镁合金专家系统的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金由于具有密度低、比强度高、电磁屏蔽性好、弹性模量高等一系列优点,因此受到极大关注,被誉为“21世纪的绿色工程金属结构材料”。但目前镁合金的研究和生产中一直存在不少困难。而由于材料研究及其制备加工过程的影响因素非常复杂且具有很大的不确定性,材料研发采用的是依赖大量实验,大面积筛选的方法,消耗巨大。为提高传统的实验研究效率,开拓新的研究方法,加快镁合金研究进展,利用多学科交叉融合、计算机辅助设计、引入人工智能技术等方法已成为镁合金研究的新趋势。作为人工智能应用研究最活跃和最广泛的专家系统,其善于处理强非线性关系,非常适用于研究及制备加工过程复杂且需要丰富经验的材料领域。
     本文基于对目前镁合金研究和生产的需求分析,设计并开发了一个镁合金专家系统,其主要包括核心知识库、数据库、人机交互界面及数据交互机制。
     鉴于镁合金发展至今已有较为丰富的数据资源,本课题采用基于数据的方法,应用人工神经网络技术,并采用新的优选人工神经网络建模参数的方法——参数全排列组合训练,建立了精度较高的变形镁合金抗拉强度、屈服强度和延伸率预测的网络模型、铸造镁合金抗拉强度、屈服强度和延伸率预测的网络模型,以及铸造镁合金晶粒尺寸预测的网络模型。这些人工神经网络模型组成了镁合金专家系统的核心知识库。基于这些网络模型,可以充分挖掘现有镁合金数据潜力,实现对镁合金性能预测以及对铸造镁合金晶粒尺寸预测功能。
     根据对镁合金数据需求的分析及系统设计,采用数据库管理技术,在完成数据库概念结构、逻辑结构基础上,建立了包括镁合金选材数据、知识库信息数据、用户信息数据在内的系统数据库,实现了对系统数据的管理和对镁合金的初步选材功能。
     在完成系统知识库和数据库构架的基础上,根据系统整体设计目标和模块化的功能设计,采用面向对象的程序设计语言Visual C++开发了镁合金专家系统的人机交互界面。
     通过采用Matlab计算引擎,以Visual C++和Matlab的混合编程,实现了镁合金专家系统的人机交互界面和知识库模型的耦合;采用Visual C++提供的数据库访问方式ADO作为系统数据库与人机交互界面的连接方式。由这两种方式实现了镁合金专家系统的数据交互。
     已实现的镁合金专家系统运行稳定,人机交互友好,使用灵活方便,已达到设计预期。系统应用实例表明其对性能和晶粒尺寸的预测值与实验值符合较好,误差在可接受范围内,可以初步为镁合金相关研究和生产提供参考和支持。
Magnesium and magnesium alloys have been of tremendous concern and been praised as the "metal materials of the green engineering in the 21st century" due to they have a number of advantages, such as low density, high strength to weight ratio, good electromagnetic shielding characteristics, high elastic modulus and so on. But there still exist many difficulties in the research and production of magnesium alloys. Because of the great complexity and uncertainty of factors in the research and the process of materials, large quantities of experiments and large scale screening have been used for the research of materials, which result in very huge consumption. To improve the efficiency of traditional experimental research, develop new methods and speed up the research progress of magnesium alloys, it has become a new trend that the use of interdisciplinary integration, computer aided design and artificial intelligence in the research of magnesium alloys. As the most active and widest field in artificial intelligence research for applications, expert system is good at dealing with strongly nonlinear relationship. Thus, it is very suitable for the material research areas, where study and process are complex and require extensive experience.
     In this paper, based on the needs analysis of current research and production of magnesium alloys, a magnesium alloy expert system has been designed and developed, which mainly includes the core knowledge base, database, human-computer interface and data exchange mechanism.
     In view of the rich data resources with the development of magnesium alloys, the data-based method has been used in this subject. And by using artificial neural network and a new method for optimizing modeling parameters of artificial neural network—all permutations and combinations training of parameters, the network models with relatively high precision have been built, which are the predicted ultimate tensile strength/yield strength/elongation model of wrought magnesium alloys, the predicted ultimate tensile strength/yield strength/elongation model of cast magnesium alloys and the predicted grain size model of cast magnesium alloys. Then, the core knowledge base of magnesium alloy expert system has been formed by all of these artificial neural network models. Based on these network models, the mechanical properties of magnesium alloys and the grain size of cast magnesium alloys can be predicted through exploiting the potential of existing data of magnesium alloys fully. According to the needs analysis of magnesium alloy data and system design, after completion of the conceptual and logical structure of database, the system database has been established by using database management technology. The system database includes data for selecting magnesium alloys, knowledge base information data and user information data. So, the management of system data and the initial selection of magnesium alloys can be carried out.
     Based on the completion of system knowledge base and database, then according to the goal of overall system design and the modular functional design, a human-computer interface of magnesium alloy expert system has been developed by using the object-oriented programming language Visual C++.
     Through Matlab engine, the coupling has been achieved by using mixed programming of Visual C++ and Matlab, which is between the human-computer interface of magnesium alloy expert system and the models in knowledge base. The ADO, a method of accessing database in Visual C++, has been used as the connection between the system database and the human-computer interface of magnesium alloy expert system. Therefore, the data exchange of magnesium alloy expert system has been accomplished by the two methods.
     The established magnesium alloy expert system has met the design expectations, which is stable during operation, has friend man-computer exchange, and can be used flexibly and conveniently. System applications indicate that the predictive values of mechanical properties or grain sizes agree with the experimental ones well and the errors were in the acceptable range as well. Therefore, the magnesium alloy expert system can provide reference and support for the research and production of magnesium alloy preliminary.
引文
[1]靳达申,车成卫.材料——科技发展的动力和瓶颈[J].中国科学基金, 2002(03):173-174.
    [2]中华人民共和国国民经济和社会发展十二五规划纲要[EB/OL]. http://wenku.baidu.com/view/842b29c608a1284ac85043fb.html. 2011.
    [3]徐坚.中国新材料产业技术发展十二五展望[J].化工新型材料, 2010(S1):5.
    [4] A. A. Luo. Recent magnesium alloy development for elevated temperature applications[J]. International Materials Reviews, 2004, 49(1):13-30.
    [5] F. S. Pan, M. B. Yang, Y. L. Ma, G. S. Cole. Research and development of processing technologies for wrought magnesium alloys[J]. 2006 BIMW: 2006 Beijing International Materials Week, Pts 1-4, 2007, 546-549:37-48.
    [6] M. B. Yang, F. S. Pan, R. J. Cheng, A. T. Tang. Comparation about efficiency of Al–10Sr and Mg–10Sr master alloys to grain refinement of AZ31 magnesium alloy[J]. Journal of Materials Science, 2007, 42(24):10074-10079.
    [7] S. B. Yi, C. H. J. Davies, H. G. Brokmeier, R. E. Bolmaro, K. U. Kainer, J. Homeyer. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading[J]. Acta Materialia, 2006, 54(2):549-562.
    [8]王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属, 2004(07):8-11.
    [9]黄伯云,李成功,石力开,邱冠周,左铁镛.中国材料工程大典第4卷[M].北京:化学工业出版社, 2006.
    [10]沈远香,张秀蓉,罗明文.高性能稀土镁合金的研发现状及应用[J].四川兵工学报, 2008(05):114.
    [11]孙全喜,战中学,李进军.汽车用镁合金的现状和发展前景[J].内蒙古科技与经济, 2008(09):73.
    [12]潘辉,刘晓烈,孙立喜,冯崇敬.镁及镁合金晶粒细化的研究现状[J].金属材料与冶金工程, 2009(01):8.
    [13]郝士明.镁的合金化与合金相图[J].材料与冶金学报, 2002(03):166.
    [14] E. Aghion, B. Bronfin. Magnesium alloys development towards the 21st century[J]. Materials Science Forum, 2000, 350-351(1):19~28.
    [15]潘复生,王敬丰,章宗和,丁培道.中国镁工业发展的机遇、挑战和责任[J].中国金属通报, 2008(02):6-14.
    [16]向群,屈伟平.镁合金的发展趋势[J].冶金丛刊, 2004(05):37-38.
    [17] M. K. Kulekci. Magnesium and its alloys applications in automotive industry[J]. International Journal of Advanced Manufacturing Technology, 2008, 39(9-10):851-865.
    [18]陈力禾,赵慧杰,刘正,申志勇,聂义勇.镁合金压铸及其在汽车工业中的应用[J].铸造, 1999(10):45-50.
    [19] F. Wu, S. Zhang, Z. Tao. Corrosion behavior of 3C magnesium alloys in simulated sweat solution[J]. Materials and Corrosion, 2011, 62(3):234-239.
    [20]郭学峰.细晶镁合金制备方法及组织与性能[M].北京:冶金工业出版社, 2010.
    [21]范琦,张立波.飞速发展的镁合金工业[J].特种铸造及有色合金, 2001(S1):79.
    [22]祁庆琚.镁合金的研究进展[J].上海有色金属, 2005(01):43-44.
    [23]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术, 2001(07):6-7.
    [24]陈振华.镁合金[M].北京:化学工业出版社, 2004.
    [25]张诗昌,段汉桥,蔡启舟,魏伯康,林汉同,陈渭臣.主要合金元素对镁合金组织和性能的影响[J].铸造, 2001(06):310-315.
    [26]黄晓锋,朱凯,曹喜娟.主要合金元素在镁合金中的作用[J].铸造技术, 2008(11):1574-1578.
    [27]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社, 2007.
    [28] Y. D. Huang, H. Dieringa, N. Hort, T. A. Leil, K. U. Kainer, Y. L. Liu. Effects of segregation of primary alloying elements on the creep response in magnesium alloys[J]. Scripta Materialia, 2008, 58(10):894-897.
    [29] F. H. Cao, W. J. Liu, L. R. Chang, Z. Zhang, J. Q. Zhang. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy[J]. Corrosion Science, 2009, 51(6):1334-1343.
    [30]张大华,王瑞权,刘二勇,李向威.镁合金的强韧化研究[J].上海有色金属, 2009(04):182-186.
    [31]罗小萍,夏兰廷,臧东勉.合金元素对镁及镁合金腐蚀性能影响[J].铸造设备研究, 2007(03):24-27.
    [32]胡云,张治民.镁合金塑性成形工艺研究[J].科技情报开发与经济, 2005(23):137.
    [33]丁文江,吴玉娟,彭立明,曾小勤,林栋樑,陈彬.高性能镁合金研究及应用的新进展[J].中国材料进展, 2010(08):37-45.
    [34]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展[J].兵器材料科学与工程, 2006(02):73-77.
    [35] J. Liang, P. B. Srinivasan, C. Blawert, M. Stormer, W. Dietzel. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes[J]. Electrochimica Acta, 2009, 54(14):3842-3850.
    [36]袁青领,阎钧,郑起.可降解镁合金材料的研究新进展[J].材料导报, 2010(05):132-135.
    [37] K. V. Kutniy, I. I. Papirov, M. A. Tikhonovsky, A. I. Pikalov, S. V. Sivtzov, L. A. Pirozhenko, V. S. Shokurov, V. A. Shkuropatenko. Influence of grain size on mechanical and corrosion properties ofmagnesium alloy for medical implants[C].Special Issue : Nanoscience and Nanotechnology. 2009. P.O. Box 101161, Weinheim, D-69451, Germany: Wiley-VCH Verlag, 242-246.
    [38]刘彬,汤爱涛,潘复生,王敬丰.材料科学中专家系统的发展及应用[J].材料导报, 2007(10):1-3.
    [39] N. Sandberg, M. Slabanja, R. Holmestad. Ab initio simulations of clustering and precipitation in Al-Mg-Si alloys[J]. Computational Materials Science, 2007, 40(3):309-318.
    [40] U. Mandal, V. Gowda, A. Ghosh, A. Bose, U. Bhaumik, B. Chatterjee, T. K. Pal. Optimization of metformin HCl 500 mg sustained release matrix tablets using artificial neural network (ANN) based on multilayer perceptrons (MLP) model[J]. Chemical & Pharmaceutical Bulletin, 2008, 56(2):150-155.
    [41] M. X. Zhang, P. M. Kelly, M. Qian, J. A. Taylor. Crystallography of grain refinement in Mg-Al based alloys[J]. Acta Materialia, 2005, 53(11):3261-3270.
    [42]邱冠周,王海东,黄圣生.人工智能在材料设计中的应用[J].中国有色金属学报, 1998, 8(S2):836.
    [43] L. P. Holmblad, J. J. Ostergaard. Control of a cement kiln by fuzzy logic techniques[J]. Control Science and Technology for the Progress of Society. Proceedings of the Eighth Triennial World Congress of the International Federation of Automatic Control|Control Science and Technology for the Progress of Society. Proceedings of the Eighth Triennial World Congress of the International Federation of Automatic Control, 1982:809.
    [44] A. Matthews, K. G. Swift. Intelligent Knowledge-Based Systems for Tribological Coating Selection[J]. Thin Solid Films, 1983, 109(4):305-311.
    [45]周班,金石鸣,邵俊,陈念贻. IMEC—金属间化合物检索和预报的专家系统[J].金属学报, 1989, 25(3):203.
    [46]白润,郭启雯.专家系统在材料领域中的研究现状与展望[J].宇航材料工艺, 2004(4):17.
    [47]蔡自兴,约翰.德尔金,龚涛.高级专家系统:原理、设计及应用[M].北京:科学出版社, 2005.
    [48]宋桂明,周玉,雷廷权.复合材料设计的回顾与展望[J].固体火箭技术, 1997, 20(4):53-57.
    [49]富威,王鹏,李庆芬.基于Web的复合材料设计专家系统[J].哈尔滨工程大学学报, 2006(6):773.
    [50]邵卫军,钟春生.合金材料设计专家系统前景[J].中国钼业, 1997(10):47-49.
    [51]刘相华,王国栋.人工智能技术在材料成形中应用的进展[J].哈尔滨工业大学学报, 2000, 32(5):87-88.
    [52]许春义,周丽华,魏艳红,刘丰.基于Client/Server的铝合金焊接工艺设计专家系统[J].焊接, 2004(1):19.
    [53]张培新,文岐业,刘剑洪,许启明,张黔玲,任祥忠,洪伟良.矿渣微晶玻璃专家系统的开发[J].计算机与应用化学, 2006, 23(8):786.
    [54] M. Fathi Torbaghan, L. Hildehrand. Intelligent Design Methods for Smart matertals[J]. Proceedings, 1999(2):1011-1015.
    [55] Sang B. Park. Expert system of progressive die design for electron gun grid parts[J]. Journal of Materials Processing Technology, 1999, 88:216-221.
    [56]夏军涛,黄聪明,王建祺.聚合物阻燃材料专家系统FRES2.0的设计[J].计算机与应用化学, 2000, 17(6):525.
    [57]林有希,高诚辉,柳丽娜.汽车制动复合材料智能设计系统研制[J].计算机工程与应用, 2006(9):86.
    [58]易子馗,谢敬华,侯玲珑.熔融拉锥工艺参数的优化及其系统实现[J].中国机械工程, 2007, 18(6):738.
    [59]吴崇峰,姜珊. CAD塑料材料选择系统[J].中国塑料, 1998, 12(3):34.
    [60]薛克敏,夏永江,许沂,吕炎.筒形件错距旋压工艺参数选择专家系统[J].中国有色金属学报, 1998(S1):168.
    [61] R. Mookherjee, B. Bhattacharyya. Development of an expert system for turning and rotating tool selection in a dynamic environment[J]. Journal of Materials Processing Technology, 2001, 113(1-3):306-311.
    [62] S. Kumar, R. Singh. An intelligent system for selection of die-set of metal stamping press tool[J]. Journal of Materials Processing Technology, 2005, 164-165:1395-1401.
    [63]成晓林,张根保,胡立德.数据库支持的材料选择模糊专家系统的研究[J].计算机工程与设计, 2001, 21(4):21.
    [64] R. Singh, G. S. Sekhon. An expert system for optimal selection of a press for a sheet metal operation[J]. Journal of Materials Processing Technology, 1999, 86(1-3):131-138.
    [65] S. V. Wong, A. M. S. Hamouda, M. A. El Baradie. Generalized fuzzy model for metal cutting data selection[J]. Journal of Materials Processing Technology, 1999, 90:310-317.
    [66] L. X. Yao, P. Qin, N. Y. Chen, P. Villars. TICP - An expert system applied to predict the formation of ternary intermetallic compounds[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25(1):27-30.
    [67] S. S. Roy. Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composite[J]. Journal of Materials Processing Technology, 2006, 173(3):337-344.
    [68]徐晓,吴新南,张河清.输气管道缺陷及寿命评估专家系统[J].华南理工大学学报(自然科学版), 2000, 28(5):69.
    [69]邓宗白,周克印,吴永端.飞机连接耳片故障诊断疲劳损伤评估专家系统[J].南京航空航天大学学报, 2003, 35(1):44.
    [70] S. N. Dwivedi, A. Sharan. Development of knowledge-based engineering module for diagnosis of defects in casting and interpretation of defects by nondestructive testing[J]. Journal of Materials Processing Technology, 2003, 141(2):155-162.
    [71]詹一民,陈定方,张晓川,陈方.对象嵌入与链接技术在挤出模智能仿真系统中的应用[J].武汉理工大学学报(交通科学与工程版), 1996, 20(2):191.
    [72]黄龙男,王正平,张德庆,张宝友,李辰砂,刘志强,李晓峰,夏伟光.复合材料固化过程的智能化监控及其智能生产系统[J].复合材料学报, 2002, 19(2):1.
    [73] F. T. S. Chan, H. C. W. Lau, B. Jiang. In-line process conditions monitoring expert system for injection molding[J]. Journal of Materials Processing Technology, 2000, 101(1-3):268-274.
    [74] I. Postlethwaite, P. A. Atack, I. S. Robinson. The improved control for an aluminium hot reversing mill using the combination of adaptive process models and an expert system[J]. Journal of Materials Processing Technology, 1996, 60(1-4):393-398.
    [75]蒋键,张弘,薛锦诚,张文政.复合材料胶接过程的微机控制系统[J].北京理工大学学报, 1996, 16(3):328.
    [76]李运爽.混合型专家系统的设计及其在材料设计中的应用[D].河北工业大学,硕士学位论文, 2005.
    [77]张运,武建军.神经网络专家系统及其在材料领域中的应用[J].河北工业大学成人教育学院学报, 2007(04):41-43.
    [78] Q. F. Zeng, J. K. Zu, L. T. Zhang, G. Z. Dai. Designing expert system with artificial neural networks for in situ toughened Si3N4[J]. Materials & Design, 2002, 23(3):287-290.
    [79]武仪,李新城,朱伟兴.基于神经网络的混合智能型齿轮选材专家系统研究[J].现代制造工程, 2003, 8:29.
    [80]程羽,臧顺来,陈德礼,郭成,陈金德.一种建立颗粒增强金属基复合材料本构方程的新方法[J].复合材料学报, 2004, 21(4):110.
    [81]刘海定.基于数据的镁合金专家系统基础模型的研究[D].重庆大学,硕士学位论文, 2005.
    [82]王家弟,卢晨,丁文江.基于神经网络的压铸镁合金选材专家系统[J].铸造技术, 2002(05):290-291.
    [83]吴良.人工神经网络(ANN)智能技术与热处理[J].纺织机械, 2001(4):36.
    [84]张宝友,李辰砂,李晓峰,刘志强,陈君,夏伟光.专家系统在复合材料生产中的应用[J].高技术通讯, 2001(8):105.
    [85] J. S. Kim. Development of a user-friendly expert system for composite laminate design[J]. Composite Structures, 2007, 79(1):76-83.
    [86]王海芳.神经网络专家系统的人机界面设计及其在材料设计中的应用[D].河北工业大学,硕士学位论文, 2006.
    [87]王珊,陈红.数据库系统原理教程[M].北京:清华大学出版社, 2003.
    [88]扶名福,范洪春,张庭芳. BP神经网络在镁合金流变应力预测中的应用[J].锻压技术, 2008(02):157-159.
    [89]刘海定,汤爱涛,潘复生,于翔.基于BP神经网络的镁合金晶粒尺寸及流变应力模型[J].轻合金加工技术, 2006(03):48-51.
    [90]刘新田,郭敬杰.基于人工神经网络的AZ31镁合金流变应力预测[J].安阳工学院学报, 2007(04):1-3.
    [91]娄燕,李落星,蔡智华.基于粗糙集BP神经网络的AZ31镁合金挤压力快速预测模型[J].塑性工程学报, 2010(02):56-61.
    [92]覃银江,潘清林,何运斌,李文斌,刘晓艳,范曦.基于人工神经网络的ZK60镁合金热压缩变形行为[J].中国有色金属学报, 2010(01):17-23.
    [93]王湖皎,刘苏,姚正军.基于遗传神经网络的AZ91镁合金力学性能预测[J].江苏大学学报(自然科学版), 2006(S1):67-70.
    [94]王智祥,刘金明.基于人工神经网络的AZ91镁合金高温流变应力模型研究[J].轻金属, 2008(09):57-60.
    [95] S. H. Hsiang, J. L. Kuo. Application of ANN to the hot extrusion of magnesium alloy sheets[J]. International Journal of Advanced Manufacturing Technology, 2005, 25(3-4):292-300.
    [96] M. T. Anaraki, M. Sanjari, A. Akbarzadeh. Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN[J]. Materials & Design, 2008, 29(9):1701-1706.
    [97] T. Malinova, Z. X. Guo. Artificial neural network modelling of hydrogen storage properties of Mg-based alloys[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 365(1-2):219-227.
    [98] Q. F. Tian, Y. Zhang, Y. X. Wu, Z. C. Tan. The cycle life prediction of Mg-based hydrogen storage alloys by artificial neural network[J]. International Journal of Hydrogen Energy, 2009:1931-6.
    [99] L. Terrence, Fine. Feedforward neural network methodology[M]. New York: Springer Verlag, 1999.
    [100] T. H. Martin, B. D. Howard, H. B. Mark.神经网络设计[M].戴奎,译.北京:机械工业出版社, 2002.
    [101]张际先,宓霞.神经网络及其在工程中的应用[M].北京:机械工业出版社, 1996.
    [102]胡守仁.神经网络应用技术[M].长沙:国防科技大学出版社, 1993.
    [103] S. Malinov, W. Sha, Z. Guo. Application of artificial neural network for prediction of time-temperature-transformation diagrams in titanium alloys[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000, 283(1-2):1-10.
    [104] S. Malinov, W. Sha, J. J. Mckeown. Modelling the correlation between processing parameters andproperties in titanium alloys using artificial neural network[J]. Computational Materials Science, 2001, 21(3):375-394.
    [105]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社, 2005.
    [106]丛爽,向微. BP网络结构、参数及训练方法的设计与选择[J].计算机工程, 2001(10):37.
    [107]吴良.提高BP人工神经网络热处理工艺及材料性能预测模型的泛化能力研究[J].金属热处理, 2003, 28(5):42- 45.
    [108] H. D. Liu, A. T. Tang, F. S. Pan, R. L. Zuo, L. Y. Wang. A model on the correlation between composition and mechanical properties of Mg-Al-Zn alloys by using artificial neural network[J]. Magnesium - Science, Technology and Applications, 2005, 488-489:793-796.
    [109] A. T. Tang, B. Liu, F. S. Pan, J. Zhang, J. Peng, J. F. Wang. An improved neural network model for prediction of mechanical properties of magnesium alloys[J]. Science in China Series E-Technological Sciences, 2009, 52(1):155-160.
    [110]严蔚敏.数据结构[M].北京:清华大学出版社, 2000.
    [111]康旗,孙丽萍.基于WEB平台的科研项目管理系统[J].微型电脑应用, 1999(10):9-11.
    [112]陈龙.平面数控高速研磨机加工工艺参数专家系统研制[D].长春理工大学,硕士学位论文, 2009.
    [113]彭修广.模具高速切削数据库与专家系统的研究[D].山东大学,硕士学位论文, 2005.
    [114]董国政.高强度变形镁合金组织及性能的研究[D].重庆大学,硕士学位论文, 2005.
    [115]刘彬,汤爱涛,潘复生,黄光杰,毛建军.基于参数优化的人工神经网络的AZ31镁合金力学性能预测模型[J].重庆大学学报自然科学版, 2011, 34(3):44-49.
    [116]刘彬,汤爱涛,潘复生,熊姝涛.基于参数优选的人工神经网络的Mg-Al-Ca系铸态合金晶粒尺寸预测模型[J].已投材料导报.
    [117] D. H. Stjohn, M. Qian, M. A. Easton, P. Cao, Z. Hildebrand. Grain refinement of magnesium alloys[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005, 36A(7):1669-1679.
    [118]杨明波.镁合金铸态晶粒细化技术的研究进展[J].铸造, 2005, 54(4):314-319.
    [119]阮炜,孙樊.镁合金晶粒细化的研究进展[J].锻压装备与制造技术, 2009(04):20-23.
    [120]王慧源,刘生发,韩辉,康柳根.镁合金晶粒细化及机理研究进展[J].铸造技术, 2008(12):1734-1738.
    [121] M. Qian, D. H. St John, M. T. Frost. Characteristic zirconium-rich coring structures in Mg-Zr alloys[J]. Scripta Materialia, 2002, 46(9):649-654.
    [122] P. Cao, M. Qian, D. H. Stjohn. Effect of iron on grain refinement of high-purity Mg-Al alloys[J]. Scripta Materialia, 2004, 51(2):125-129.
    [123] H. M. Liu, Y. G. Chen, Y. B. Tang, D. M. Huang, M. J. Tu, M. Zhao, Y. G. Li. Effect of Zr-adding onmicrostructure and mechanical properties for Mg-5Sn alloy[J]. Rare Metal Materials and Engineering, 2006, 35(12):1912-1915.
    [124] J. H. Jun, B. K. Park, J. M. Kim, K. T. Kim, W. J. Jung. Effects of Ca addition on microstructure and mechanical properties of Mg-RE-Zn casting alloy[J]. Magnesium - Science, Technology and Applications, 2005, 488-489:107-110.
    [125] Y. Lee. Grain refinement of Magnesium[J]. 2002.
    [126] F. Xue, W. W. Du, Y. S. Sun. Microstructure refinement of magnesium based alloy[J]. Magnesium - Science, Technology and Applications, 2005, 488-489:143-146.
    [127] P. Cao, M. Qian, D. H. Stjohn. Native grain refinement of magnesium alloys[J]. Scripta Materialia, 2005, 53(7):841-844.
    [128] E. F. Emley. Principles of Magnesium Technology[J]. 1966:1013.
    [129] Y. C. Lee, A. K. Dahle, D. H. Stjohn. The role of solute in grain refinement of magnesium[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000, 31(11):2895-2906.
    [130] Y. D. Huang, N. Hort, O. Anopuo, K. U. Kainer, G. Vidrich, A. Schiffl, Y. L. Liu. Microstructural investigations of Mg-Al alloys containing small amount of SiC nucleants[J]. Magnesium Technology 2007, 2007:421-426.
    [131]董维国.深入浅出MATLAB 7.X混合编程[M].北京:机械工业出版社, 2006.
    [132]明日科技. Visual C++数据库系统开发完全手册[M].北京:人民邮电出版社, 2006.
    [133]钱能. C++程序设计教程(第二版)[M].北京:清华大学出版社, 2005.
    [134]熊歆斌. Visual C++程序设计培训教程[M].北京:清华大学出版社, 2002.
    [135] D. F. Zhang, G. L. Shi, X. B. Zhao, F. G. Qi. Microstructure evolution and mechanical properties of Mg-x%Zn-1%Mn(x=4,5,6,7,8,9) wrought magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2011(01):15-25.
    [136]张亚丛.不同Zn含量对Mg-Zn-Y-Zr合金组织和性能的影响[J].铸造技术, 2010, 31(10):1299.
    [137] D. K. Xu, E. H. Han, L. Liu, Y. B. Xu. Influence of Higher Zn/Y Ratio on the Microstructure and Mechanical Properties of Mg-Zn-Y-Zr Alloys[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2009, 40A(7):1727-1740.
    [138] D. K. Xu, W. N. Tang, L. Liu, Y. B. Xu, E. H. Han. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys[J]. Journal of Alloys and Compounds, 2008, 461(1-2):248-252.
    [139]高珊. Mg-Zr系镁合金强度与阻尼性能的平衡优化研究[D].重庆大学,硕士学位论文, 2010.
    [140] J. F. Wang, S. Gao, L. Zhao, H. Liang, Y. B. Hu, F. S. Pan. Effects of Y on mechanical properties and damping capacity of ZK60 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:S366-S370.
    [141]麻彦龙,左汝林,汤爱涛,张静,潘复生.钇对铸态ZK60镁合金晶界析出相形态的影响[J].重庆大学学报(自然科学版), 2005, 28(2):51.
    [142]张静,潘复生,郭正晓,丁培道,汪凌云.含锆镁合金系中的合金相[J].兵器材料科学与工程, 2002, 25(6):52.
    [143] M. Shahzad, L. Wagner. The role of Zr-rich cores in strength differential effect in an extruded Mg-Zn-Zr alloy[J]. Journal of Alloys and Compounds, 2009, 486(1-2):103-108.
    [144] T. Homma, C. L. Mendis, K. Hono, S. Kamado. Effect of Zr addition on the mechanical properties of as-extruded Mg-Zn-Ca-Zr alloys[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010, 527(9):2356-2362.
    [145]王斌,易丹青,吴春萍,罗丈海,方西亚,刘会群.稀土Y对ZK60合金板材退火组织与性能的影响[J].中国有色金属学报, 2008, 18(10):8.
    [146] G. M. Xie, Z. Y. Ma, L. Geng. Effect of Y Addition on Microstructure and Mechanical Properties of Friction Stir Welded ZK60 Alloy[J]. Journal of Materials Science & Technology, 2009, 25(3):351-355.
    [147]肖盼,刘天模,姜丹. AZ31镁合金的研究进展[J].重庆大学学报, 2006, 29(11):81.
    [148] D. Ando, J. Koike, Y. Sutou. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys[J]. Acta Materialia, 2010, 58(13):4316-4324.
    [149] J. Zhang, D. H. Yang, X. B. Ou. Microstructures and properties of aluminum film and its effect on corrosion resistance of AZ31B substrate[J]. Transactions of Nonferrous Metals Society of China, 2008, 18:S312-S317.
    [150] Q. Miao, L. X. Hu, X. Wang, E. D. Wang. Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling[J]. Journal of Alloys and Compounds, 2010, 493(1-2):87-90.
    [151]杨明波,潘复生,程仁菊,李忠盛. Y对Mg-3Al-1Zn镁合金铸态组织的影响[J].轻合金加工技术, 2007(07):13-15.
    [152]张金旺,许并社. Y对AZ31镁合金铸态组织和性能的影响[J].中北大学学报(自然科学版), 2009(02):192-196.
    [153]杨续跃,张雷,姜育培,朱亚坤. Mg-Y及AZ31镁合金高温变形过程中微观织构的演化[J].中国有色金属学报, 2011(02):269-275.
    [154]马玉涛,张兴国,宫宁宁,丘越,金俊泽.微合金化对AZ31组织和力学性能的影响[J].特种铸造及有色合金, 2008(10):739-742.
    [155]谢玉,张燕,陈荣石,韩恩厚.铸造Mg-Al-Zn合金的成分、相组成与凝固路径的关系[J].金属学报, 2009, 45(11):1396-1397.
    [156] Q. L. Jin, J. P. Eom, S. G. Lim, W. W. Park, B. S. You. Grain refining mechanism of a carbon addition method in a Mg-Al magnesium alloy[J]. Scripta Materialia, 2003, 49(11):1129-1132.
    [157] M. Qian, P. Cao. Discussions on grain refinement of magnesium alloys by carbon inoculation[J]. Scripta Materialia, 2005, 52(5):415-419.
    [158] M. Bamberger. Structural refinement of cast magnesium alloys[J]. Materials Science and Technology, 2001, 17(1):15-24.
    [159] M. Windholz. The Merck index[M]. 10th ed. ed. Rahway: Merck & Co., 1983.
    [160] Y. D. Huang, N. Hort, Z. S. Zhen, B. Liu, O. Anopuo, K. U. Kainer. Grain Refinement Mechanism of SiC in Mg-Al Alloys[J]. 8th International Conference on Magnesium Alloys and their Applications, 2009.
    [161] A. Schiffl, M. A. Easton. Influence of SiC Particles On The Grain Refinement of an Mg-Al Alloy[J]. Light Metals Technology 2009, 2009, 618-619:445-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700