ZA27合金晶体形貌、结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羽毛状晶是完全不同于常见柱状晶与树枝晶的一种异常晶粒。对于羽毛状晶生成条件及空间形貌的研究,不仅会极大地丰富金属的凝固理论和晶体的生长理论,具有重要的理论价值,而且对消除该晶体,获得细小等轴晶,提高材料力学性能,具有重要的应用价值。本文对Zn-Al系合金中出现的羽毛状晶展开研究,分析了铸造工艺参数及Si、P元素对ZA27合金微观组织的影响,研究了ZA27合金中羽毛状晶的形成条件、空间形貌。结果表明:
     浇注温度、铸型激冷能力、试样尺寸对ZA27合金中初生a-A1的晶体形貌具有很大影响,其中浇注温度的影响最大。在较高的浇注温度(大于650℃)时,极易形成羽毛状晶。而且铸型激冷能力越大、尺寸锭料越小,越易形成羽毛状晶。试样的边缘处比中心处更容易形成羽毛状晶。这些不同的工艺参数,都反映了温度梯度在凝固中的作用:温度梯度越大,越容易形成羽毛状晶。
     Si元素的加入减弱了羽毛状晶的形成,并随着Si含量的增大,其影响越来越大。初生Si作为先析出相悬浮在液相中,限制枝晶的生长。而经P变质后,因初生Si颗粒变小,对枝晶生长的阻碍作用减弱,羽毛状晶倾向加强。在同一浇注温度下,羽毛状晶形成的倾向由强到弱的顺序为:ZA27>ZA27-Si-P >ZA27-Si。
     羽毛状晶在二维的金相上表现为长径比很大的柱状树枝晶,而在空间形貌上,羽毛状晶是一种非常发达的树枝晶,整体呈三维结构,枝晶朝多个方向生长;局部并排生长。羽毛状晶由主干和六个二次枝晶组成,其生长方向均为<110>方向。孪晶主干在(111)孪晶面内沿着<110>方向生长,一对二次枝晶位于孪晶面(111)上且对称生长,与主轴呈60°夹角。在孪晶面的两侧,一对二次枝晶臂与主轴呈60°夹角,关于孪晶面对称生长且与孪晶面夹角为70.5°。另外一对二次枝晶臂与主轴呈90°夹角,关于孪晶面对称生长且与孪晶面夹角为54.7°。羽毛状晶的形成是晶体学择优生长方向与外力综合作用的结果。另外,有时还会出现二维的羽毛状晶,它是羽毛状晶的一种特殊形态,由许多二维的层片有规律的排列而成。这是由于在生长过程中,其余的四个二次枝晶臂受到邻侧枝晶及空间的影响,逐渐演变为二维层片状。
Feathery dendrite is an unusual grain and it is completely different from the common columnar crystal and dendrite. It will not only greatly enrich the theories of metal solidification and crystal growth, but also has great significance for eliminating the feathery grains and obtaining fine grains. In this thesis, the formation conditions and morphologies of the feathery crystals in ZA27 alloy were studied by analyzing the effects of casting parameters and Si and P elements on the microstructures. The results are shown as followings:
     The pouring temperature, chilled ability and casting ingot size have large effects on the morphologies of a-Al grains in the Zn-Al alloy. It was found that pouring temperature has greatest effect. The feathery dendrites were easy to form when the pouring temperature was at or above 650℃. The greater the chilled ability and the smaller the ingot size, the easier the feathery crystal formation. In addition, feathery dendrites in the edge of the cast specimen were easier to for than those in the center. Although the process parameters were different, all of the them reflected the role of temperature gradient during solidification:the greater the temperature gradient, the easier the feathery crystal formation.
     The addition of Si element suppressed the formation of feathery crystals, and as the content of Si increased, the influence was enhanced. The primary Si plates suspended in the liquid and obstructed the growth of the dendrites. However, after being modified by P element, the primary Si particles became smaller and more dispersive, and the hindering effect on the dendrite growth was decreased. At the same pouring temperature, the formation tendancy of feathery dendrites became weak as the sequence of ZA27, ZA27-Si-P and ZA27-Si.
     The feathery dendrite was in columnar dendrite morphologies with large ratio of length to diameter on two-dimension micrographs. But in three-dimension space, they were in three-dimensional developed dendrite morphologies with multiple-driection branches and in laminar structures in local zones. The feathery dendrite was composed of one primary trunk and six rows of secondary arms and all of them grew along<110> directions. The dendrite trunk grew along a<110> direction in the (111) twin plane and a pair of the secondary arms was in the (111) twin plane and symmetrically grew at 60°with respect to the trunk direction. At the both sides of the twinning plane, another pair of the secondary arms was at 60°with respect to the trunk direction and symmetrically grew at 70.5°with respect to the twin plane. The rest pair of the secondary arms was at 90°with respect to the trunk direction and symmetrically grew at 54.7°with respect to the twin plane.The formation of the feathery dendrites was attributed to the combined results of the preferred crystallographic growth direction and external forces. In addition,2-dimension feathery dendrites sometimes could be found and they should be a kind of special morphologies of feathery dendrites. They were composed of many parallel laminae.
引文
[1]赵浩峰,王玲.铸造锌合金及其复合材料.第一版.北京:中国标准出版社,2002,139-142
    [2]安继儒.中外常用金属材料手册[M].西安:西安交通大学出版社,1990,43-45.
    [3]Sharma S C, Girish B M, Rathnakar Kamath, Satish B M. Graphite particles reinforced ZA-27 alloy composite materials for journal bearing applications[J]. Wear,1998,219 (2):162-168.
    [4]Aashuri H. Globular structure of ZA27 alloy by thermomechanical and semi-solid treatment [J]. Mater Sci Eng,2005,391(1/2):77-85.
    [5]刘永红,张忠明,刘宏昭,吴子英.锌铝合金的研究现状及应用概况[J].铸造技术,2001,(1):42-44.
    [6]陈体军,郝远,孙军,狄杰建.ZA27合金的微观组织[J].中国有色金属学报,2002,12(2):294-299.
    [7]游晓红,段兴旺,李天佑.高铝锌合金ZA27的特性及性能改善.铸造设备研究,2004,(5):51-54
    [8]陈体军,郝远.铸造锌基复合材料的研究现状.材料导报,2000,14(3):29-31
    [9]郝远,陈体军,马颖.SiCp/ZA27复合材料的制备及其力学性能.特种铸造及有色合金,1997(2):25-28
    [10]李伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料的研究现状与展望.铸造,2002,51(4):205-208
    [11]陈体军,郝远,寇生中,等.SiCp/ZA27复合材料高温性能的研究[A].先进制造技术[C].北京:机械工业出版社,1996,663-665
    [12]陈体军,郝远。金属的半固态成形技术与应用[J].铸造,2001,50(11):645-649
    [13]Hong T W, Kim S K, Ha H S, et al. Microst ructural evolution and semisolid forming of SiC particulate reinforced AZ91DHP magne2sium composites[J]. Mater Sci Technol,2000,16:887-892
    [14]Kim S K, Kim Y J. Microst ructural evolution and thixoformability of semi2solid SiCp/ AZ91D Mg composites [J]. Mater Trans,2002,42 (7): 1277-1283
    [15]Turenne S, Legros N, Laplante S, et al. Mechanical behavior of aluminum matrix composite during ext rusion in the semi2solid [J]. Metal Mater Trans A, 1999,30A:1137-1146
    [16]付明锋.SiCp/ZA27原位自生复合材料在部分重熔过程中的组织演变:[兰州理工大学硕士学位论文].兰州:兰州理工大学,2008,25-35
    [17]Chen T. J, Yuan C. R, Fu M. F, et al. In-situ silicon particle reinforced ZA27 composites:microstructures and tensile properties[J]. Mater Sic Technol,2008, 24(11)1321-1332.
    [18]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社:1995,244
    [19]B. K. Prasad. Wear response of a zinc-based alloy containing silicon as-influenced by material microstructure and test conditions[J]. Mater. Sci. Eng.A.2004,367:63-73
    [20]程远明.铝加工缺陷[M].哈尔滨:黑龙江科学技术出版社,1986,34
    [21]周家荣.铝合金熔铸问答[M].北京:科学技术出版社1990,256
    [22]H. J. Wood, J. D. Hunt, P. V. Evans. Modelling the growth of feather crystals.1997,45(2):569-514.
    [23]周尧和等:单向凝固铝合金层状晶的组织形态与力学性能,西北工业大学学报,1985:3(1):1-10
    [24]M. A. Salgado-Ordorica, M. Rappaz. Twinned dendrite growth in binary aluminum alloys [J]. Acta Materialia,2008,56:5708-5718
    [25]S. Henry, P. Jarry, M. Rappaz.<110> dendrite growth in aluminum feathery grains [J]. Metall. Mater. Trans. A,1998,29:2807-2817
    [26]S. Henry, T. Minghetti, M. Rappaz. Dendrite growth morphologies in aluminium [J]. Acta Metall. Mater.1998,46:487-495
    [27]周尧和,杨根仓.单向凝固铝合金层状晶的生成条件及形成机理[J]西北工业大学学报,1985(4):227-237
    [28]L. Li, Y. D. Zhang, C. Esling, et al. Cui. Formation of feathery grains with the application of a static magnetic field during direct chill casting of Al-9.8wt%Zn alloy[J]. Mater. Sci.,2009,44:1063-1068.
    [29]董光明,孙国雄,廖恒成,韩正铜.杂志原子在面心立方晶体中诱发的成对孪晶[J].材料科学与工艺,2006,14(6):585-591
    [30]F. Gonzales, M. Rappaz. Dendrite growth directions in aluminum-zinc alloys [J]. Mater. Sci.,2006,37:2797-2806.
    [31]Fujo, Matsuishi et al. Casting conditions of 6030 alloy DC growth twin crystals in aluminum and aluminum-base alloys [J].Light Metals.1969,19: 287-296.
    [32]T. Haxhimali, A. Kapma, F. Gonzales, et al. Orientation selection in dendritic evolution [J].Nature Materials.2006,5:660-664.
    [33]S. Henry, G.-U. Gruen, M. Rappaz. Influence of Convection on Feathery Grain Formation in Aluminum Alloys[J]. Metall.Mater.Trans.A,1998,29:2807-2817.
    [34]A. N. Turchin, M. Zuijderwijk, J. Pool, et al. Feathery grain growth during solidification under forced flow conditions[J].Acta Mater.2007,55:3795-3801.
    [35]L. Li, Y. D. Zhang, C. Esling, et al.Formation of twinned lamellas with the application of static magnetic fields during semi-continuous casting of Al-0.24wt%Fe alloy [J].Journal of Crystal Growth.2009,311:3211-3215.
    [36]陈体军,郝远,寇生中,李元东.机械搅拌对ZA27合金组织的影响[J].甘肃工业大学报,1997,23(1):17-21.
    [37]秦克,崔建忠,任栖锋.高强高韧铝合金近液相线铸造工艺及组织的研究[A];罗守靖,谢水生.第二届半固态金属加工技术研讨会论文集[C].北京:中国半固态学术委员会2002,95-97.
    [38]大野笃美.金属凝固学[M].唐彦斌,张正德.北京:机械工业出版社,1997:34-37.
    [39]李克杰,李全安,井晓天,陈君,张兴渊,李肖峰.浇注温度对Mg25A120.5Y20.5Nd合金组织及性能的影响[J].铸造技术,2008,29(5):642-645.
    [40]李晨希,郭太明,李荣德,等.二次枝晶臂间距的研究[J].铸造,2004,53(12):101121014.
    [41]M C Flemings, T Z Kat tamis, B P Bardes. Dendrite Arm Spacing in aluminum Alloys [J]. AFS Transactions.1991,89:5012506.
    [42]Furer U., Wunderlin R. Metal Solidification [M]. Stut tgart:DGM Fachber,1977.
    [43]何娟,邹勇志,黄文貌,李卫超,曾建民.冷却速度对ZL114A合金二次枝晶臂间距的影响[J].铸造技术,2008,29(9):1212-1216.
    [44]王家忻,黄积荣,林建生.金属的凝固及其控制[M].北京:机械工业出版社,1997.
    [45]赵品,沈焕祥,B+Ti+Ce复合变质对ZA27合金组织与性能的影响[J].中国有色金属学报,2002,(12):232-235.
    [46]袁承人.Sip/ZA27原位自生复合材料制备及触变成形.[兰州理工大学硕士学位论文].兰州:兰州理工大学,2009,25-35.
    [47]盛芳蕙,蒋家人,赵勤,等.硅对耐磨锌合金组织性能的影响[J].阜新矿学院学报,1993,12(1):54-58.
    [48]张金山,许春香,韩富银.复合变质对过共晶高硅铝合金组织和性能的影响[J].中国有色金属学报,2002,12(S1):0107-0110.
    [49]乐秀伟.铝硅合金的变质处理[J].新技术新工艺,1993,6:12,16.
    [50]Cantor B., Impurity effects on heterogeneous nucleation[J]. Materials Science and Engineering A,226-228,1997:151-156.
    [51]龚建森,李元元,胡城立.国内外Al-Si合金磷变质剂及变质工艺的研究[J].机械工程材料,1984,1:14-18.
    [52]Ho C. R., Cantor B. Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys[J], Acta. Metal. Mater.1995,43(8):3231-3246.
    [53]乔进国.A1-P-Si中间合金及其变质处理技术的研究[山东大学硕士学位论文].济南:山东大学,2005,25-35.
    [54]胡汉起.金属凝固原理.[M].北京:机械工业出版社,2007,53-75.
    [55]徐瑞.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社,2003,166.
    [56]王培铭,许乾慰.材料研究方法[M].北京:科学出版社,2007,35-65
    [57]J. Marian, B. D. Wirth, G.. R. Odette, et. al. Cu diffusion in a-Fe: determine-ation of solute diffusivities using atomic-scale simulations[J]. Computational Mater Sci.2004,31(3/4):347-367.
    [58]徐祖耀,李麟.材料热力学[M].北京:科学出版社,2007,61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700