转基因小鼠平台的建立、技术优化及Tie2-CreER~(TM)转基因小鼠的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因小鼠是最早建立的转基因动物。此项技术是近年来生命科学中最热门,发展最快的领域之一,已经成为现代生物学家不可缺少的研究工具。它可以通过对基因的操作,直接观察基因在活体内的活动情况及其表达产物所引起的表型效应。其已广泛应用于分子生物学、免疫学、发育生物学、制药及畜牧育种等各个研究领域中,既具有深远的理论价值,又有重大的应用价值。
     成功高效的基因转移是转基因动物制备的关键,依据基因转移方式的不同目前制作转基因小鼠的方法有十多种之多。受精卵原核显微注射法是当前最常用最有效的建立转基因动物的方法之一。其基本过程是利用显微操作系统和显微注射技术,用直径约为1μm的玻璃管直接插入受精卵的雄原核内,将毛细管内所带有的外源基因的DNA注入受精卵原核,使外源基因整合到动物基因组,再通过胚胎移植技术将整合有外源基因的受精卵移植到受体的输卵管或子宫内继续发育,产下的携带有外源基因的子代即得到转基因动物。
     受精卵原核显微注射法是目前基因转移效率较好的一种基因转移方法,为了实现对多种基因的快速准确的分析,我们精心建立了小鼠受精卵原核显微注射系统。包括显微注射室的改造,仪器的购置与安装,不孕雄鼠的结扎,供体小鼠的超排卵,假孕雌鼠的制作,原核注射及胚胎输卵管移植等各个环节。成功建立了制作转基因小鼠的受精卵原核显微注射系统平台。
     受精卵原核注射法是一项技术性很强的工作,操作精细,涉及的步骤繁杂,影响因素多,稍有不慎便得不到预期的结果。我们又在如何提高实验结果的稳定性和整合效率方面,进行了一些有益的探索和技术优化。建立了提高实验结果及稳定性的优化方案。
     实验证明用3~5周龄,体重12~14g的CBAXC57BL/6的杂交一代F1雌鼠,第1天13:30腹腔注射5IU PMSG,第3天12:30注射5IU hCG后立即与雄种鼠合笼,第4天10:30取卵,能得到最好的超排数量及质量的受精卵细胞。雄原核注射时每个卵细胞注射1~2μg/ml(2~4pl)的线性化的纯化的DNA溶液,受精卵成活,发育成2细胞率最高。胚胎移植时每只受体雌鼠每侧移植10~15枚,产仔率最佳。KM是经济又好用的受体鼠种。我们建立了提高实验结果及稳定性的优化方案。
     基于此项技术我们构建了在内皮细胞特异性表达可诱导Tie2-CreERTM转基因小鼠。首先我们构建了在内皮细胞中特异性表达Cre重组酶的可诱导的转基因表达载体Tie2-CreER TM-core enhancer和Tie2-CreER TM-full enhancer,通过显微注射方法,注射入C57BL/6与CBA的杂交F1代小鼠受精卵原核中,移植到受体小鼠的输卵管伞部,生下的仔鼠用PCR的方法扩增基因组DNA,共筛选出3系Tie2-CreER TM core enhancer和1系Tie2-CreER TM-full enhancer转基因小鼠。
     此转基因小鼠可作为血管内皮细胞谱系分析和在血管内皮细胞进行条件基因打靶的理想工具小鼠。如用此转基因小鼠与我室拥有的转基因RBP-Jfloxed小鼠交配后,仔鼠注射它莫西酚即可诱导在血管内皮细胞条件性剔除RBP-J基因。通过组织学及免疫组织化学染色等即可观察血管内皮细胞在Notch/RBP-J信号阻断后的血管生成及表达标记的变化。
Transgenic mice were the earliest transgenic animals. This technology is developing fast in the life science for the past few years. It is already be the necessary research tool for the modern biologist. We can direct observing expressive product of the gene and the phenotypic effect though manipulate with the gene in vivo. This technology is used widespread in molecular biology, immunology, developmental biology and livestock breeding. It has a very important role in the life science research.
     The key point in making a transgenic animal is transferring gene successfully into the mouse eggs. There are more than ten methods to make transgenic mouse according to the different gene transfer method. A method for microinjection of mouse zygotes to produce transgenic mice is the commonly used and effectively transfered method in present. Its elementary process is to push the injection pipette which with 1μm diameter into the pronucleus of eggs -7- and inject the exogenous gene DNA solution into it. Then transfer the injected eggs into the oviduct of acceptor female mouse. The pups were born which take along the exogenous gene are the transgenic mice.
     This method is the effective way to make transgenic mice. To analyze gene in vivo quickly and precisely, we have set up a mouse fertilized zygote microinjection system. Including set up the lab equipment, vasectomizing male mouse, inducing superovulation, making pseudopregnancy female mouse, microinjecting and oviduct transplanting.
     In addition, injection into the mouse pronucleus of fertilized zygote is the classic transgenic technology. It is still the main method to transgenic animal till now. But this technology has many steps and requires operation with highly attention. To improve stability of gene expression and integration efficiency we research and optimizate many aspects of the technology.
     We found that IP 3~5 weeks old, body weight 12~14g CBAXC57BL/6 F1 hybrid mouse 5 IU PMSG at 13:30 in the first day, IP5IU hCG at 12:30 in the third day, then mated with stud male mouse immediately. We get the eggs at 10:30 in the fourth day. The quantity and qualitative of the eggs were the best ones. The fertilized eggs have developmented into 2 cell stage rate is the highest when we inject 1~2μg/ml(2~4pl)linearized purified DNA solution into the male pronucleus. The number of the pups were maximum when we transferred 10~15 injected eggs into the oviduct of receptor female mouse. KM is the good receptor female mouse.
     We generated vascular endothelial cell specific expression of inducible Tie2-CreERTM transgenic mice. First we constructed the expression vector Tie2-CreERTM-core enhancer and Tie2-CreERTM-full enhancer. We have microinjected the linearized purified DNA solution into fertilized C57BL/6 XCBA F1 oocytes. The genotypes of all offsprings were analyzed by PCR on genomic DNA from tail biopsies. Total three founder mice carrying the Tie2-CreERTM-core enhancer and one founder carrying Tie2-CreERTM-full enhancer. The integration efficiency is 6%and 5%.
     The Tie2-CreERTM mouse we generated in current study is a valuable genetic tool not only for endothelial cell-specific gene targeting, but also useful for endothelial cell lineage analyses. Our lab generated the conditional knock-out mouse model of the key transcription factor RBP-J of Notch signaling RBP-J flox/flox. This model mated with Tie2-CreERTM mouse. The pups will conditional knock-out RBP-J and then block the Notch signaling in endothelial cells after tamoxifen induction. Then can reveal the angiogenesis and changing of the makers though histology and immunohistochemistry.
引文
1 Gordon,J.W .GA. Seangos D. J. Plotkin, etal. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Aead Sci USA, 1980;77(12):7380-4.
    2 Thompson S,Clarke A R,Pow A M, et al. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell .1989 ; 56 (2) :313 - 3211
    3 Dierich A, Kieffer BL. Knockout mouse models in pain research. Methods Mol Med. 2004 ; 99 :269 - 2991
    4 Rossant, J., and Nagy, A. Genome engineering: The new mouse genetics. Nat. Med. 1995; 1:592–594.
    5 Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis 2000; 26:99–109.
    6 Rossant, J., and McMahon, A. “Cre”-ating mouse mutants: A meeting review on conditional mouse genetics. Genes Dev. 1999;13: 142–145.
    7 Gorman, C., and Bullock, C. Site-specific gene targeting for gene expression in eukaryotes. Curr. Opin. Biotechnol. 2000;11: 455–460.
    8 M etzger D et al. Proc Natl Acad Sci USA , 1995; 92 :6991
    9 Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G., and Evan, G. I. A modified oestrogen receptor ligandbinding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 1995;23:1686–1690.
    10 Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006; 7:678-689.
    11 Louvi A, Artavanis-Tsakonas S. Notch signaling in vertebrate neuraldevelopment. Nat Rev Neurosci. 2006; 7:93-102.
    12 Rossant J,Howard L. Signaling pathways in vascular development Annu Rev Cell Dev Biol. 2002;18:541-573.
    13 Artavanis-Tsakonas S,Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science.1999; 284: 770-776.
    14 Rossant J, Howard L. Signaling pathways in vascular development Annu Rev Cell Dev Biol. 2002; 18:541–573.
    15 Gridley T. Notch signaling and inherited disease syndromes. Hum Mol Genet. 2003; 12 Spec No 1:R9–R13.
    16 Louvi A, Arboleda-Velasquez JF, Artavanis-Tsakonas S. CADASIL: a critical look at a Notch disease. Dev Neurosci. 2006; 28:5–12.
    17 Gridley T. Kick it up a Notch: NOTCH1 activation in T-ALL. Cancer Cell. 2004; 6:431– 432.
    18 Maillard I, Fang T, Pear WS. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol. 2005, 23: 945-974.
    19 Izon, D.J., Aster, J.C., He, Y. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity, 2002, 16:231-243.
    20 Okajima, T. and Irvine, K.D. Regulation of Notch signaling by O-linked fucose . Cell, 2002, 111:893-904.
    21 French MB, Koch U, Shaye RE, et al. Transgenic expression of numb inhibits notch signaling in immature thymocytes but does not alter T cell fate specification. Immunol, 2002, 168(7):3173-3180.
    22 Yamamoto, N. Yamamoto, S. Inagaki. F. et al. Role of Deltex-1 as transcriptional regulator downstream of the Notch receptor. J. Biol. Chem., 2001, 276:45031-45040.
    23 Wu, G., Lyapina, S., Das, I. et al. SEL-10 is an inhibitor of Notch signaling that targets Notch for ubiquitin-mediated protein degradation. Mol. Cell.Biol., 2001, 21:7403-7415.
    24 Fryer, C., Lamar, E., Turbachova, et al. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev., 2002; 16:1397-1411
    25 Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebra fish, mouse and man. Bioessays. 2004; 26:225–234.
    26 Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, Domenga V, Cecillon M, Vahedi K, Ducros A, Cave-Riant F, Bousser MG, Tournier-Lasserve E. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet. 2001; 358: 2049–2051.
    27 Hofmann JJ, Luisa Iruela-Arispe M. Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns. 2007; 7:461– 470.
    28 Tsai S, Fero J, Bartelmez S. Mouse Jagged2 is differentially expressed in hematopoietic progenitors and endothelial cells and promotes the survival and proliferation of hematopoietic progenitors by direct cellto- cell contact. Blood. 2000; 96:950 –957.
    29 Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000; 14:1343–1352.
    30 Jones EA, le Noble F, Eichmann A. What determines blood vessel structure? Genetic prespecification vs. hemodynamics. Physiology (Bethesda). 2006; 21:388 –395.
    31 Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G. Blockade of Dll4 inhibits tumourgrowth by promoting nonproductive angiogenesis. Nature. 2006; 444:1032–1037.
    32 Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A, Drexler H, Limbourg FP. Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res. 2007; 100:363–371.
    33 Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK. Essential role of endothelial Notch1 in angiogenesis. Circulation. 2005; 111:1826 –1832.
    34 McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001; 128:491–502.
    35 Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 2004; 18:2730 –2735.
    36 Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A. 2001; 98:5643–5648.
    37 Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004; 18:2474 –2478.
    38 Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron- Maguire M, Rand EB, Weinmaster G, Gridley T. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet. 1999; 8:723–730.
    39 Beckers J, Clark A, Wunsch K, Hrabe De Angelis M, Gossler A. Expression of the mouse Delta1 gene during organogenesis and fetal development. Mech Dev. 1999; 84:165–168.
    40 Petersen PH, Zou K, Hwang JK, Jan YN, Zhong W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature. 2002; 419:929 –934.
    41 Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K, Harper JW, Schwartz RJ, Elledge SJ. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci U S A. 2004; 101:3338 –3345.
    42 Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 2004; 18:901–911.
    43 Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93:741–753.
    44 Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H, Polverini PJ, Nor J, Kitajewski J, Wang CY. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell. 2005; 8:13–23.
    45 You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein ideitify. Nature. 2005; 435:98 –104.
    46 Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM. Notch signaling is required for arterialvenous dfferentiation during embryonic vascular development.Development. 2001; 128:3675–3683.
    47 Peirce SM, Skalak TC. Microvascular remodeling: a complex continuum panning angiogenesis to arteriogenesis. Microcirculation. 2003; 0:99 –111.
    48 Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P.Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J,Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C. Dll4 signallingthrough Notch1 regulates formation of tip cells during angiogenesis.Nature. 2007; 445:776 –780.
    49 Gale, N. W., Dominguez, M. G., Noguera, I., Pan, L., Hughes, V., Valenzuela,D. M. Murphy, A. J. Adams, N. C. Lin, H. C. Holash, J. et al.Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due tomajor defects in arterial and vascular development. Proc. Natl. Acad. Sci. USA. 2004;101: 15949-15954.
    50 Gates AH. Maximizing yield and developmental uniformity of eggs. In: Daniel JC, ed. Methods in mammalian embryology. San Francisco: W. H. Freeman, 1971:64 -76.
    51 杨春荣, 马霄飞, 李吉霞, 等。PMSG不同剂量对小鼠超排效果的影响。 畜牧兽医杂志, 2001 ;20 (6) : 18 - 19
    52 Wall R J . Transgenic livestock : Progress and prospects for the future.Theriogenology,1996;45:57~68.
    53 Hans Christian Probst, Jacques Lagnel, George Kollias, and Maries van den Broek , Inducible Transgenic Mice Reveal Resting Dendritic Cells as Potent Inducers of CD8_ T Cell Tolerance,Immunity, Vol. 18, 713–720, May, 2003
    54 Thomas N. S, Thorsten M. Schlaeger, Sona. B, Joel A. Lawitts, Gunnar.T,Werner.R,Urban.D,Thomas.N.S.Uniformvascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice Proc.Natl. Acad. Sci. USA. 1997; 94:3058–3063
    55 Sato, T. N., Qin, Y., Kozak, C. A., and Audus, K. L. tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed I early embryonic vascular system. Proc. Natl. Acad. Sci. USA 1993;90, 9355–9358.
    56 Schnu¨ rch, H., and Risau, W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development .1993.119, 957–968.
    57 Sato TN, Tozawa Y,Deutsch U. Distinct roles of the recep tor tyrosine kinases Tie21 and Tie2 in blood vessel formation. Nature, 1995, 376 (6535) :70 - 74
    58 Zagzag D , Hooper A , Friedlander DR , et al. In situ expession of angiopoietins in astrocytomas identifies angiopoietin22 as an early marker of tumor angiogenesis. Exp Neurol , 1999 ; 159 (2) : 391 - 400.
    59 EvnasV, Hatzopoulos A, AidrWC, Rayburn HB, RosenbergRD, KuivenhovenJA. Targeting the Hprt locus in mice reveals differential regulation of Tie2 gene expression in the endothelium.Physiol Genomies,2000;2(2):67-75.
    60 Wong AL,Haroon ZA,Werner S,Dewhirst MW,Greenberg CS,Peters KG.Tie2 Expression and phosphorylation in angiogenic and quiescent adult tisuses.CierRes,1997;81(4):567-574.
    61 Teng PI, Dichiara MR, Komuves LG, Abe K, Quertermous T, Topper JN. Inducible and selective transgene expression in murnie vaseular endothelium.Physiol Genomies,2002;11(2):99一107.
    62 Schlaeger TM, Bartuovnkova S,Lawitts JA,Teichmann G, Risau W, DeutschU, SatoTN.Uniform vascular endothelial cell specific geneexpression in both embryonic and dault transgenic mice.Porc Natl Acad Sci, 1997; 94(7): 3058 -3063.
    63 Popova,E. andM.Bader, Krivokharchenko,A Production of transgenic models in hypertension.Methods Mol Med,2004;108:33-50
    64 Bisho P J O , Smith P. Mechatllsm of chromosomal integration of microinjected DNA .Mol biol med ,1989 ;6 (4) :283~298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700