氯苯甲酸降解菌的分离筛选及降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯苯甲酸(CBA)作为一种重要的氯代有机化合物,广泛应用于工农业生产,其在环境中的残留和危害也是不容忽视的。因此研究CBA的生物降解特性,具有理论和应用价值。论文的主要研究内容如下:
     (1)比较了两个采自原始生境的土壤样品及处理氯代烃的活性污泥样品中含有的降解单氯苯甲酸的微生物数量。结果表明微生物降解CBA的能力具有广泛性并对不同取代氯苯甲酸降解有一定差异。
     (2)从活性污泥中分离得到7株以3-CBA为唯一碳源生长的细菌。经鉴定3株为假单孢菌,其余4株为红球菌、节杆菌、产碱菌、伯克霍尔德氏菌。其中红球菌的降解能力明显高于其它菌,因此以该菌(命名为S-7)为出发菌株。通过形态学、生理生化反应以及16S rRNA基因序列测定,确定S-7为红平红球菌。
     (3)菌株S-7能在10~30°C利用3-CBA。20°C时的降解速率较30°C快。这是首次报道红平红球菌在10°C低温条件下完全降解3-CBA。该菌广泛的温度适应性对于低温区域的生物修复有重要的意义。
     (4)质粒提取和消除实验表明菌株S-7降解3-CBA的基因位于染色体上。在细胞破碎液中测定了(氯)邻苯二酚1,2-双加氧酶的活力而没有检测到2,3-双加氧酶的活性。HPLC检测到氯邻苯二酚的存在。全波长扫描发现产生了与氯-顺,顺-粘糠酸一样的紫外光谱。推断出菌株降解3-CBA途径:3-CBA首先转化为氯邻苯二酚,通过修饰邻位裂解途径降解氯邻苯二酚,形成的产物进入三羧酸循环。
     (5)研究了在以葡萄糖为生长基质的条件下,菌株对2-CBA和4-CBA的降解能力。S-7可共代谢2-CBA,但是不能共代谢降解4-CBA。蛋白质电泳结果表明,葡萄糖为生长底物时,2-CBA的降解酶是由2-CBA本身所诱导,它们不同于细菌利用葡萄糖的酶。
     (6)单独使用海藻酸钠或聚乙烯醇(PVA)为载体固定化菌株S-7时,不能形成稳定的微球。将海藻酸钠和聚乙烯醇混合使用可提高固定化微球的效果。海藻酸钠中加入壳聚糖后,固定化微球的性能有所提高,但降解3-CBA的效果并没有明显改善。
Chlorobenzoates (CBAs), as important chlorinated aromatic compounds, were widely used in agriculture and industry. However, the residue and risk of CBA in environment can not be neglected. Study the degradation characteristics exhibit theoretical and application importance. The detailed work of this thesis is as follows:
     (1) The diversity of 2-, 3-, and 4-CBA degraders in two pristine soils and one contaminated sewage sludge was compared. Results showed that the ability of microbial populations in undisturbed soils to mineralize CBA was widespread. The result also indicated that the 3- and 4-CBA degraders were more diversity than the 2-CBA degraders.
     (2) Seven strains, using 3-CBA as sole carbon sources, were isolated from the sewage sludge. Three strains were Pseudomonas sp., the other four were Rhodococcus sp., Arthrobacter sp., Alcaligenes sp. and Burkholderia sp. respectively. One of the strains, named S-7, can degrade 3-CBA effectively, so it was chosen as study strain. S-7 was identified by morphological, biochemical and 16S rDNA sequence analysis as Rhodococcus erythropolis.
     (3) Strain S-7 can fully degrade 3-CBA in a range of temperatures from 10 to 30°C. Strain showed higher degradability at 20°C than at 30°C. The psychrotolerant ability is significant for bioremediation in low temperature regions.
     (4) Plasmid purification and elimination showed strain S- 7 do not contain plasmid, the degrading function might be controlled by chromosome DNA. Catechol and chlorocatechol 1, 2-dioxygenase activities were present in cell free extracts, but no (chloro)catechol 2,3-dioxygenase activity was detected. HPLC detected the chlorocatechol in the fermentation broth. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-CBA. Based on the results, a pathway for degradation of 3-CBA was proposed: 3-CBA was converted initially to chlorocatechol, and then degraded by modified ortho-pathway. Products entered the TCA cycle.
     (5) When glucose was added as grow substrate, strain S - 7 can cometabolic degrade 2-CBA, but cannot biodegrade 4-CBA. Protein electrophoresis result showed that the unspecific enzymes for 2-CBA degradation were induced by 2-CBA itself when glucose was served as growth substrate.
     (6) The methods of immobilization were studied. Using alginate or polyvinyl-alcohol (PVA) alone, the immobilized cell can not form steady beads. When added PVA to the sodium alginate, both strength and tenacity were enhanced greatly, and the biodegradation rate was faster than the free bacteria. Using sodium alginate and chitosan as carrier, although the properties of immobilized ball was better than using sodium alginate alone, the degradation rate was a little slower than the free bacteria.
引文
[1]瞿福平,张晓建,吕昕, 等. 氯代芳香化合物的生物降解性研究进展[J].环境科学, 1997, 18(2): 75~78.
    [2]甘平,朱婷婷,樊耀波, 等.氯苯类化合物的生物降解[J].环境污染治理技术与设备, 2000,1(4): 1~12.
    [3]Yuroff S A, Sabat G, Hickey J W. Transporter-mediated uptake of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1[J]. Appl. Environ. Microbiol., 2003, 69(12): 7401-7408.
    [4]Niedan V W, and Scholer H F. Natural formation of chlorobenzoic acids (CBA) and distinction between PCB degraded CBA[J]. Chemosphere, 1997, 35(6): 1233-1241.
    [5]Yi H, Min K, Kim C, et al. Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils[J]. FEMS Microbiol. Ecol., 2000, 31(1): 53-60.
    [6]Deweerd K A, and Bedard D L. Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs[J]. Environ. Sci. Technol., 1999, 33(12): 2057-2063.
    [7]Stratford J, Michael A W, Walter R. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixture by chlorobiphenyl-chlorobenzoate-mineralising hybrid bacterial strains[J]. Arch. Microbiol., 1996, 165(3): 213-218.
    [8]van der Meer, de Vos W M , Harayama S, et al. Molecular mechanisms of genetic adaptation to xenobiotic compounds[J]. Microbiol. Rev., 1992, 56(4): 677-694.
    [9]Fetzner S, and Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications[J]. Microbiol. Rev., 1994, 58(4): 641-685.
    [10]Schlomann M. Evolution of chlorocatechol catabolic pathways: Conclusions to be drawn from comparisons of lactone hydrolases[J]. Biodegradation, 1994, 5(3-4): 301-321.
    [11]Nakatsu C H, Straus N A, Wyndham R C. The nucleotide sequence of the Tn527i 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage[J]. Microbiology, 1995, 141(2): 485-495.
    [12]Focht D D, Searles D B, Koh S C. Genetic exchange in soil between introduced chlorobenzoate degraders and indigenous biphenyl degraders[J]. Appl. Environ. Microbiol., 1996, 62(10): 3910-3916.
    [13]Nakatsu C H, Providenti M, Wyndham C R. The cis-diol dehydrogenase cbaC gene of Tn527i is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenzoate[J]. Gene, 1997, 196(1-2): 209-218.
    [14]Reineke W, and Knackmuss H J. Microbial degradation of haloaromatics[J]. Annu. Rev. Microbiol., 1988, 42: 263-287.
    [15]Chaudhry G R, and Chapalamadugu S. Biodegradation of halogenated organic compounds[J]. Microbiol. Rev., 1991, 55(1): 59-79.
    [16]Vollmer M D, Fischer P, Knackmuss H J, et al. Inability of muconate cycloisomerase to cause dehalogenation during conversion of 2-chloro-cis-cis muconate[J]. J. Bacteriol., 1994, 176(14): 4366-4375.
    [17]Solyanikova I P, Maltseva O V, Vollmer M D, et al. Characterisation of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis ICP: Indication of functionally convergent evolution among bacterial cycloisomerases[J]. J. Bacteriol., 1995, 177(10): 2821-2826.
    [18]Vollmer M D, and Schlomann M. Conversion of 2-chlorocw- cis muconate and its metabolites 2-chloro- and 5- chloromuconolactone by chloromuconate cycloisomerases of pJP4 and pAC27[J]. J. Bacteriol., 1995, 177(10): 2938-2941.
    [19]Fetzner S, Muller R, Lingens F. Degradation of 2- chlorobenzoate by Pseudomonas cepacia 2CBS[J]. Biol. Chem. Hoppe Seyler., 1989, 370(11): 1173-1182.
    [20]Ajithkumar P V, and Kunhi A A. Pathways for 3-chloro- and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT[J]. Biodegradation, 2000, 11(4): 247-261.
    [21]Fetzner S, Muller R, Lingens F. Purification and some properties of 2-halobenzoate 1,2-dioxigenase, a two component enzyme system from Pseudomonas cepacia 2CBS[J]. J. Bacteriol., 1992, 174: 279-290.
    [22]Romanov V, and Hausinger R P. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate[J]. J. Bacteriol, 1994, 176(11): 3368-3374.
    [23]Tsoi T V, Plotnikova E G, Cole J R, et al. Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates[J]. Appl. Environ. Microbiol., 1999, 65(5): 2151-2162.
    [24]Higson F K, and Focht D D. Utilization of 3-chloro-2- methylbenzoic acid by Pseudomonas cepacia MB2 through the meta-fission pathway[J]. Appl. Environ. Microbiol., 1992, 58(8): 2501-2504.
    [25]Hollender J, Dott W, Hopp J. Regulation of chloro and methylphenol degradation in Comamonas testosteroni JH5[J]. Appl. Environ. Microbiol., 1994, 60(7): 2330-2338.
    [26]Arensdorf J J, and Focht D D. A meta-cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166[J]. Appl. Environ. Microbiol., 1995, 61(2): 443-447.
    [27]Klecka G M, and Gibson D T. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol[J]. Appl. Environ. Microbiol., 1981, 41(5): 1159-1165.
    [28]Bartels I, Knackmuss H J, Reineke W. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols[J]. Appl. Environ. Microbiol., 1984, 47(3):500~505.
    [29]Bourgoin F, Guedon G, Gintz B, et al. Characterization of a novel insertion sequence, IS1194, in Streptococcus thermophilus[J]. Plasmid, 1998, 40(l):44~49.
    [30]Mars A E, Kasberg T, Kaschabek S R, et al. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene[J]. J. Bacteriol., 1997, 179(14): 4530-4537.
    [31]Kaschabek S R, Kasberg T, Muller D, et al. Degradation ofchloroaromatics: Purification and characterization of a novel type ofchlorocatechol 2,3-dioxygenease of Pseudomonas putida GJ31[J]. J. Bacteriol., 1998, 180(2): 296-302.
    [32]Harpel M R, and Lipscomb J D. Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans[J]. J. Bio. Chem., 1990, 265(11): 6301-6311.
    [33]Werwath J, Arfmann H A, Pieper D H, et al. Biochemical and genetic characterization of a gentisate 1,2-dioxygenase from Sphingomonas sp. strain RW5[J]. J. Bacteriol., 1998, 180(16): 4171-4176.
    [34]Feng Y, Khoo H E, Poh C L. Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869[J] . Appl. Environ. Microbiol., 1999,65(3): 946-950.
    [35]Hopper D J, and Chapman P J. Gentisic acid and its 3- and 4-methyl substituted homologues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol[J]. Biochem. J., 1971, 122(1): 19-28.
    [36]Bayly R C, Chapman P J, Dagley S, et al. Purification and some properties of maleylpyruvate hydrolase and fumarylpyruvate hydrolase from Pseudomonas alcaligenes[J]. J. Bacteriol., 1980, 143(l):70~77.
    [37]Nakatsu H C, and Wyndham C R. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60[J]. Appl. Environ. Microbiol., 1993, 59(11): 3625-3633.
    [38]Fava F, Gioia Di D, Marchetti L, et al. Aerobic mineralization of chlorobenzoates by a natural polychlorinated biphenyl-degrading mixed bacterial culture[J]. Appl. Microbiol. Biotechnol., 1993, 40(4):541~ 548.
    [39]Mohn W W and Tiedje J M. Microbial reductive dehalogenation[J]. Microbial. Rev., 1992, 56(3): 482-507.
    [40]Yadav J S, and Reddy C A. Degradation of benzene, toluene, ethylbenzene, and xylenes(BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium[J]. Appl. Environ. Microbiol., 1993, 59(3): 756-762.
    [41]Dolfing J, and Tiedje J M. Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate[J]. FEMS Microbiol Ecol., 1986; 38: 293-298.
    [42]Deweerd K A, and Suflita J M. Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of "desulfomonile tiedjei" [J]. Appl. Environ. Microbiol., 1990, 56(10): 2999-3005.
    [43]Dolfing J, and Harrison B K. Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments[J]. Environ. Sci. Technol., 1992, 26(11): 2213-2218.
    [44]Griffith G D,Cole J R, Quensen J F, et al. Specific deuteration of dichlorobenzoate during reductive dehalogenation by Desulfomonile tiedjei in D2O[J]. Appl. Environ. Microbiol., 1992, 58(1): 409-411.
    [45]Shelton D R, and Tiedje J M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid[J]. Appl. Environ. Microbial., 1984, 48(4): 840-848.
    [46]E1 Fantroussi S, Naveau H, Agathos S N. Anearobic dechlorinating bacteria[J]. Biotechnol. Prog., 1998, 14(2): 167-188.
    [47]Dolfing J, and Beurskens J E M. In Advances in Microbial Ecology[M], New York: Plenum Press, 1995.
    [48]Haggblom M M, and Young L Y. Anaerobic degradation of three-halobenzoates by a denitrifying bacterium[J]. Arch. Microbiol., 1999, 171: 230-236.
    [49]Song B, Palleroni N J, Haggblom M M. Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments[J]. Appl. Environ. Microbiol., 2000, 66(8): 3446-3453.
    [50]Song B, Palleroni N J, Kerkhof L J, et al. Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. Nov[J]. Int. J. Syst. Evol. Microbiol., 2001, 51(2): 589-602.
    [51]Bae H S, Yamagishi T, Suwa Y. Evidence for degradation of 2-chlorophenol by microbial consortia under denitrifying conditions[J]. Microbiology, 2002, 148: 221-227.
    [52]Bae H S, Yamagishi T, Suwa Y. Developing and sustaining 3-chlorophenol-degrading populations in up-flow anaerobic column reactors under circum-denitrifying conditions[J]. Appl. Microbiol. Biotechnol., 2002, 59(1), 118-124.
    [53]Bae H S, Yamagishi T, Suwa Y. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors[J]. Chemosphere, 2004, 55(1): 93-100.
    [54]Kamal V S, and Wyndham R C. Anaerobic phototrophic metabolism of 3-chlorobenzoate by Rhodospeudomonas palustris WS17[J]. Appl. Environ. Microbial., 1990, 56(12): 3871-3873.
    [55]Van der Woude B J, De Boer M, Van der Put N M J, et al. Anaerobic degradation of halogenated benzoic acids by photo-heterotrophic bacteria[J]. FEMS Microbial. Lett, 1994,119(1-2): 199-208.
    [56]Hakulinen R, Woods S, Ferguson J F, et al. The role of facultative, anaerobic microorganisms in anaerobic biodegradation of chlorophenols[J]. Wat. Sci. Tech., 1985, 17: 289-301.
    [57]Apajalahti J H, and Salkinoja-Salonen M S. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus[J]. J. Bacteriol., 1987,169(ll):5125~5130.
    [58]W J van den Tweel, J B Kok, J A de Bont. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1[J]. Appl. Environ. Microbiol., 1987, 53(4): 810-815.
    [59]Chatterjee D K, Kellogg T S, Hamada S, et al. Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway[J]. J. Bacteriol., 1981, 146(2): 639-646.
    [60]Byrne A M, and Lessie T G. Characteristics of IS401, a new member of the IS3 family implicated in plasmid rearrangements in Pseudomonas cepacia[J]. Plasmid, 1994, 31(2): 138-147.
    [61]Peel M C, and Wyndham R C. Selection of clc, cba, and fob Chlorobenzoate-Catabolic Genotypes from Groundwater and Surface Waters Adjacent to the Hyde Park, Niagara Falls, Chemical Landfill[J]. Appl. Environ. Microbiol., 1999, 65(4): 1627-1635.
    [62]Don R H, and Pemberton J M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus[J]. J. Bacteriol., 1981, 145(2): 681-686.
    [63]Don R H, Weightman A J, Knackmuss H J, et al. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4)[J]. J. Bacteriol., 1985, 161(1): 85-90.
    [64]Perkins E J, Gordon M P, Caceres O, et al. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4[J]. J. Bacteriol., 1990, 172(5): 2351-2359.
    [65]Leveau J H, Konig F, Fuchslin H, et al. Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2, 4-dichlorophenoxyacetate[J]. Mol. Microbiol., 1999, 33(2):396~406.
    [66]Laemmli C M, Leveau J H, Zehnder A J, et al. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4) [J]. J. Bacteriol.,2000, 182(15): 4165-4172.
    [67]Perez-Pantoja D, Guzman L, Manzano M, et al. Role of tfdCIDIEIFI and tfdDIICIIEIIFII gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl. Environ. Microbiol., 2000, 66(4): 1602-1608.
    [68]van der Meer J R, Eggen R I, Zehnder A J, et al. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates[J]. J. Bacteriol., 1991, 173(8): 2425-2434.
    [69]Dahlberg C, and Hermansson M. Abundance of Tn3, Tn21, and Tn501 transposase (tnpA) sequences in bacterial community DNA from marine environments[J]. Appl. Environ. Microbiol., 1995, 61(8): 3051-3056.
    [70]Chatterjee D K, and Chakrabarty A M. Genetic homology between independently isolated chlorobenzoate-degradative plasmids[J]. J. Bacteriol., 1983, 153(1): 532-534.
    [71]Clement P, Pieper D H, Gonzalez B. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid[J]. Microbiology,2001, 147(8): 2141-2148.
    [72]Nakatsu C, Ng J, Singh R, et al. Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences[J]. Proc. Natl. Acad. Sci.U.S.A, 1991, 88(19): 8312-8316.
    [73]Wyndham R C, Cashore AE, Nakatsu C H, et al. Catabolic transposons[J]. Biodegradation, 1994, 5(3-4): 323-342.
    [74]Layton A C, Sanseverino J, Wallace W, et al. Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50[J]. Appl. Environ. Microbiol., 1992, 58(1): 399-402.
    [75]Schmitz A, Gartemann K H, Fiedler J, et al. Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU[J]. Appl. Environ. Microbiol., 1992, 58(12):4068~4071.
    [76]Gartemann K H, and Eichenlaub R. Isolation and characterization of IS1409, an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis[J]. J. Bacteriol., 2001:183(12):3729~3736.
    [77]Lau P C K, and de Lorenzo V. Genetic engineering: the frontier of bioremediation[J]. Environ. Sci. Technol., 1999, 33:124-128.
    [78]Lehrbach P R, Zeyer J, Reineke W, et al. Enzyme recruitment in vitro: use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13[J]. J. Bacteriol., 1984, 158(3): 1025-1032.
    [79]Ramos J L, Wasserfallen A, Rose K, et al. Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates[J]. Science, 1987, 235(4788): 593-596.
    [80]Rojo F, Pieper D H, Engesser K H, et al. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics[J]. Science, 1987,238(4832): 1395-1398.
    [81]Timmis K N, Steffan R J, Unterman R. Designing microorganisms for the treatment of toxic wastes[J]. Annu. Rev. Microbiol., 1994, 48: 525-557.
    [82]Davison J. Genetic exchange between bacteria in the environment[J]. Plasmid, 1999:42(2): 73-91.
    [83]Fulthorpe R R, and Wyndham R C. Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system[J]. Appl. Environ. Microbiol., 1989, 55(6): 1584-1590.
    [84]Fulthorpe R R, and Wyndham R C. Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem[J]. Appl. Environ. Microbiol., 1991, 57(5): 1546-1553.
    [85]Hickey W J, Searles D B, Focht D D. Enhanced mineralization of polychlorinated biphenyls in soil inoculated withchlorobenzoate-degrading bacteria[J]. Appl. Environ. Microbiol., 1993, 59(4): 1194-200.
    [86]Reineke W, Wessels W S, Rubio A M, et al. Degradation of monochlorinated aromatics following transfer of genes encoding chlorocatechol catabolism[J]. FEMS Microbiol. Lett., 1982, 14: 291-294.
    [87]Brenner V, Arensdorf J J, Focht D D. Genetic construction of PCB degraders[J]. Biodegradation, 1994, 5(3-4): 359-377.
    [88]Leadbetter E R, and Foster J W. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica[J]. Arch. Biochem. Biophys., 1959, 82(2):491~492.
    [89]Foster J W. Hydrocarbons as substrates for microorganisms[J]. Antonie van Leeuwenhoek, 1962, 28:241-274.
    [90]Hughes D E. The metabolism of halogen-substituted benzoic acids by Pseudomonas fluorescens[J]. Biochem. J., 1965, 96: 181-188.
    [91]Kennedy SIT, and Fewson A C. Metabolism of mandelate and related compounds by bacterium NCIB 8250[J]. J. Gen. Microbiol., 1968, 53(2): 259-273.
    [92]Tranter E K, and Cain B R. The degradation of fluoro aromatic compounds to fluorocitrate and fluoroacetate by bacteria[J]. Biochem. J., 1967, 103:22-23.
    [93]Gibson D T, Koch J R, Schuld C L, et al. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons[J]. Biochemistry., 1968, 7(11): 3795-3802.
    [94]Horvath R S. Microbial co-metabolism and the degradation of organic compounds in nature[J]. Bacteriol., 1972, 36(2): 146-155.
    [95]Dalton H and Stirling D I. Co-metabolism[J]. Philos. Trans. R. Soc. London Ser. B Biol. Sci., 1982, 297(1088): 481-496.
    [96]Kim M H and Hao O J. Cometabolic degradation of chlorophenols by Acinetobacter species[J]. Wat, Res,, 1999, 33(2): 562-574.
    [97]Wang S J and Loh K C. Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate[J]. Biodegradation, 1999,10(4): 261-269.
    [98]张锡辉, Bajpai R.氯代有机溶剂共降解研究进展[J]. 环境污染治理技术与设备, 2000, 1(1): 13~20.
    [99]Alexander M. Biodegradation and bioremediation[M]. New York: Academic Press, 1994.
    [100]Criddle C S. The kinetics of cometabolism[J]. Biotechnol. Bioeng., 1993, 41(ll):1048~1056.
    [101]Hao O J, Kim M H, Seagren E A, et al. Kinetics of phenol and chlorophenol utilization by Acinetobacter species[J]. Chemosphere., 2002(6), 46:797-807.
    [102]Gupta M, Suidan M T, Sayles G D. Modeling kinetics of chloroform cometabolism in methanogenic and sulfate-reducing environments[J]. Wat. Sci. Tech., 1996, 34(5-6): 403-410.[103 唐有能,程晓如, 王晖. 共代谢及其在废水处理中的应用[J]. 环境保护, 2004, 10: 22~25.
    [104]Duetz W A, Marques S, de Jong C, et al. Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWWO) growing on succinate in continuous culture: Evidence of carbon catabolite repression control[J]. J. Bacteriol., 1994, 176(8): 2354-2361.
    [105]Hill G A, Milne B J, Nawrocki P A. Cometabolic degradation of 4-chlorophenol by Alcaligenes eutrophus[J]. Appl. Microbiol. Biotechnol., 1996, 46(2): 163-168.
    [106]Saez P B and Rittmann B E. Biodegrada tion kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol) [J]. Biodegradation, 1993, 4(1): 3-21.
    [107]Arvin E, Jensen B K, Gundersen A T. Substrate interactions during aerobic biodegradation of benzene[J]. Appl. Environ. Microbiol., 1989, 55(12): 3221-3225.
    [108]Alvarez P J and Vogel T M. Substrate interactions of benzene, toluene, and paraxylene during microbial degradation by pure cultures and mixed culture aquifer slurries[J]. Appl. Environ. Microbiol., 1991, 57(10): 2981-2985.
    [109]Haigler B E, Pettigrew C A, Spain J C. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150[J]. Appl. Environ. Microbiol., 1992, 58(7): 2237-2244.
    [110]Chang M, Voice, T C, Criddle C S. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene and p-xylene by two Pseudomonas isolates[J]. Appl. Environ. Microbiol., 1993, 41: 1057-1065.
    [111]Oh Y S, Shareefdeen Z , Baltzis C B , et al. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation[J]. Biotechnol. Bioeng., 1994, 44(4): 533-538.
    [112]Bouchez M, Blanchet D, Vandecasteele J P. Degradation of polycylic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism[J]. Appl. Microbiol. Biotechnol., 1995, 43(1): 156-164.
    [113]Wang J and Qian Y. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenanchitosan gels[J]. Chemosphere, 1999, 38(13): 3109-317.
    [114]Vassilev N, Vassileva M, Fenice M, et al. Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and plant acquisition[J]. Bioresour. Technol., 2001, 79(3): 263-271.
    [115]王建龙, 细胞固定化技术与水污染控制[M]. 北京: 科学出版社, 2002.
    [116]]周定, 保文华,岳奇贤. 固定化过程中试剂对微生物活性影响的研究[J].哈尔滨工业大学学报, 1990, 22(1): 72~76.
    [117]Starostina N G, Lustak A, Fikhte B A. Morphological and physiological changes in bacterial cells treated with acrylamide[J]. Eur. J. Appl. Microbiol. Biotechnol., 1983, 18(5): 264~270.
    [118]王建龙, 施汉昌, 钱易. 固定化微生物技术在难降解有机污染物治理中的研究进展[J]. 环境科学研究, 1999, 12(1): 60~64.
    [119]]周定, 王建龙, 侯文华, 等. 固定化细胞在废水处理中的应用前景[J]. 环境科学, 1993, 14(5): 51~54, 59.
    [120]Focht D D, and Shelton D. Growth kinetics of Pseudomonas alcaligenes C-0 relative to inoculation and 3-chlorobenzoate metabolism in soil[J]. Appl. Environ. Microbiol., 1987, 53(8):1846~31849.
    [121]Bhat M A, Tsuda M, Horike K, et al. Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90[J]. Appl. Environ. Microbiol., 1994, 60(l):307~3312.
    [122]Pavlu L, Vosahlova J, Klierova H, et al. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic[J]. J. Appl Microbiol., 1999, 87(3):381~386.
    [123]Kim S and Picardal F W. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates[J]. FEMS Microbiol. Lett., 2000, 185(2):225~229.
    [124]Song B, Palleroni N J and Haggblom M M. Description of strain 3CB-1, a genomovar of Thauera aromatica, capable of degrading 3-chlorobenzoate coupled to nitrate reduction[J]. Int. J Syst. Evol. Microbiol., 2000, 50(2):551~558.
    [125]Egland P G, Gibson J, Harwood C S. Reductive, coenzyme a-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonaspalustris[J]. Appl. Environ. Microbiol., 2001, 67(3): 1396-1399.
    [126]Brunsbach F R, and Reineke W. Degradation of chlorobenzoates in soil slurry by special organisms[J]. Appl. Microbiol. Biotechnol., 1993, 39(1):117~122.
    [127] Theim S M, Krumme M L, Smith R L, et al. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer[J]. Appl. Environ. Microbiol., 1994, 60(4): 1059-1067.
    [128]Hernandez B S, Arensdorf J J, Focht D D. Catabolic characteristics of biphenyl-utilizing isolates which cometabolize PCBs[J]. Biodegradation, 1995, 6(1):75~82.
    [129]Fulthorpe R R, McGowan C, Maltseva O V, et al. 2,4-Dichlorphenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes[J]. Appl. Environ. Microbiol., 1995, 61(9):3274~3281.
    [130]Fulthorpe, R R, Rhodes A N, Tiedje J M. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria[J]. Appl. Environ. Microbiol., 1998, 64(5): 1620-1627.
    [131]Fulthorpe R R, Rhodes A N, Tiedje J M. Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations[J]. Appl. Environ. Microbiol., 1996, 62(4): 1159-1166.
    [132]]于天仁, 王振权主编. 土壤分析化学[M]. 北京:科学出版社, 1988.
    [133]鲍士旦.土壤与农业化学分析(第三版)[M]. 北京:中国农业出版社, 2000.
    [134]鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
    [135]中国科学院南京土壤研究所微生物室编著. 土壤微生物研究法[M]. 北京:科学出版社, 1985.
    [136]国家环境保护总局, 《水和废水监测分析方法》编委会编著. 水和废水监测分析方法(第四版) [M]. 北京:中国环境科学出版社, 2002.
    [137]奚旦立, 孙裕生, 刘秀英编著. 环境监测(第二版)[M]. 北京:高等教育出版社, 2001.
    [138]http://www.cots.com.cn/jiuzhaigou/weather_cn.htm
    [139]Wu R Y. Studies on the microbial ecology of Tansui Estuary[J]. Bot. Bull . Acad. Sin. 1993, 34(1): 13~30.
    [140]Bano N, Nisa M U, Khan N, et al. Significance of bacteria in the flux of organic matter in the tidal creeks of the mangrove ecosystem of the Indus River delta, Pakistan[J]. Mar. Ecol. Prog. Ser., 1997, 157:1~12.
    [141]Newell S Y, and Fell J W. Competition among mangrove oomycotes, and between oomycotes and other microbes[J]. Aquat. Microb. Ecol., 1997, 12(1): 21~28.
    [142]Gentry T J, Wang G, Rensing C, et al. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels[J]. Microbial. Ecology., 2004, 48(l):90~102.
    [143]Bernard J, van der Woude, Jan G, et al. Extent of reductive dechlorination of chlorobenzoates in anoxic sediment slurries depends on the sequence of chlorine removal[J]. Environ. Sci. Technol., 1996, 30(4): 1352-1357.[144 ]范秀容,李广武,沈萍. 微生物学实验[M]. 北京:高等教育出版社, 1989.
    [145]Holt G J, Krieg R N, Sneath A P, et al. Bergey’s manual of determinative bacteriology, ninth edition[M]. Baltimore: Williams and Wilkins Company, 1994.
    [146]李琳,李槿年,余为一. 细菌分类鉴定方法的研究概况[J]. 安徽农业科学, 2004, 32(3): 549~551.
    [147]Delong E F. Phylogenetic strains: ribosomal RNA-base for the identification single cells[J]. Science, 1982, 243(4896): 1360-1363.
    [148]Woese C R. Bacterial evolution[J]. Microbiol. Rev., 1987, 51(2): 221-271.
    [149]Williams S, Sharpe M E, Holt J G, et al. Bergey's Manual of systematic bacteriology[M]. Baltimore: Williams and Wilkiams Company, 1989.
    [150]Warhurst A M, and Fewson C A. Biotransformations catalyzed by the genus Rhodococcus[J]. Crit. Rev. Biotechnol., 1994, 14(1):29~73.
    [151]Bell K S, Philp J C, Aw D W, et al. The genus Rhodococcus[J]. J. Appl. Microbiol., 1998, 85(2):195~210.
    [152]Neu T R. Significance of bacterial surface-active compounds in interaction of bacterial with interfaces[J]. Microbiol. Rev., 1996, 60(l):151~166.
    [153]Hamamura N, Olson S H, Ward D M, et al. Microbial population dynamics associated with crude-oil biodegradation in diverse soils[J]. Appl. Environ. Microbiol., 2006, 72(9):6316-6324.
    [154]Sayavedra-Soto L A, Chang W N, Lin T K, et al. Alkane utilization by Rhodococcus strain ntu-1 alone and in its natural association with Bacillus fusiformis L-l and Ochrobactrum sp[J]. Biotechnol. Prog., 2006, 22(5):1368~1373.
    [155]孙艳, 钞亚鹏, 钱世钧. 嗜吡啶红球菌R04的联苯降解途径的研究[J].微生物学报, 2003, 43(5): 653~658.
    [156]Jung I G, and Park C H. Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures[J]. J. Biosci. Bioeng., 2004, 97(6):429~431.
    [157]Rehfuss M, and Urban J. Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources[J]. Syst. Appl. Microbiol., 2005, 28(8):695~701.
    [158]De Schrijver A, and De Mot R. Degradation of pesticides by actinomycetes[J]. Crit. Rev. Microbiol., 1999, 25(2):85~119.
    [159]Haroune N, Combourieu B, Besse P, et al. Metabolism of 2-mercaptobenzothiazole by Rhodococcus rhodochrous[J]. Appl. Environ. Microbiol., 2004, 70(10):6315~6319.
    [160]Jing-Liang X, Xiang-Yang G, Biao S, et al. Isolation and characterization of a carbendazim-degrading Rhodococcus sp. djl-6[J]. Curr. Microbiol., 2006, 53(1):72~76.
    [161]Li J, Chen J A, Zhao Q, et al. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber[J]. Chemosphere, 2006, 65(9):1627~1633.
    [162]Koronelli T V. Principles and methods for raising the efficiency of biological degradation of hydrocarbons in the environment: review[J]. Appl. Biochem. Microbiol., 1996, 32(5): 519-525.
    [163]Yagafrova G G, Skvortsova I N. A new oil-oxidizing strain of Rhodococcus erythropolis[J]. Appl. Biochem. Microbiol., 1996, 32(2): 207-209.
    [164]Dorn E, and Knackmuss H J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad[J]. Biochem. J., 1978, 174(1):73~84.
    [165]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding[J]. Anal. Biochem., 1976, 72:248-254.
    [166]汪家政, 范明. 蛋白质技术手册[M]. 北京: 科学出版社, 2000.
    [167]J.萨姆布鲁克, D.W.拉赛尔著, 黄培堂等译. 分子克隆实验指南[M].北京:科学出版社, 2005.
    [168]Parker C, and Meyer R. Mechanisms of strand replacement synthesis for plasmid DNA transferred by conjugation[J]. J. Bactedol., 2005, 187(10):3400~3406.
    [169]Kato T, Haruki M, Imanaka T, et al. Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs[J]. J. Biosci. Bioeng., 2001, 91(1): 64-70.
    [170]Jarvinen K T, Melin E S, Puhakka J A. High-rate bioremediation of chlorophenol-contaminated groundwater at low temperatures [J]. Environ. Sci. Technol., 1994, 28(13):2387~2392.
    [171]Bergauer P, Fonteyne P A, Nolard N, et al. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts[J]. Chemosphere, 2005, 59(7):909~918.
    [172]Mohn W W, Westerberg K, Cullen W R, et al. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms[J]. Appl. Environ. Microbiol., 1997, 63(9):3378~33 84.
    [173]Lambo A J, and Patel T R. Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A[J]. Curr. Microbiol., 2006, 53(1):48~52.
    [174]Kolenc R J, Inniss W E, Glick B R, et al. Transfer and expression of a mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium[J]. Appl. Environ. Microbiol., 1988, 54(3):638~641.
    [175]Gounot A M. Bacterial life at low temperature: physiological aspects and biotechnological applications[J]. J. Appl. Bacteriol., 1991, 71(4):386~397.
    [176]Kotturi G, Robinson C G, Inniss W E. Phenol degradation by a psychrotrophic strain of Pseudomonas putida[J]. Appl. Microbiol. Biotechnol., 1991, 34(4):539~543.
    [177]Hartmann J, Reineke W, Knackmuss H J. Metabolism of 3-chlor, 4-chloro, and 3,5-dichlorobenzoate by a Pseudomonad[J]. Appl. Environ. Microbiol., 1979, 37(3): 421-428.
    [178]Ferraroni M, Kolomytseva M P, Solyanikova I P, et al Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol[J]. J. Mol. Biol., 2006, 360(4):788~799.
    [179]Araujo A P, Oliva G, Henrique-Silva F, et al. Influence of the histidine tail on the structure and activity of recombinant chlorocatechol l,2-dioxygenase[J]. Biochem. Biophys. Res. Commun., 2000, 272(2):480~484.
    [180]Benndorf D, and Babel W. Assimilatory detoxification of herbicides by Delftia acidovorans MCl: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress[J]. Microbiology, 2002, 148(Pt9):2883~2888.
    [181]Sommer C, and Gorisch H. Enzymology of the degradation of (di)chlorobenzenes by Xanthobacter flavus 14pl[J]. Arch. Microbiol., 1997, 167(6):384~391.
    [182]Kitagawa W, Miyauchi K, Masai E, et al. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1[J]. J. Bacteriol., 2001, 183(22):6598-6606.
    [183]Chae J C, Kim Y, Min K H, et al. Cloning and sequencing of the fcbB gene encoding 4-chlorobenzoate-coenzyme A dehalogenase from Pseudomonas sp. DJ-12[J]. Mol. Cells., 1999, 9(2):225~229.
    [184]Parsons J R, Sijm D T H M, van Laar A, et al. Biodegradation of chlorinated biphenyls and benzoic acid by a Pseudomonas strain[J]. Appl. Microbiol. Biotechnol., 1988, 29(1): 81-84.
    [185]Keil H, Klages U, Lingens F. Degradation of 4-chlorobenzoate by Pseudomonas sp. CBS3: induction of catabolic enzymes[J]. FEMS Microbiol. Lett, 1981, 10(2): 213-215.
    [186]Brenner V, Rucka L, Totevova S, et al. Efficiency of chlorocatechol metabolism in natural and constructed chlorobenzoate and chlorobiphenyl degraders[J]. J. Appl. Microbiol., 2004, 96(3): 430-436.
    [187]Rodrigues J L, Kachel C A, Aiello M R, et al. Degradation of aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHAl(fc6)[J]. Appl. Environ. Microbiol., 2006, 72(4): 2476-2482.
    [188]戴树桂, 宋文华, 庄源益. 有机化合物动态定量结构-生物降解关系(QSBR)模型研究[J]. 环境化学, 1998, 17(2):105~113.
    [189]Corbella M E, Garrido-Pertierra A, Puyet A. Induction of the halobenzoate catabolic pathway and cometabolism of ortho-chlorobenzoates in Pseudomonas aeruginosa 142 grown on glucose-supplemented media[J]. Biodegradation, 2001, 12(3): 149-157.
    [190]Prenafeta-Boldu F X, Vervoort J, Grotenhuis J T, et al. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1[J]. Appl. Environ. Microbiol., 2002,68(6):2660~2665.
    [191]Chang S W, La H J, Lee S J. Microbial degradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) contaminated groundwater in Korea[J]. Water Sci. Technol., 2001, 44(7): 165-171.
    [192]van Herwijnen R, Wattiau P, Bastiaens L, et al. Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126[J]. Res. Microbiol., 2003, 154(3): 199-206.
    [193]李咏梅, 李文书, 顾国维. 缺氧条件下含氮杂环化合物吲哚和吡啶的共代谢研究[J]. 环境科学, 2006, 27(2):300~304.
    [194]Frascari D, Pinelli D, Nocentini M, et al. Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses[J]. J. Hazard Mater., 2006, 138(1):29~39.
    [195]Ohlen K, Chang Y K, Hegemann W, et al. Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor[J]. Chemosphere, 2005, 8(3):373~377.
    [196]Urgun-Demirtas M, Stark B C, Pagilla K R. Comparison of 2-chlorobenzoic acid biodegradation in a membrane bioreactor by B. cepacia and B. cepacia bearing the bacterial hemoglobin gene[J]. Water Res., 2006, 40(16):3123~3130.
    [197]Adriaens P, and Focht D D. Cometabolism of 3,4-dichlorobenzoate by Acinetobacter sp. strain 4-CBl[J]. Appl. Environ. Microbiol., 1991, 57(1):173~179.
    [198]Hickey W J, and Focht D D. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2[J]._Appl. Environ. Microbiol., 1990, 56(12):3842~3850.
    [199]Johnson L M, and Williams F D. Effect of substrate concentration on the cometabolism of m-chlorobenzoate by Pseudomonas fluor esc ens[J] Bull. Environ. Contam. Toxicol., 1982, 29(4):447~454.
    [200]Horvath R S, and Alexander M. Cometabolism of m-chlorobenzoate by an Arthrobacter[J]. Appl. Microbiol., 1970, 20(2):254~258.
    [201]Schukat B, Janke D, Krebs D, et al. Cometabolic degradation of 2- and 3-chloroaniline because of glucose metabolism by Rhodococcus sp. An 117[J]. Curr. Microbiol., 1983, 9(1):81~86.
    [202]阎博, 高效反硝化菌的分离及其在水体中脱氮规律的研究: [硕士学位论文],天津:天津大学,2000.
    [203]万宁, 应用生物微胶囊固定化技术进行木糖醇发酵: [硕士学位论文], 福建: 华侨大学, 2001.
    [204]王建龙, 施汉昌.聚乙烯醇包埋固定化微生物的研究及进展[J].工业微生物, 1998, 28(2): 35~39.
    [205]王勇, 解玉冰, 马小军. 壳聚糖/海藻酸钠生物微胶囊的研究进展[J ]. 生物工程进展, 1999, 19 (2) : 13~17.
    [206]李峰, 吕锡武, 严伟. 聚乙烯醇作为固定化细胞包埋剂的研究[J]. 中国给水排水, 2000, 16(12): 14~17.
    [207]王建龙, 周定, 柳萍. PVA-H3BO3固定化方法的改进及固定化乳酸菌发酵的研究[J].工业微生物, 1993, 23(6): 7~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700