Zn-Al合金羽毛状晶的形成及形貌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Zn-Al系合金具有良好的铸造性能、优良的耐磨、减摩性能,是替代价格昂贵的铜合金的理想材料。但研究中发现,在一定条件下,其组织出现较为发达的树枝状晶,即为羽毛状晶,会严重消弱力学性能。本文针对羽毛状晶形成的条件,控制一定的温度梯度,研究合金中各元素对羽毛状晶形成的影响,不仅会极大地丰富金属的凝固理论和晶体的生长理论,具有重要的理论价值,而且是消除该形貌晶体,获得细小等轴晶,提高材料力学性能的基础。
     本文对Zn-Al系合金中出现的羽毛状晶展开研究,分析了以ZA27合金为参考的各元素对Zn-Al系合金生成羽毛状晶的影响,得出如下结果:
     在Zn-Al二元合金中,对不同组分的各试样,在750℃下浇注,随着Al含量的降低,Zn-Al二元合金的组织从最初的等轴晶粒依次变为发达的等轴晶、柱状晶、羽毛状晶、柱状晶、等轴晶。即晶体的排列由杂乱变为整齐再到杂乱。从羽毛状晶的出现到羽毛状晶的消失,二次枝晶的生长受元素影响,分别按两个、四个、六个方向生长。
     在Zn-27Al的基础上,加入不同含量的Cu元素。随着Cu含量的增加,Zn-27Al合金的微观组织从粗大的等轴晶依次变为二次枝晶发达的树枝晶、羽毛状晶、二次枝晶发达的柱状晶。Cu相由弥散性分布逐渐变为富集于α-Al枝晶臂上。Cu元素使Zn-27Al合金的组织排列更具方向性,减少了枝晶偏离热流方向的趋向。合金中羽毛状晶的生长产生变化,枝晶主干受到抑制,二次枝晶、三次枝晶得到发展。
     在以R=30μm/s的凝固速率下,随着Al含量的降低,Zn-Al二元合金的定向凝固试样,一次枝晶间距逐渐减小,二次枝晶间距也逐渐变小;Zn-Al合金定向凝固试样的择优取向明显,随着Al含量的降低,合金组织的枝晶生长方向由Al含量为75%时的<100>晶向逐渐转变为Al含量为40%时的<110>晶向。
     对ZA27合金在不同浇注温度下的试样的EBSD研究,得出:600℃浇注的ZA27试样中,α-Al的二次枝晶生长方向以<100>为主。700℃浇注的ZA27试样中,α-Al的二次枝晶生长方向以<110>为主。
Zn-Al alloys have good casting properties, excellent wear and friction properties, anideal alternative to expensive copper alloy materials. However, the very developed columnardendrites, especially the feathery crystals formed under certain conditions, can seriouslyweaken the mechanical properties, its organization. In this paper, the feathery crystalformation conditions such as temperature gradient, alloying elements have been studied,which will not only enrich metals’ solidification theory and crystal growth theory, but alsoprovide the foundation to eliminate the feathery crystals and improve mechanical propertiesby forming fine equiaxed grains.
     This thesis has studied the formation mechanisms of the feathery crystals. The effects ofalloying elements of ZA27alloy on this kind of crystals have discussed. The results indicate:
     For the Zn-Al binary alloys, the grains change from equiaxed grains in turn to columnardendrites, feathery grains, columnar grains and equiaxed dendrites with decreasing the Alcontent. Namely, the grains change from randomly distributed equiaxed dendrites todirectional lined columnar dendrites, and again to randomly distributed equiaxed dendrite.The growth direction of secondary dendritic arm is affected by the alloying elements, havingthree regimes, two, four and six directions.
     For the Zn-27Al alloy, its microstructure changes from developed equiaxed grains in turnof dendrites with developed secondary dendritic arms, feathery grains and dendrites withdeveloped secondary dendritic arms. The distribution of Cu-rich phase gradually change fromdispersive form to agglomeration on the crystal surfaces. This change leads the arms’ growthdirection to orientate to heat flux direction. When the growth of primary arms is restrainedand those of secondary and third arms are enhanced, the equiaxed grains form.
     Under the condition of directional solidification (a solidification rate of30μm/s), boththe primary arm interval and secondary arm interval decrease with decreasing Al content ofZn-Al binary alloy. The preferred growth orientation is very obvious. The growth direction ofprimary arms change from <100> to <110> when the Al content decreases to40%.
     For the ZA27alloy, the growth direction is basically the <100> at the pouringtemperature of600℃, but that is the <110> at700℃.
引文
[1]孙连超,田荣璋.锌及锌合金物理冶金学[M].第一版.长沙:中南工业大学出版社,1994,17-18
    [2]安继儒.中外常用金属材料手册[M].西安:西安交通大学出版社,1990,43-45
    [3]赵浩峰,王玲.铸造锌合金及其复合材料[M].第一版.北京:中国标准出版社,2002,139-142
    [4]刘永红,张忠明,刘宏昭,等.锌铝合金的研究现状及应用概况[J].铸造技术,2001,(1):42-44
    [5] Sharma S C,Girish B M,Rathnakar Kamath, Satish B M.Graphite particles reinforcedZA27alloy composite materials for journal bearing applications[J]. Wear,1998,219(2):162-168
    [6] Aashuri H.Globular structure of ZA27alloy by thermomechanical and semisolid treatment[J]. Mater Sci Eng,2005,391(1/2):77-85
    [7]游晓红,段兴旺,李天佑.高铝锌合金ZA27的特性及性能改善[J].铸造设备研究,2004,(5):51-54
    [8]陈体军,郝远.铸造锌基复合材料的研究现状[J].材料导报,2000,14(3):29-31
    [9] Wood H J, Hunt J D, Evans P V. Modeling the growth of feather crystals[J]. Acta Mater,1997,45(2):569-574
    [10] M.A.Salgado-Ordorica,M.Rappaz. Twinned dendrite growth in binary aluminum alloys[J]. Acta Materialia,2008,56:5708-5718
    [11]马立国.稀土Ce对挤压铸造ZA27组织和力学性能的影响.[沈阳工业大学硕士学位论文].沈阳:沈阳工业大学,2007,1-10
    [12]邹勇志.高铝锌基合金的相变与热物理性能研究.[广西大学硕士学位论文].南宁:广西大学,2004,2-10
    [13]程远明.铝加工缺陷[M].哈尔滨:黑龙江科学技术出版社,1986,34
    [14]周家荣.铝合金熔铸问答[M].北京:科学技术出版社,1990,256
    [15]刘静安,戴玲宝,邓冬桥.铝的性能及物理冶金[M].重庆:科学技术文献出版社重庆分社,1990,1-14
    [16]杨璀珍.高铝锌合金组织和性能的研究.[西安理工大学硕士学位论文].西安:西安理工大学,2008,2-9
    [17]司家勇.高铝锌基合金相图、相变与性能研究.[广西大学硕士论文].南宁:广西大学,2005,1-3
    [18]杨留栓,王洪敏,陈全德.高铝锌合金[M].西安:西北工业大学出版社,1997,9
    [19]胡汉起.金属凝固原理[M].北京:机械工业出版社,2007,53-75
    [20] Duraman M, Murphy S. Precipitation of metastable ε phase in a hypereutecticzinc-aluminum alloy containing copper [J]. Acta Metall Mater,1991,39:2235-2242
    [21] Duraman M, Walha K, Murphy S. An electron metallographic study of the commercialzinc-based pressure-Die-cast alloy [J]. Mater Sci Eng,1990, A130:247-256
    [22]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995,244
    [23]周尧和,毛志英,杨根仓.单向凝固铝合金层状晶的组织形态与力学性能[J].西北工业大学学报,1985,3(1):1-10
    [24]陆伟,严彪.铸造锌铝合金的研究进展及应用[J].上海有色金属,2004,(3):13~16
    [25]余松林.多元合金化对锌铝合金性能的影响.[江苏大学硕士学位论文].镇江:江苏大学,2008,10-11
    [26]李建春.合金元素对ZA27组织和性能的影响.[太原理工大学硕士学位论文].太原:太原理工大学,2008,5-8
    [27]胡汉起.金属凝固原理.[M].北京:机械工业出版社,2007,53-75
    [28]陈体军,郝远,孙军,等. ZA27合金的微观组织[J].中国有色金属学报,2002,12(2):294299
    [29] Savaskan T, Murphy S. Decomposition of Zn-Al alloys on quench aging [J]. Mater SciTechnol,1990,6:695-703
    [30] Li B J, Chao C G. Phase transformation of Zn-4Al-3Cu alloy during heat treatment [J].Metall Mater Trans A,1999,30A:917-923
    [31]倪锋,龙锐,侯平均等.Zn-Al合金先共晶相的形核与生长特性[J].特种铸造及有色合金.2001,(3):1-3
    [32]李伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料的研究现状与展望[J].铸造,2002,51(4):205-208
    [33]耿浩然,王守仁,王艳.铸造锌、铜合金[M].北京:化学工业出版社.2006,11-25
    [34]蔡强.锌合金[M].长沙:中南工业大学出版社.1987,25
    [35]胡塞育.发展中的锌铝合金及其应用[J].机械工程材料.1988,(4):4-8
    [36]张新志.高强锌基合金的研制与应用[J].机械工程材料.1988,(2):32-35
    [37]黄保国.代铜高强度锌合金研究[J].特种铸造及有色合金.1990,(5):l
    [38] B. K. Prasad. Wear response of a zinc-based alloy containing silicon as influenced bymaterial microstructure and test conditions[J]. Mater. Sci. Eng.A.2004,367:63-73
    [39] S. Henry, G.-U. Gruen, M. Rappaz. Influence of Convection on Feathery GrainFormation in Aluminum Alloys[J]. Metall.Mater.Trans.A,1998,29:2807-2817
    [40] F. Gonzales, M. Rappaz. Dendrite growth directions in aluminum-zinc alloys [J]. Mater.Sci.,2006,37:2797-2806
    [41] S. Henry, T. Minghetti, M. Rappaz. Dendrite growth morphologies in aluminium [J].Acta Metall. Mater.1998,46:487-495
    [42] F. Gonzales, M. Rappaz. Dendrite growth directions in aluminum-zinc alloys [J]. Mater.Sci.,2006,37:2797-2806
    [43] M.A.Salgado-Ordorica,J.Vzlloton,M.Rappaz.Study of twinned dendrite growthstability[J].Scripta Materialia.2009.61:367-370
    [44] A.N.Turchin,M.Zuijderwijk,J.Pool,et al.Feathery grain growth during solidificati-on under forced flow conditions[J].Acta Mater.2007,55:3795-3801
    [45] L.Li,Y.D.Zhang,C.Esling,et al.Cui.Formation of feathery grains with the applica-tion of a static magnetic field during direct chill casting of Al-9.8wt%Zn alloy[J]. Mater.Sci.,2009,44:1063-1068
    [46] L.Li,Y.D.Zhang,C.Esling,et al.Formation of twinned lamellas with the applicati-on of static magnetic fields during semi-continuous casting of Al–0.24wt%Fe alloy[J].Journal of Crystal Growth.2009,311:3211-3215
    [47] S.Henry,G.-U.Gruen,M.Rappaz.Influence of Convection on Feathery Grain Formation inAluminum Alloys[J]. Metall.Mater.Trans.A,1998,29:2807-2817
    [48]韩富银,高义斌,赵浩峰.钠盐变质及振动对Zn-27Al-Si合金组织和性能的影响[J].材料科学与工艺.2005,13:182-184
    [49] T. Haxhimali, A. Kapma, F. Gonzales, et al. Orientation selection in dendritic evolution[J].Nature Materials.2006,5:660-664
    [50] M C Flemings, T Z Kat tamis, B P Bardes. Dendrite Arm Spacing in aluminum Alloys
    [J]. AFS Transactions.1991,89:5012506
    [51] S. Henry, P. Jarry, M. Rappaz.<110> dendrite growth in aluminum feathery grains [J].Metall. Mater. Trans. A,1998,29:2807-2817
    [52] M. A. Salgado-Ordorica, M. Rappaz. Twinned dendrite growth in binary aluminumalloys [J]. Acta Materialia,2008,56:5708-5718
    [53] H.J.Wood,J.D.Hunt, P.V.Evans. Modelling the growth of feather crystals[J]. Metall.Mater. Trans. A,1997,45(2):569-514
    [54] Chen T.J,Yuan C.R, Fu M.F,et al.In-situ silicon particle reinforced ZA27composites:microstructures and tensile properties[J]. Mater Sic Technol,2008,24(11)1321-1332
    [55]刘俊友,王士本,施忠良,等.硅相锌基复合材料减摩抗磨性能的研究[J].摩擦学报.1996,16:137-142
    [56] S.Henry,P.Jarry,P.H.Jouneau,M.Rappaz.Electron backscattered diffraction investigationof the texture of feathery crystals in Aluminum alloys[J].Metall.Mater.Trans.A,1997,28A:207-213
    [57] Frederic Gonzales,Michel Rappaz.Grain selection and texture evolution in directionallysolidified Al-Zn alloys[J]. Metall.Mater.Trans.A,2008,39A:2148-2160
    [58]李向威.ZA27合金晶体形貌、结构的研究.[兰州理工大学硕士学位论文].兰州:兰州理工大学,2009,43-57
    [59]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社.2008,92-95
    [60]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社.2008,130-144
    [61]韩德伟,张建新.金相试样制备与显示技术[M].长沙:中南大学出版社,2005:33-34
    [62]李晨希,郭太明,李荣德,等.二次枝晶臂间距的研究[J].铸造,2004,53(12):1011-1014
    [63]何娟,邹勇志,黄文貌,李卫超,曾建民.冷却速度对ZL114A合金二次枝晶臂间距的影响[J].铸造技术,2008,29(9):1212-1216
    [64]孙勇,赵维明,胡爱文,等.铸件定向凝固微观组织模拟[J].铸造技术,2005,26(10).949-953
    [65]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社.2007,51-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700