半导体材料改性与染料敏化太阳能电池组装与性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪90年代发展起来的染料敏化太阳能电池具有廉价、高效、制作工艺简单、寿命长的优点,对它的研究和应用将有利于解决当今能源危机和环境污染的问题,具有非常重要的现实和长远意义。
     为提高DSSC电池的光阳极的光电转换性能,本文分别采用磁场辅助金属离子掺杂,非金属元素共掺杂与金属氧化物包覆等方面对TiO_2材料进行改性,并组装成DSSC电池,研究其光电转换性能。借助UV-Vis、FTIR、PL、SEM/EDS、XRD、TEM、SEM及XPS等手段对材料进行了表征。
     结果表明,外加强磁场使材料的粒径减小,颗粒分布均匀,利于金属离子掺杂进入TiO_2内,降低了TiO_2的带隙能,又降低了电子空穴对复合率,提高了催化剂的电子空穴对分离效率,增大了TiO_2的光电转换效率。以TiNi_xO_(2+x)与TiCo_xO_(2+x)材料组装的DSSC的最大光电转换效率分别达到5.06%与4.70%;
     N、C元素的引入降低了TiO_2的带隙能,拓展了TiO_2在可见光区的光吸收,有效地提高了TiO_2的光电转换效率。XRD与XPS显示C,N掺杂进入TiO_2晶格取代O原子。TiO_xN_yC_z在400℃下煅烧5h时显示出最佳的光电转换性能,DSSC的光电转换效率达8.39%;
     ZnO包覆TiO_2利用半导体材料间的耦合作用形成掺杂能级,使得较低能量的光子能激发TiO_2掺杂能级上捕获的电子和空穴,从而提高了TiO_2光子的利用率。二者之间形成的势垒可以阻止TiO_2因激发而产生的光生电子向电解质中传递,能有效地抑制光生电子-空穴对的复合,显著地提高了TiO2的光电转化效率,DSSC最大光电转换效率达到4.67%。
Dye sensitization solar cells have emerged since the 1990s as highly effective, simple rocess, long-lasting, and cheap photovoltaic technology. Its research and application will be beneficial to the solution of the energy crisis and environmental pollution. In order to enhance photoelectric conversion to photo-electrode of DSSC, the article uses metallic ion doping under the magnetic field, non-metallic element doping and Metal oxide coating separately to modifing TiO_2. Photovoltaic performances have been studied by assembling the DSSC. The material has been carried on UV-Vis, FTIR, PL, SEM/EDS, XRD, TEM, SEM and XPS.
     The results revealed that the external magnetic field not only decreased crystalline size of modified TiO_2 and distributed particles uniformity, but also cut down the electron-hole pairs recombination rate, and enhanced the conversion efficiency of the material. The conversion efficiency of DSSC assembled by TiNi_xO_(2+x) and TiCo_xO_(2+x) materials were 5.06% and 4.70%, respectively.
     The co-doped TiO_2 nanoparticles showed high photoactivity under visible light irradiation, which may be ascribed to absorption edge shift to longer wavelength and lower recombination rate of TiO_2. XRD and XPS results also showed that the doped C and N atoms incorporated into the lattice of TiO2 substitute for O atoms. It was found that C, N-co-doped TiO_2 (400 oC) exhibited the highest photocatalytic activity because of the good synergistic effect of co-doped carbon and nitrogen atoms. The conversion efficiency of DSSC got up to 8.39%
     The doped energy-bands were formed from ZnO coated TiO_2 by the coupling effect of semiconductor material. So electrons and holes captured from doped energy-bands of TiO_2 could be excitated by low-energy photons. Utilization ratio of photons increased, too. The potential barrier could stop electrons excitated from TiO2 transferring into electrolyte. The recombination of lectrons and holes were inhibitted, too. Especially, the photocatalytic activity of TiO_2 significantly was improved, and the conversion efficiency of DSSC got up to 4.67%
引文
[1] BP. BP世界能源统计2009[R]. 2009.
    [2] Michael Gr?tzel.Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. J. Photochem. Photobiol. A: Chemistry, 2004, 164: 3-14.
    [3] Hu L, Dai S, W ang J, et a l. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules [J]. J Phys Chem B, 2007, 111(2):358-362.
    [4] Mor K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using Titania nanotube arrays [J]. Nano Lett, 2005, 5(1):191-195.
    [5] He J, Gabor B, K Ferenc, et al.Modified phthalo cyanines for efficient near-IR sensitization of nanostructured TiO2 electrode[J].J Am Chem Soc, 2002, 124(17): 4922-4932.
    [6] Hagfeldt A, Gratzel M. Light-induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev., 1995, 95: 49-68.
    [7] Hao S C, Wu JH, Fan L Q, et al. The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell[J]. Solar Energy, 2004, 76:745-7501.
    [8] Michael Gr?tzel. Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight[J]. Chem Lett, 2005, 34: 8-13.
    [9] Michael Gr?tzel.Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J Photo and Photo A, 2006, 164: 3-14.
    [10] Saquib M. Titanium Dioxide Mediated Photocatalytic Degradation of a Textile Dye Derivative, Acid Orange 8, in Aqueous Suspension[J].Desalination, 2003, 155: 255-263.
    [11]吴聪聪,卓燕君,朱沛宁,等.高长径比TiO2纳米管阵列的调控制备及其光阳极性能[J].无机材料学报, 2009, 24(5): 897-901.
    [12]张琼,贺蕴秋.染料敏化纳米晶TiO2太阳能电池的界面电荷复合[J].材料导报, 2008, 22(9): 95-100.
    [13] Jilian Nei de Freitas, Agnaldo de Souza Gon?alves, Marco-Aurelio De Paoli,et al.The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells [J]. Electrochimica Acta, 2008, 53(24): 7166-7172.
    [14]张继远,田汉民,田志鹏,等. TiO2纳米晶溶胶-水热的合成及其染料敏化光电性能[J].无机材料学报,2009, 23(6):1110-1114.
    [15]李丽,张贵友,陈人杰,等.染料敏化太阳能电池用TiO2薄膜电极的改性制备及光电化学性能[J].高等学校化学学报,2009, 30(11): 2247-2251.
    [16]詹卫伸,潘石,李源作,等.二氢吲哚类染料用于染料敏化太阳能电池光敏剂的比较[J].物理化学学报,2009,10: 2087-2092.
    [17]刘炜华,颜鲁婷,高英俊,等.电泳法制备纳米TiO2薄膜[J].太阳能学报,2009, 30(7): 874-877.
    [18]杨术明,寇慧芝,汪玲,等.N3敏化Ho3+离子修饰TiO2纳米晶电极的光电化学性质[J].物理化学学报, 2009, 6: 1219-1224.
    [19]甘小燕,李效民,高相东,等.电化学沉积法制备纳米多孔ZnO/曙红复合薄膜[J].无机材料学报,2009, 24(1): 73-78.
    [20]李树全,林建明,吴季怀,等.上转换发光在染料敏化太阳能电池中的应用[J].无机化学学报, 2009, 25(1): 60-64.
    [21]张秀坤,吴季怀,李树全,等.掺P25水热法制备纳晶多孔TiO2薄膜电极[J].影像科学与光化学,2008, 26(6): 499-506.
    [22]史成武,葛茜,李兵,等.添加剂对染料敏化太阳电池电解质性能的影响[J].物理化学学报, 2008, 24(4): 2327-2330.
    [23]张秀坤吴季怀范乐庆,等.大粒径TiO2反射层对染料敏化太阳能电池性能改进[J].无机化学学报,2008, 24(12): 2002-2006.
    [24]宋晓睿,王维波,张雪华,等.两亲性D-π-A型有机染料在染料敏化太阳能电池中的应用[J].化学学报, 2008, 66(14): 1687-1692.
    [25]郭磊,潘旭,戴松元.染料敏化太阳电池电解质[J].化学进展,2008,20(10): 1595-1605.
    [26]刘炜华,颜鲁婷,梁嘉,等.不同二氧化钛电极制备方法对染料敏化太阳能电池性能的影响[J].液晶与显示,2008, 23(4): 432-436.
    [27]田研,蒲健,池波,等.分散介质对多孔TiO2光阳极性能的影响[J].功能材料,2008, 39(3): 456-459.
    [28]郑冰,牛海军,白续铎.有机染料敏化纳米晶太阳能电池[J].化学进展, 2008, 20(6): 828-840.
    [29]张苑,蔡宁,赵颖,等.Triton X-100对染料敏化太阳电池性能影响的研究[J].影像科学与光化学,2008, 26(6): 125-130.
    [30] Chou C S, Yang R Y, Weng M H ,et al.Preparation of TiO2/dye composite particles and their applications in dye-sensitized solar cell[J]. Powder Technology, 2008, 187(2): 181-189.
    [31] M. Shaheer Akhtar, M. Alam Khan, Myung Seok Jeon,et al. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells[J]. Electrochimica Acta, 2008, 53(27):7869-7874.
    [32] Li P J, Wu J H, Huang M L, et al.Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode[J]. Electrochimica Acta, 2008, 53(12): 4161-4166.
    [33] E.Vigil, F.A. Fernández-Lima, J.A.Ayllón, et al.TiO2–CuO three-dimensional heterostructure obtained using short time photochemical deposition of copper oxide inside a porous nanocrystalline TiO2 layer[J]. Microporous and Mesoporous Materials, 2008, 109(1-3): 560-566.
    [34] Pramod K. Singh, Kang-Wook Kim, Nam-Gyu Park ,et al.Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application[J]. Synthetic Metals, 158(14): 590-593.
    [35] Larissa Grinis, Snir Dor, Ashi Ofir, et al.Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells[J]. J. Photochem. Photobiol., A: Chemistry, 2008, 198(1): 52-59.
    [36] Chou C S, Yang R Y ,Yeh C K,et al.Preparation of TiO2/Nano-metal composite particles and their applications in dye-sensitized solar cells[J].Powder Technology, 2009, 194(1-2): 95-105.
    [37] M.C. Kao, H.Z. Chen, S.L. Young,et al. The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells[J]. Thin Solid Films, 2009, 517(17): 5096-5099.
    [38] Zhang Y Z, Wu L H, Duan H G,et al.A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells[J]. Journal of Power Sources, 2009, 189(2): 1256-1263.
    [39] Regan O, Gr?tzel M. A Low-cost, High-efficiency Solar Cell Based On Dye-sensitized Colloidal TiO2 Films[J]. Nature, 1991, 353(6346): 737–740.
    [40] Wang R., Hashimoto K, Fujishima A, et al.Light-induced amphilic surface [J].Nature 1997, 388: 431.
    [41] Sun R D, Nakajima A.Photoinduced surface wettability conversion of ZnO and TiO2[J]. J.Phys.Chem.B.2001, 105: 1984-1990.
    [42] Chikoshi T U, Suzuki T S, Tang F, et al.Crystalline oriented TiO2 fabricated by the electrophoretic deposition in a strong magnetic field[J]. J. Mater. Sci. 2004, 30: 1975-1978.
    [43] P. Balraju, Manish Kumar, M.S. Roy,et al.Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT:PSS counter electrode[J]. Synthetic Metals, 2009, 159(13): 1325-1331.
    [44]李胜军,林原,杨世伟,等.染料敏化太阳能电池中大孔TiO2薄膜电极的制备及应用[J].无机化学学报, 2007, 23(11): 1965-1969.
    [45]胡志强,李国,于仙仙,等.染料敏化太阳能电池MO/TiO2复合薄膜的制备与表征[J].功能材料,2007, 38(A04): 1546-1549.
    [46]马伟,郭丽燕,刘学虎,等.磁场对磷酸盐形态和结构影响与机理[J].化学通报, 2000, 130(12): 33.
    [47]杜朝平,杨幼名.磁场助Y2O3/TiO2粉体的光催化性能研究[J].工业催化,2005, 13(2): 47-50.
    [48]傅小明,钟云波,任忠鸣,等.弱磁场下低温中和法制备纳米MnOOH的研究[J].稀有金属材料与工程,2006, 35(2): 351.
    [49]尹棋亚,李道荣,赵鹏,等.磁场对制备Fe3+/TiO2光催化剂结构和性能的影响[J].材料科学与工程,2007, 25(5): 788-791.
    [50]唐海涛,陈国华.磁场诱导有序排列和自组装的研究进展[J].材料导报,2006, 20(2): 102.
    [51]葛世慧,黎超,马骁,等.外加磁场对Co纳米线生长过程的影响[J].物理学报,2001, 50(1): 149-152.
    [52]李品将,吴季怀,李清华.染料敏化太阳电池中铂金对电极的制备及性能之比较[J].功能材料,2007, 38(A04): 1536-1538.
    [53]姜奇伟,吴季怀.染料敏化太阳能电池电解质的还原电位对开路电压的影响[J].中山大学学报:自然科学版, 2007, 46(B06): 246-247.
    [54] Gutierrez-Tauste D,Jose A.,Ayllon,et al.New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation [J]. Journal of Photochemistry and Photobiology A, Chemistry, 2005, 175: 165-171.
    [55] Zhang K J, Xu W, Li X J,et al. Effect of dopant concentration on photocatalytic activity of TiO2 film doped by Mn non-uniformly[J]. Central European Journal of Chemistry, 2006, 4(2): 234-245.
    [56] Zou Z,Ye J,Sayama K,et al.Direct Splitting of Water Under Visible Light Irradiation with A oxide Semiconductor Photocatalyst [J]. Natrue, 2001, 414: 626-626.
    [57] Senthilkumaar S, Porkodi K, Vidyalakshmi R. Photodegradation of a texile dye catalyzed by sol-gel derived nanocrystalline TiO2 via ultrasonic irradiation [J]. J. Photochem. & Photobio. A: Chemisty, 2005, 170: 225-232.
    [58] Yang G, Kong Y, Hou W H,et al. Heating Bechavior and Crystal Growth Mechanism in Microwave Field[J]. J. Phys. Chem. B, 2005, 109:1371-1379.
    [59]黄金球,唐朝群,马新国,等.电场对TiO2纳米膜光催化性能的影响[J].催化学报,2006, 27(9): 783-786.
    [60] Denisov S I, Lyutyy T V, Hanggi P. Magnetization of Nanoparticle Systems in a Rotating Magnetic Field [J]. Phys. Rev. Lett., 2006, 12, 227.
    [61]唐笑,钱觉时,黄佳木.染料敏化太阳能电池中的光电极制备技术[J].材料导报,2006, 20(3):97-100,103.
    [62]方晓明,张正国,马婷丽.染料敏化纳米薄膜太阳电池的新型对电极研究[J].太阳能学报,2006, 27(2):111-115.
    [63] Terabe K, Kato K.Microstructure and crystallization behavior of TiO2 precursor prepared by the sol-gel method using metal alkoxide [J]. J. Mater. Sci., 1994, 29(6): 1617.
    [64] Zhang Y Z, Wu L H, Xie E, et al.A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells [J]. J. Power Sources, 2009, 189(2): 1256-1263
    [65] Lee K M, Suryanarayanan V, Ho K C.A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2007, 91(15-16): 1416-1420.
    [66] F. Fotsa Ngaffo, A.P. Caricato, M. Fernandez,et al.Structural properties of single and multilayer ITO and TiO2 films deposited by reactive pulsed laser ablation deposition technique[J]. Appl. Surf. Sci., 2007, 253(15):6508-6511.
    [67] T M.C. Kao, H.Z. Chen, S.L. Young hin, et al. The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells [J].Solid Films, 2009, 517 (17): 5096-5099.
    [68] Chou C S, Yang R Y, Yeh C K. Preparation of TiO2/Nano-metal composite particles and their applications in dye-sensitized solar cells[J]. Powder Technology, 2009, 194(1): 295-105.
    [69] Yu H, Li X J, Zheng S J,et al. Photocatalytic activity of TiO2 thin film non-uniformly doped by Ni[J]. Materials Chemistry and Physics, 2006, 97(1): 59-63.
    [70] Tseng H H, Wei M C,et al. Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis[J]. Chem. Eng. J., 2009, 150(1): 160-167.
    [71]廖巧丽,梁珍成,戴光,等.制备镍催化剂时外加磁场对其结构和性能的影响[J].催化学报,1995,16(6): 437-441.
    [72] A.M. More, J.L. Gunjkar, C.D. Lokhande,et al.Systematic interconnected web-like architecture growth of sprayed TiO2 films[J]. Micron, 2007, 38 (5): 500-504.
    [73] Zhu J F,Zheng W,He B,et al.Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye dilutedin water[J]. Journal of Molecular Catalysis A: Chemical, 2004, 216: 35-43.
    [74] Anpo M, Takeuchi M.The design and development of highly reactive titaniumoxide photocatalystsoperating under visible light irradiation [J].Journal of Catalysis, 2003, 216: 205-216.
    [75]李道荣,孙灵娜,胡长文.氯化铵对TiO2纳米晶的形成、结构及性能的影响[J].高等化学学报,2006, 5(27): 797-800.
    [76]王华,王智,钱觉时,等.纳米TiO2多孔膜的微结构对染料敏化纳米晶太阳能电池性能的影响[J].材料导报,2007, 21(9): 48-51,55.
    [77]江海军,奚丽荷,张瑾,等.罗丹明B敏化锐钛矿型TiO2的低温制备及性能[J].功能材料,2007, 38(6): 993-995.
    [78] M S Park, S. K. Kwon, B. I. Min,et a1.Li intercalation effects on magnetism in undoped and Co-doped anatase TiO2[J]. Physica B: Condensed Matter, 2003, 328(1-2):120-122.
    [79] Naeem K S, Ou F Y. Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light [J]. Physica B: Condensed Matter, 2010, 405(1):221-226.
    [80] M.A. Barakat, H. Schaeffer, G. Hayes, et al.Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles [J]. Appl CatalB: Environmental, 2005, 57(1):23-3.
    [81] W. T. Geng, Kwang S. Kim. Interplay of local structure and magnetism in Co-doped TiO2 anatase [J]. Solid State Communications, 2004, 129(11):741-746.
    [82]阎鹏飞,周德瑞,王建强.水热法制备掺杂铁离子TiO2纳米粒子光催化反应研究[J].高等化学学报,2002, 23(12): 2317-2321.
    [83]张雯,王绪绪,林华香,等.磁场对光催化反应羟基自由基生成速率的影响[J].化学学报,2005, 63(18): 1765-1768.
    [84] Xu J J, Ao Y H, Chen M D,et al. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation[J]. Solar Energy, 2010, 84(1): 37-43.
    [85] Yang X X, Cao C D, Erickson L,et al. Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation[J]. Appl Catal B: Environmental, 2009, 91(3-4): 657-662.
    [86] J.A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, et al.Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light [J]. Appl Catal B: Environmental, 2008, 84(3-4), 448-456.
    [87] Lopez T,Hernandez V J,Gomez R,et al. Photo-decomposition of 2, 4-dinitroaniline on Li/TiO2 and Rb /TiO2 nanocrystallite so-gel derived catalysts [J].Mol CatalA: Chem, 2001, 167(1): 101-107.
    [88] J.A. Rengifo-Herrera, C. Pulgarin.Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation [J]. Solar Energy, 2010, 84(1):37-43.
    [89] Liu LF, Kang J F, Wang Y, et al.The influence of hydrogen annealing on magnetism of Co-doped TiO2 films prepared by sol–gel method[J]. J. Magn. Magn. Mater. ,2007, 308(1):85-89.
    [90] Wang J, Lv Y H, Zhang Z H, et al.Sonocatalytic degradation of azo fuchsine in the presence of the Co-doped and Cr-doped mixed crystal TiO2 powders and comparison of their sonocatalytic activities [J]. J. Hazard. Mater., 2009, 170(1):398-404.
    [91] Khan R, Kim S W, Kim T J, et al. Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles[J]. Materials Chemistry and Physics, 2008, 112(1):167-172.
    [92] Ko K H, Lee Y C, Jung Y J. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions[J]. J. Colloid Interface Sci. 2005, 283(2):482-487.
    [93] Kim S S , Yum J H , Sung Y E, et al. Improved performance of a dye-sensitized solar cell using a TiO2/ZnO/Eosin Y electrode [J]. Solar Energy Materials and Solar Cells, 2003, 79:495–505.
    [94] Shen G Z, Chen P C, Ryu K m, et al. Devices and chemical sensing applications of metal oxide nanowires [J]. J. Mater. Chem., 2009, 19, 828–839.
    [95]井立强,辛柏福,王德军,等. C-N共掺杂纳米TiO2的制备及其光催化制氢活性[J].物理化学学报, 2009, 25(9):1829-1834.
    [96] Li D R, Sun L N, Hu C W,et al. Simple Preparation of the Photocatalyst of Sn2+-doped Titania[J]. Chinese Chemical Letters, 2006, 17(8):1089-1092.
    [97] Dong W K, Sangwook L, Hyun S, et al. Effects of heterojunction on photoelectrocatalytic properties of ZnO-TiO2 films [J]. International Journal of Hydrogen Energy, 2007, 32(15): 3137-3140.
    [98] Jun W, Jia L, Yingpeng X, Chengwu L, et al. Investigation on solar photocatalytic degradation of various dyes in the presence of Er3+:YAlO3/ZnO–TiO2 composite[J]. Journal of Environmental Management, 2010, 91(3):677-684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700