine Caseins: Temperature Dependence of β-Casein Structure as Analyzedby Circular Dichroism and FTIR Spectroscopy and Correlation withMicellization[J]. Food Hydrocolloids,2001,15(4-6):341-354.
    [130] Arai M, Kuwajima K. Role of the Molten Globule State in Protein Folding[J].Advances in Protein Chemistry,2000,53:209-282.
    [131] Farrell Jr H M, Qi P X, Brown E M, et al. Molten Globule Structures in MilkProteins: Implications for Potential New Structure-function Relationships[J].Journal of Dairy Science,2002,85(3):459-471.
    [132] Chavez M, Oacute, Nica S, et al. Bovine Milk Composition ParametersAffecting the Ethanol Stability[J]. Journal of Dairy Research,2004,71(2):201-206.
    [133] Gastaldi E, Lagaude A, de La Fuente B T. Micellar Transition State in Caseinbetween pH5.5and5.0[J]. Journal of Food Science,1996,61(1):59-64.
    [134] Marine P, Frederic G, Yvon Le G, et al. Physicochemical Characterization ofCalcium-supplemented Skim Milk[J]. Lait,2003,83(1):45-59.
    [135] Karlsson A O, Ipsen R, Ardo Y. Observations of Casein Micelles in Skim MilkConcentrate by Transmission Electron Microscopy[J]. LWT-Food Science andTechnology,2007,40(6):1102-1107.
    [136] Moitzi C, Portnaya I, Glatter O, et al. Effect of Temperature on Self-assemblyof Bovine β-Casein above and Below Isoelectric pH. Structural Analysis byCryogenic-transmission Electron Microscopy and Small-angle X-RayScattering[J]. Langmuir,2008,24(7):3020-3029.
    [137] Farrell Jr H M, Malin E L, Brown E M, et al. Casein Micelle Structure: WhatCan Be Learned from Milk Synthesis and Structural Biology?[J]. CurrentOpinion in Colloid&Interface Science,2006,11(2-3):135-147.
    [138] Horne D S. Casein Micelle Structure: Models and Muddles[J]. CurrentOpinion in Colloid&Interface Science,2006,11(2-3):148-153.
    [139] Marchin S, Putaux J L, Pignon F, et al. Effects of the Environmental Factorson the Casein Micelle Structure Studied by Cryo Transmission ElectronMicroscopy and Small-angle X-Ray Scattering/Ultrasmall-angle X-RayScattering[J]. The Journal of chemical physics,2007,126(4):045101-045110.
    [140] McMahon D J, Oommen B S. Supramolecular Structure of the CaseinMicelle[J]. Journal of Dairy Science,2008,91(5):1709-1721.
    [141] Knudsen J C, Skibsted L H. High Pressure Effects on the Structure of CaseinMicelles in Milk as Studied by Cryo-transmission Electron Microscopy[J].Food Chemistry,2010,119(1):202-208.
    [142] Dalgleish D G, Spagnuolo P A, Douglas Goff H. A Possible Structure of theCasein Micelle Based on High-resolution Field-emission Scanning ElectronMicroscopy[J]. International Dairy Journal,2004,14(12):1025-1031.
    [143] Lencki R W. Evidence for Fibril-like Structure in Bovine Casein Micelles[J].Journal of Dairy Science,2007,90(1):75-89.
    [144] Huppertz T, Kelly A L, de Kruif C G. Disruption and Reassociation of CaseinMicelles under High Pressure[J]. Journal of Dairy Research,2006,73(3):294-298.
    [145] Gottschalk M, Nilsson H, Roos H, et al. Protein Self-Association in Solution:The Bovine β-Lactoglobulin Dimer and Octamer[J]. Protein Science,2003,12(11):2404-2411.
    [146] Qin B Y, Bewley M C, Creamer L K, et al. Structural Basis of the TanfordTransition of Bovine β-Lactoglobulin[J]. Biochemistry,1998,37(40):14014-14023.
    [147] Sakurai K, Goto Y. Manipulating Monomer-dimer Equilibrium of Bovineβ-Lactoglobulin by Amino Acid Substitution[J]. Journal of BiologicalChemistry,2002,277(28):25735-25740.
    [148] Bullman V. Automated Three-dimensional Analysis of Particle MeasurementsUsing an Optical Profilometer and Image Analysis Software[J]. Journal ofMicroscopy,2003,211(1):95-100.
    [149] Park S Y, Nakamura K, Niki R. Effects of β-Lactoglobulin on the RheologicalProperties of Casein Micelle Rennet Gels[J]. Journal of Dairy Science,1996,79(12):2137-2145.
    [150] Needs E C, Stenning R A, Gill A L, et al. High-pressure Treatment of Milk:Effects on Casein Micelle Structure and on Enzymic Coagulation[J]. Journal ofDairy Research,2000,67(1):31-42.
    [151] McMahon D J, Du H, McManus W R, et al. Microstructural Changes inCasein Supramolecules During Acidification of Skim Milk[J]. Journal of DairyScience,2009,92(12):5854-5867.
    [152] Mellema M, Walstra P, van Opheusden J H J, et al. Effects of StructuralRearrangements on the Rheology of Rennet-induced Casein Particle Gels[J].Advances in Colloid and Interface Science,2002,98(1):25-50.
    [153]赵征,常志勇,申四化等.我国干酪开发的产品策略[J].中国食品工业,2007(2):28-30.
    [154] Gee P, Townson P. Cheese, If You Please: Getting the Chinese Market toConsume Cheese is a Challenge in a Lactose-intolerant Population[J]. DairyIndustry International,2007,72:18-21.
    [155] Zhang X Y, Guo H Y, Zhao L, et al. Sensory Profile and Beijing YouthPreference of Seven Cheese Varieties[J]. Food Quality and Preference,2011,22(1):101-109.
    [156] Wacher-Rodarte C, Galvan M V, Farres A, et al. Yogurt Production fromReconstituted Skim Milk Powders Using Different Polymer and Non-polymerForming Starter Cultures[J]. Journal of Dairy Research,1993,60(2):247-254.
    [157] Amatayakul T, Sherkat F, Shah N P. Syneresis in Set Yogurt as Affected byEps Starter Cultures and Levels of Solids[J]. International Journal of DairyTechnology,2006,59(3):216-221.
    [158] Sawyer L, Kontopidis G. The Core Lipocalin, Bovine β-Lactoglobulin[J].Biochimica et Biophysica Acta (BBA)-Protein Structure and MolecularEnzymology,2000,1482(1-2):136-148.
    [159] Kehoe J J, Morris E R, Brodkorb A. The Influence of Bovine Serum Albuminon β-Lactoglobulin Denaturation, Aggregation and Gelation[J]. FoodHydrocolloids,2007,21(5-6):747-755.
    [160] Haug I J, Skar H M, Vegarud G E, et al. Electrostatic Effects onβ-Lactoglobulin Transitions During Heat Denaturation as Studied byDifferential Scanning Calorimetry[J]. Food Hydrocolloids,2009,23(8):2287-2293.
    [161] Petit J, Herbig A L, Moreau A, et al. Influence of Calcium on β-LactoglobulinDenaturation Kinetics: Implications in Unfolding and AggregationMechanisms[J]. Journal of Dairy Science,2011,94(12):5794-5810.
    [162] Unterhaslberger G, Schmitt C, Sanchez C, et al. Heat Denaturation andAggregation of β-Lactoglobulin Enriched WPI in the Presence of Arginine HCl,NaCl and Guanidinium HCl at pH4.0and7.0[J]. Food Hydrocolloids,2006,20(7):1006-1019.
    [163] Baeza R I, Pilosof A M R. Calorimetric Studies of Thermal Denaturation ofβ-Lactoglobulin in the Presence of Polysaccharides[J]. LWT-Food Scienceand Technology,2002,35(5):393-399.
    [164] Kelly A L, Foley J. Proteolysis and Storage Stability of UHT Milk asInfluenced by Milk Plasmin Activity, Plasmin/β-Lactoglobulin Complexation,Plasminogen Activation and Somatic Cell Count[J]. International Dairy Journal,1997,7(6-7):411-420.
    [165] Schwieger C, Ropers M-H. Binding of a Perfluorinated Surfactant toβ-Lactoglobulin in Aqueous Solutions[J]. Food Hydrocolloids,2013,30(1):241-248.
    [166] Dabour N, Kheadr E, Benhamou N, et al. Improvement of Texture andStructure of Reduced-fat Cheddar Cheese by Exopolysaccharide-producingLactococci[J]. Journal of Dairy Science,2006,89(1):95-110.
    [167] Ritvanen T, Lampolahti S, Lilleberg L, et al. Sensory Evaluation, ChemicalComposition and Consumer Acceptance of Full Fat and Reduced Fat Cheesesin the Finnish Market[J]. Food Quality and Preference,2005,16(6):479-492.
    [168] Karagul Yuceer Y, Tuncel B, Guneser O, et al. Characterization ofAroma-active Compounds, Sensory Properties, and Proteolysis in EzineCheese[J]. Journal of Dairy Science,2009,92(9):4146-4157.
    [169] Johnson M E. Encyclopedia of Dairy Sciences [M]. John W F Ed., San Diego:Academic Press,2011:833-842.
    [170] Manolaki P, Katsiari M C, Alichanidis E. Effect of a Commercial AdjunctCulture on Organic Acid Contents of Low-fat Feta-type Cheese[J]. FoodChemistry,2006,98(4):658-663.
    [171] Zisu B, Shah N P. Texture Characteristics and Pizza Bake Properties ofLow-fat Mozzarella Cheese as Influenced by Pre-acidification with Citric Acidand Use of Encapsulated and Ropy Exopolysaccharide Producing Cultures[J].International Dairy Journal,2007,17(8):985-997.
    [172] Petersen B L, Dave R I, McMahon D J, et al. Influence of Capsular and RopyExopolysaccharide-producing Streptococcus Thermophilus on MozzarellaCheese and Cheese Whey[J]. Journal of Dairy Science,2000,83(9):1952-1956.
    [173] Broadbent J R, McMahon D J, Oberg C J, et al. Use ofExopolysaccharide-producing Cultures to Improve the Functionality of LowFat Cheese[J]. International Dairy Journal,2001,11(4-7):433-439.
    [174] Awad S, Hassan A N, Muthukumarappan K. Application ofExopolysaccharide-producing Cultures in Reduced-fat Cheddar Cheese:Texture and Melting Properties[J]. Journal of Dairy Science,2005,88(12):4204-4213.
    [175] Mistry V V, Anderson D L. Composition and Microstructure of CommercialFull-fat and Low-fat Cheeses[J]. Food structure,1993,12(2):259-266.
    [176] Tamime, Y. A, Kalab, et al. Microstructure and Firmness of Processed CheeseManufactured from Cheddar Cheese and Skim Milk Powder Cheese Base[J].Food Structure,1990,9(1):23-37.
    [177] Leclercq-Perlat M N, Oumer A, Bergere J L, et al. Behavior of BrevibacteriumLinens and Debaryomyces Hansenii as Ripening Flora in Controlled Productionof Smear Soft Cheese from Reconstituted Milk: Growth and SubstrateConsumption[J]. Journal of Dairy Science,2000,83(8):1665-1673.
    [178] Leclercq-Perlat M N, Oumer A, Buono F, et al. Behavior of BrevibacteriumLinens and Debaryomyces Hansenii as Ripening Flora in Controlled Productionof Soft Smear Cheese from Reconstituted Milk: Protein Degradation[J]. Journalof Dairy Science,2000,83(8):1674-1683.
    [179] Jimenez-Guzman J, Flores-Najera A, Cruz-Guerrero A E, et al. Use of anExopolysaccharide-producing Strain of Streptococcus Thermophilus in theManufacture of Mexican Panela Cheese[J]. LWT-Food Science andTechnology,2009,42(9):1508-1512.
    [180] Pappa E C, Kandarakis I, Mallatou H. Effect of Different Types of Milks andCultures on the Rheological Characteristics of Teleme Cheese[J]. Journal ofFood Engineering,2007,79(1):143-149.
    [181] Liu H, Xu X M, Guo S D. Comparison of Full-fat and Low-fat CheeseAnalogues with or without Pectin Gel through Microstructure, Texture,Rheology, Thermal and Sensory Analysis[J]. International Journal of FoodScience&Technology,2008,43(9):1581-1592.
    [182] Katsiari M C, Voutsinas L P, Kondyli E. Improvement of Sensory Quality ofLowfat Kefalograviera-type Cheese by Using Commercial Special StarterCultures[J]. Journal of Dairy Science,2002,85(11):2759-2767.
    [183] Dartey C K, Kinsella J E. Metabolism of Carbon-14-Uniformly-LabeledLauric Acid to Methyl Ketones by the Spores of Penicillium Roqueforti[J].Journal of Agricultural and Food Chemistry,1973,21(6):933-936.
    [184] Carpino S, Mallia S, La Terra S, et al. Composition and Aroma Compounds ofRagusano Cheese: Native Pasture and Total Mixed Rations[J]. Journal of DairyScience,2004,87(4):816-830.
    [185] Bosset J O, Gauch R. Comparison of the Volatile Flavour Compounds of SixEuropean ‘AOC’ Cheeses by Using a New Dynamic Headspace GC-MSMethod[J]. International Dairy Journal,1993,3(4-6):359-377.
    [186] Engels W J M, Dekker R, de Jong C, et al. A Comparative Study of VolatileCompounds in the Water-soluble Fraction of Various Types of RipenedCheese[J]. International Dairy Journal,1997,7(4):255-263.
    [187] Urbach G. Relations between Cheese Flavour and Chemical Composition[J].International Dairy Journal,1993,3(4-6):389-422.
    [188] Centeno J A, Tomillo F J, Fernandez-Garcia E, et al. Effect of Wild Strains ofLactococcus Lactis on the Volatile Profile and the Sensory Characteristics ofEwes’ Raw Milk Cheese[J]. Journal of Dairy Science,2002,85(12):3164-3172.
    [189] Sheldon R M, Lindsay R C, Libbey L M, et al. Chemical Nature of MaltyFlavor and Aroma Produced by Streptococcus Lactis Var. Maltigenes[J].Applied Microbiology,1971,22(3):263-266.
    [190] Fernandez-Garcia E. Use of Headspace Sampling in the Quantitative Analysisof Artisanal Spanish Cheese Aroma[J]. Journal of Agricultural and FoodChemistry,1996,44(7):1833-1839.
    [191] Burbank H, Qian M C. Development of Volatile Sulfur Compounds inHeat-shocked and Pasteurized Milk Cheese[J]. International Dairy Journal,2008,18(8):811-818.
    [192] Hall G, Andersson J, Lingnert H, et al. Flavor Changes in Whole Milk PowderDuring Storage[J]. Journal of Food Quality,1985,7(3):153-190.
    [193] Vazquez-Landaverde P A, Torres J A, Qian M C. Quantification of TraceVolatile Sulfur Compounds in Milk by Solid-phase Microextraction and GasChromatography–pulsed Flame Photometric Detection[J]. Journal of DairyScience,2006,89(8):2919-2927.
    [194] Cornu A, Kondjoyan N, Martin B, et al. Terpene Profiles in Cantal andSaint-nectaire-type Cheese Made from Raw or Pasteurised Milk[J]. Journal ofthe Science of Food and Agriculture,2005,85(12):2040-2046.
    [195] Solano-Lopez C E, Ji T, Alvarez V B. Volatile Compounds and ChemicalChanges in Ultrapasteurized Milk Packaged in Polyethylene TerephthalateContainers[J]. Journal of Food Science,2005,70(6): c407-c412.
    [196] Arora G, Cormier F, Lee B. Analysis of Odor-active Volatiles in CheddarCheese Headspace by Multidimensional GC/MS/Sniffing[J]. Journal ofAgricultural and Food Chemistry,1995,43(3):748-752.
    [197] Molimard P, Spinnler H E. Review: Compounds Involved in the Flavor ofSurface Mold-ripened Cheeses: Origins and Properties[J]. Journal of DairyScience,1996,79(2):169-184.
    [198] Starrenburg M J C, Hugenholtz J. Citrate Fermentation by Lactococcus andLeuconostoc Spp[J]. Applied and Environmental Microbiology,1991,57(12):3535-3540.
    [199] Jordan K N, Cogan T M. Production of Acetolactate by StreptococcusDiacetylactis and Leuconostoc Spp[J]. Journal of Dairy Research,1988,55(2):227-238.
    [200] Bintsis T, Robinson R K. A Study of the Effects of Adjunct Cultures on theAroma Compounds of Feta-type Cheese[J]. Food Chemistry,2004,88(3):435-441.
    [201] Massouras T, Pappa E C, Mallatou H. Headspace Analysis of Volatile FlavourCompounds of Teleme Cheese Made from Sheep and Goat Milk[J].International Journal of Dairy Technology,2006,59(4):250-256.
    [202] Fox P F, Wallace J M. Formation of flavor compounds in cheese[J]. Advancesin Applied Microbiology,1997,45:17-85.
    [203] Urbach G. Contribution of Lactic Acid Bacteria to Flavour CompoundFormation in Dairy Products[J]. International Dairy Journal,1995,5(8):877-903.
    [204] Lopez C, Camier B, Gassi J-Y. Development of the Milk Fat MicrostructureDuring the Manufacture and Ripening of Emmental Cheese Observed byConfocal Laser Scanning Microscopy[J]. International Dairy Journal,2007,17(3):235-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700