以配合物为模板在离子液中制备无机/有机纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是目前材料化学研究的热点,被认为是本世纪最有前途的学科之一。以金属配合物为前驱体,是制备无机/有机纳米材料的有效手段:一方面可以利用配合物的模板作用,诱导纳米粒子生长;另一方面在制备纳米的同时,利用其表面效应将有机配体修饰到纳米粒子表面,能够防止纳米粒子团聚。由于无机配合物在水和大部分有机溶剂中溶解性差,限制了其在纳米材料制备中的应用。离子液,又称低温熔融盐,是完全由离子组成,在室温下呈现液态的化合物。离子液作为一种优良溶剂,能够溶解大部分无机化合物、有机化合物和聚合物。在离子液中制备纳米材料能充分利用其良好的溶解性、软模板作用,且重现性好、操作简单。因此,近年来受到人们的广泛关注。
     本文通过文献调研,以一定结构的配合物为原料,利用配合物的模板作用,在离子液中制备了具有一定规则形貌的ZnS,PbS和Ag纳米微粒,并在纳米粒子表面修饰了有机配体,有效的防止纳米粒子的团聚。主要研究内容如下:
     (1)制备并表征了3-二茂铁基-2-丁烯酸锌(Zn(FCA)_2)配位聚合物,利用Zn(FCA)_2形成的1D链和离子液模板的共同作用制备了ZnS纳米微粒。讨论了球形和花生形纳米粒子的形成机理,从反应前后FCA基团红外光谱的变化解释了羧酸基团配位模式的改变,认为羧酸基团以双齿螯合的配位模式修饰在ZnS纳米微粒表面。
     (2)设计合成了四(对溴苯基)卟啉锌(ZnT(p-Br)PP),通过X。射线单晶衍射确定了其单晶结构。发现其具有很好的平面性,相邻分子间通过对溴苯基与卟啉环之间的边一面π-π作用形成层状结构。制备了片状的ZnT(p-Br)PP纳米微粒,通过XRD,TEM和SEM对其进行了表征。以ZnT(p-Br)PP为前驱体、离子液为溶剂,分别通过低温和高温两种方法制备了不同尺寸的棒状ZnS纳米微粒,讨论了棒状纳米粒子的形成机理。测试了其光学性质,所得ZnS样品在350nm左右出现荧光发射峰。
     (3)利用离子液的模板作用,成功地制备了长方体形的PbS纳米晶,运用HRTEM确定出PbS纳米晶体的晶体结构和生长晶面。此外,合成、表征了具有良好光学性质的咔唑类羧酸及其Pb的配合物,并以Pb的配合物为前驱体在离子液中制备了粒径小于10 nm的硫化铅纳米粒子;测试了其不同反应时间的紫外一可见吸收光谱,比较了配体、Pb配合物及PbS纳米粒子荧光光谱,发现它们十分相似。由于PbS纳米微粒与修饰在微粒表面的配体的协同效应,使其最大发射波长蓝移了约40 nm,且半峰宽宽化了约20 nm。
     (4)将3-二茂铁基-2-丁烯酸钠盐与银盐反应,利用所得配合物自身的氧化还原反应制备银纳米晶,同时将二茂铁配体修饰在银纳米晶的表面,通过紫外一可见吸收光谱和循环伏安法对其光、电性能进行了初步的研究。讨论了溶液的极性对于银纳米粒子尺寸和形貌的影响:随着溶液的极性变大,纳米粒子由球形逐渐向棒形转变,且尺寸随之增大。此外,利用三腔扩散的方法简便地合成了三角形和六边形银纳米晶。XRD表明银样品以(111)晶面为基本平面,具有较好的结晶性。
It is a versatile way that using coordination compounds both as precursor and template in the preparation and modification of nanomaterials. The novel structure of coordination compounds can give the effect on the growth of nanoparticles, and the ligands can cap surface to stabilize freshly formed nanoparticles. Thus organic-inorganic materials are obtained. However, inorganic coordination compounds usually are hardly dissolving in water andmost organic solvents, except ionic liquids (ILs). ILs are organic salts entirely composed of ions, which have low melting points. They are good solvents for a wide range of inorganic, organic, and polymer materials. Most recently, synthesis of nano- and microstructured inorganic materials in ILs has aroused more and more attention because of its effective soft template effect, reproducibility, and simple maneuverability. According to literatures, we synthesized ZnS, PbS, and Ag nanoparticles modified with ligands from coordination compounds in ILs. The main works are listed as follows:
     (1) Zn(FCA)_2 (FCA = 3-Ferrocenyl-2-crotonic acid) coordination polymer has been synthesized and characterized. 1-D polymeric chain structure of Zn(FCA)_2 is excellent template for the synthesis of organized assemblies of ZnS nanoparticles by an ionic liquid-assisted templating. In this work, we illustrate the formation mechanism of ZnS nanoparticles with spherical and peanut-like shapes. We explain the change of coordination mode for the carboxylate groups form FCA ligand which is revealed by FT-IR spectra. And we think the carboxylate groups use the bidentate coordination mode modified on the surface of nanoparticles.
     (2) ZnT(p-Br)PP (T(p-Br)PP = tetra(p-bromophenyl)porphyrin) has been designed and synthesized. The crystal structure of ZnT(p-Br)PP was obtained and discussed. It exhibited nice molecule planarity. ZnT(p-Br)PP organic nanoplates was synthesized and characterized by XRD, TEM and SEM. Using ZnT(p-Br)PP as precursor, nanorod ZnS with different sizes were prepared by two methods and their optical properties were studied (their fluorescence peaks appeared at approximately 350 nm). The formation mechanism of rod-like ZnS nanoparticles was illustrated.
     (3) PbS nanocube has been successfully synthesized in an ionic liquid, which has soft template effect. HRTEM showed the cubic morphology of PbS, its crystallite morphology and the crystal orientation. Carbazole derivatives (L) and Pb coordination compound have been synthesized and characterized. PbS naocrystalline under 10 nm was obtained by using Pb coordination compound as precursor. The UV-vis spectra of PbS solution at different reaction stages were examined. The photoluminescence of L, PbL_2, and PbS nanoparticles were compared and they were similar. However, due to cooperative effect between L and PbS nanoparticles, the maximum fluorescence peak of PbS nanoparticles blue-shifted about 40 nm, and the FWHM broadened about 20 nm.
     (4) Ag nanoparticles were synthesized by Ag coordination compound self-reduction method. The products were characterized by UV-vis spectra and cyclic voltammetry. The polarity of solution affects the size and shape of Ag nanoparticles: with increasing of the polarity of solution, the shape of Ag nanoparticles transformed from spherical to rodlike shape and their sizes increased. We also facilely synthesized triangular and hexagonal silver nanoplates in three-cavity-diffusion device at low temperature and ambient atmosphere. XRD showed they are single crystals, with the basal plane as (111) lattice plane.
引文
[1] 张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2] 张立德,牟季美,纳米材料学[M].沈阳:辽宁科学技术出版社,1994.
    [3] 杨剑,滕凤恩等,纳米材料综述[J].材料导报,1997,11:6.
    [4] 黄德欢,纳米技术与应用[M].上海:中国纺织大学出版社,2001.
    [5] 张志琨,崔作林等,纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [6] Ph. Buffat and J. P. Borel, Size effect on the melting temperature of gold particles [J]. Phys. Rev. A, 1976, 13: 2287-2298.
    [7] J. E. Bowen Katari, V. L. Colvin, and A. P. Alivisatos, X-ray photoelectron spectroscopy of CdSe nanocrystals with Application to studies of the nanocrystal surface [J]. J. Phys. Chem., 1994, 98: 4109-4117.
    [8] E. Jang, S. Jun, Y. Chung, and L. Pu, Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals [J]. J. Phys. Chem. B, 2004, 108: 4597-4600.
    [9] Z. P. Wang, J. Li, B. Liu, J. Q. Hu, X. Yao, and J. H. Li, Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect [J]. J. Phys. Chem. B, 2005, 109: 23304-23311.
    [10] J. H. Hodak, A. Henglein, and G. V. Hartland, Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes [J]. J. Phys. Chem. B, 2000, 104: 9954-9965.
    [11] V. F. Puntes, K. M. Krishnan, and P. Alivisatos, Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles [J]. Appl. Phys. Lett., 2001, 78: 2187-2189.
    [12] W. L. Hughes and Z. L. Wang, Formation of Piezoelectric Single-Crystal Nanorings and Nanobows [J]. J. Am. Chem. Soc., 2004, 126: 6703-6709.
    [13] M. S. El-Eskandarany, Synthesis of nanocrystalline titanium carbide alloy powders by mechanical solid state reaction [J]. Metall. Mater. Trans. A, 1996, 27: 2374-2375.
    [14] 许涛,李建业,贺蒙等.气相反应法制备GaN纳米线[J].人工晶体学报, 2001,30(3):276-279.
    [15] 龚海燕,赵清岚,李小红,张治军.均匀沉淀法制备氧化锌纳米棒[J].化学研究,2006,17(1):28-30.
    [16] S. F. Wang, F. Gu, and M. K. Lu, Sonochemical synthesis of hollow PbS nanospheres [J]. Langmuir, 2006, 22: 398-401.
    [17] H. Guo, W. P. Zhang, et al. Preparation and characterization of sol-gel derived Au nanoparticle dispersed Y_2O_3: Eu Films [J]. J. Rare Earth., 2005, 23 (5): 600-606.
    [18] Z. S. Pillai and P. V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction Method [J]. J. Phys. Chem. B, 2004, 108: 945-951.
    [19] S. Magdassi, A. Bassa, Y. Vinetsky, and A. Kamyshny, Silver nanoparticles as pigments for water-based ink-jet inks [J]. Chem. Mater., 2003, 15: 2208-2217.
    [20] 孙玉凤,沈丽霞.微乳液法制备纳米硫化锌及其光催化性能的研究[J].有色矿冶,2006,22(5):38-40.
    [21] C. Li, X. G. Yang, et al. Growth of crystalline Sb_2S_3 nanorods by hydrothermal method [J]. J. Cryst. Growth, 2003, 255: 342-347.
    [22] V. G. Pol, H. Grisaru, and A. Gedanken, Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation [J]. Langmuir, 2005, 21: 3635-3640.
    [23] M. K. Corbierre, J. Beerens, and R. B. Lennox, Gold nanoparticles generated by electron beam lithography of gold(I)-thiolate thin films [J]. Chem. Mater., 2005, 17: 5774-5779.
    [24] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Direct-current nanogenerator driven by ultrasonic waves [J]. Science, 2007, 316 (6): 102-105.
    [25] S. Mandal and M. Sastry, Ag~+-Keggin ionic colloidal particles as novel templates for the growth of silver nanoparticle assemblies [J]. J. Mater. Chem., 2003, 13: 3002-3005.
    [26] S. Pal and G. De, A new approach for the synthesis of Au-Ag alloy nanoparticle Incorporated SiO_2 Films [J]. Chem. Mater., 2005, 17: 6161-6166.
    [27] H. Tsunoyama, Y. Negishi et al, Chromatographic isolation of "Missing" Au_(55) clusters protected by alkanethiolates [J]. J. Am. Chem. Soc, 2006, 128: 6036-6037.
    [28] J. Aldana, Y. A. Wang, and X. G. Peng, Photochemical instability of CdSe nano-crystals coated by hydrophilic thiols [J]. J. Am. Chem. Soc, 2001, 123: 8844-8850.
    [29] B. Dubertret, P. Skourides, D. J. Norris, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science, 2002, 298 (29): 1759-1762.
    [30] S. H. Wang and S. H. Yang, Preparation and characterization of oriented PbS crystalline nanorods in polymer films [J]. Langmuir, 2000,16: 389-397.
    [31] A. Berman, N. Belman, and Y. Golan, Controlled deposition of oriented PbS nanocrystals on ultrathin polydiacetylene templates at the air-solution interface [J]. Langmuir, 2003, 19: 10962-10966.
    [32] W. Z. Guo, J. J. Li, Y. A. Wang, and X. G. Peng, Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability [J]. J. Am. Chem. Soc, 2003, 125: 3901-3909.
    
    [33] 张金中,王中林,等. 自组装纳米结构[m]. 北京:化学工业出版社,2005.
    
    [34] A. Ghezelbash, B. Koo, and B. A. Korgel, Self-assembled stripe patterns of CdS nanorods [J]. Nano Lett., 2006, 6 (8): 1832-1836.
    [35] N. N. Kariuki, J. Luo, S. A. Hassan, et al. Assembly of bimetallic gold-silver nanoparticles via selective interparticle dicarboxylate-silver linkages [J]. Chem. Mater., 2006, 18: 123-132
    [36] D. K. Smith, A. R. Hirst, C. S. Love, et al. Self-assembly using dendritic building blocks-towards controllable nanomaterials [J]. Prog. Polym. Sci., 2005, 30: 220-293.
    [37] C. L. Hsu, S. S. Yang, Y. K. Tseng, et al. A new and simple means for self-assembled nanostructure: facilitated by buffer layer [J]. J. Phys. Chem. B, 2004, 108:18799-18803.
    [38] Y. F. Hao, G. W. Meng, Z. L. Wang, et al. Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor-liquid-solid growth [J}. Nano Lett., 2006, 6 (8): 1650-1655.
    [39] E. Leontidis, M. Orphanou, T. K. Leodidou, F. Krumeich, and W. Caseri, Composite nanotubes formed by self-assembly of PbS nanoparticles [J]. Nano Lett., 2003, 3 (4): 569-572.
    [40] Z. L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. J. Phys. Chem. B, 2000, 140 (6): 1153-1175.
    [41] Z. L. Wang, Structural analysis of self-assembling nanocrystal superlattices [J]. Adv. Mater., 1998, 10: 13-30.
    [42] L. Motte, F. Billoudet, E. Lscaze, and M. P. Lipeni, Self-organization into 2D and 3D superlattices of nanosized particles differing by their size [J]. J. Phys. Chem. B, 1997, 101: 138-144.
    [43] C. B. Murray, C. R. Kagan, and M. G. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices [J]. Science, 1995, 207: 1335-1338.
    [44] S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000, 287: 1989-1992.
    [45] H. B. Sun, Y. Xu, S. Matsuo, and H. Misawa, Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica [J]. Opt. Rev., 1999, 6: 396-398.
    [46] Z. L. Wang, R. P. Gao, B. Nikoobakht, and M. A. El-Sayed, Surface reconstruction of the ubstable {110} surface in gold nanorods [J]. J. Phys. Chem. B, 2000, 104: 5417-5420.
    [47] C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters [J]. Nature, 1998, 396: 444-446.
    [48] Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires [J]. J. Am. Chem. Soc., 2002, 124 (8): 1817-1822.
    [49] J. S. Yun, and Z. L. Wang, Preparation of self-assembled cobalt nanocrystal arrays [J]. Nanostruct. Mater., 1999, 11: 845-852.
    [50] C. Petit, A. Taleb, and M. P. Pileni, Self-organization of magnetic nanosize cobalt particles [J]. Adv. Mater., 1998, 10: 259.
    [51] T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis [J]. Chem. Rev., 1999, 99: 2071-2083.
    [52] 顾彦龙,彭家建,乔混,杨宏洲,石峰,邓友全.室温离子液体及其在催化和有机合成中的应用[J].化学进展,2003,15(3):222.
    [53] R. D. Rogers and K. R. Seddon, Ionic Liquids-Solvents of the Future? [J]. Science, 2003, 302: 792-793.
    [54] D. B. Zhao, M. Wu, Y. Kou, E. Min, Ionic liquids: applications in catalysis [J]. Catalysis Today, 2002, 74: 157-189.
    [55] M. Kort, A. W. Tuin, S. Kuiper, et al. Development of a novel ionic support and its application in the ionic liquid phase assisted synthesis of a potent antithrombotic [J]. Tetrahedron Lett., 2004, 45: 2171-2175.
    [56] P. Bonhote, A. P. Dias, N. Papageorgiou, et al. Hydrophobic, highly conductive ambient- temperature molten salts [J]. Inorg. Chem., 1996, 35 (11): 68-1170.
    [57] 石家华,孙逊,杨春和,高青雨,李永舫.离子液体研究进展[J].化学通报,2002,4:243-250.
    [58] A. S. Larsenm, J. D. Holbrey, F. S. Tham, and C. A. Reed, Designing ionic liquids: imidazolium melts with inert carborane anions [J]. J. Am. Chem. Soc., 2000, 122 (14): 7264-7272.
    [59] P. Y. Chen, I. W. Sun, Electrochemical study of copper in a basic 1-methyl-3-ethyl imidazolium tetrafluoroborate room temperature molten salt [J]. Electrochimica Acta., 1999, 45: 441-450.
    [60] A. G. Glenna and P. B. Jones, Thermal stability of ionic liquid BMIM(BF_4) in the presence of nucleophiles [J]. Tetrahedron Lett., 2004, 45: 6967-6969.
    [61] A. E. Visser, R. P. Swattoski, W. Riecher, G. Matthew, R. D. Rogers, Traditional extractants in nontraditional solvent: group 1 and 2 extraction by crown ehers in room temperatue ionic liqids [J]. Ind. Eng. Chem. Res., 2000, 39 (10): 3596-3640.
    [62] R. Sheldon, Catalytic reactions in ionic liquids [J]. Chem. Commun., 2001: 2399-2407.
    [63] M. J. Earle and K. R. Seddon, Diels-Alder reactions in ionic liquids [J]. Green Chem., 1999, 23 -25.
    [64] R. R. Deshhmukh, K. V. Simivasan, et al. Ultrasound C-C bond formation: Heck reaction at ambient conditions in temperature ionic liquids [J]. Chem. Comm.,2001,9: 1544-154.
    [65] C. Danjundiah, F. Mcdevit, V. Koch, Diferantial capacitance measurements in solvent-free ionic liquids at Hg and C interface [J]. J. Electrochem. Soc., 1997, 144 (10): 3392-3397.
    [66] A. Nodammasayoshi, Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomersin room temperature molten salts [J]. Electrochemica Acta., 2000, 45 (12): 65-1270.
    [67] A. Berth, L. He, D. W. Armstrong, Ionic liquids as stationary phase solvents for mentholated cyclodextrins in gas chromatography [J]. Chromatographia, 2001, 53 (112): 63-68.
    [68] M. Antonietti, D. Kuang, B. Smarsly, and Y. Zhou, Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures [J]. Angew. Chem. Int. Ed., 2004, 43: 4988-4992.
    [69] B. G. Trewyn, C. M. Whitman, V. S. Y. Lin, Morphological control of room-temperature Ionic liquid templated mesoporous silica nanoparticles for controlled release o f antibacterial agents [J]. Nano Lett., 2004, 4: 2139-2143.
    [70] 杨振兴,王广健,刘义武,室温离子液体在无机纳米材料合成中的应用进展[J].淮北煤炭师范学院学报,2006,27(4):21-28.
    [71] T. Nakashima and N. Kimizuka, Interfacial synthesis of hollow TiO_2 microspheres in ionic liquids [J]. J. Am. Chem. Soc., 2003, 125: 6386-6387.
    [72] F. Endres, M. Bukowski, R. Hempelmann, and H. Natter, Electrodeposition of nanocrystalline metals and alloys from ionic liquids [J]. Angew. Chem. Int. Ed., 2003, 42: 3428-3430.
    [73] I. Mukhopadhyay and W. Freyland, Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature [J]. Langmuir, 2003, 19: 1951-1953.
    [74] H. Itoh, K. Naka, and Y. Chujo, Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation [J]. J. Am. Chem. Soc., 2004, 126: 3026-3027.
    [75] J. Dupont, G. S. Fonseca, A. P. Umpierre, Paulo F. P. Fichtner, et al. Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions [J]. J. Am. Chem. Soc., 2002, 124: 4228-4229.
    [76] J. C. Li, S. M. Zhang, Z. S. Wu, et al. Preparation of PdS-type PbO nanocrystals in room-temertature ionic liquid [J]. Mater. Lett., 2005, 59: 3119-3121.
    [77] H. X. Gao, T. Jiang, B. X. Han, Y. Wang, J. M. Du, Z. M. Liu, J. L. Zhang, Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles [J]. Polymer, 2004, 45: 3017-3019.
    [78] G. T. Wei, Z. Yang, C. Y. Lee, H. Y. Yang, and C. R. Chris Wang, Aqueous-organic phase transfer of gold nanoparticles and gold nanorods using an ionic liquid [J]. J. Am. Chem. Soc., 2004, 126: 5036-5037.
    [79] P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells [J]. J. Am. Chem. Soc., 2003, 125: 1166-1167.
    [80] V. Calo, A. Nacci, A. Monopoli, Antonio Fornaro, et al. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids [J]. Organometallics, 2004, 23: 5154-5158.
    [81] Y. Zhou, and M. Antonietti, A series of highly ordered, super-microporous, lamellar silicas prepared by nanocasting with ionic liquids [J]. Chem. Mater., 2004, 16: 544-550.
    [82] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes [J]. Science, 2003, 300: 2072-2074.
    [83] B. G. Trewyn, C. M. Whitman, and V. S. -Y. Lin, Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano Lett., 2004, 4 (11): 2139-2143.
    [84] C. W. Scheeren, G. Machado, J. Dupont, et al. Nanoscale Pt (0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions [J]. Inorg. Chem., 2003, 42: 4738-4742.
    [85] X. J. Zhang, Y. Xie, W. T. Yu, Q. G. Zhao, M. H. Jiang, Y. P. Tian, Formation of a novel 1D supramolecule [HgCl_2(ptz)]_2HgCl_2: a new precursor to submicrometer Hg_2Cl_2 rods [J]. Inorg. Chem., 2003, 42: 3734-3737.
    [86] X. J. Zhang, Y. Xie, Q. G. Zhao Zhao, Y. P. Tian, 1-D coordination polymer template approach to CdS and HgS aligned-nanowire bundles [J]. New J. Chem., 2003, 27, 827-830.
    [87] X. P. Sun, S. J. Dong, and E. Wang, Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic -inorganic hybrid materials at room temperature [J]. J. Am. Chem. Soc, 2005, 127: 13102-13103.
    [1] 张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2] 张金中,王中林等,自组装纳米结构[M].北京:化学工业出版社,2005.
    [3] K. Jacobs, D. Zaziski, E. C. Scher, A. B. Herhold, and A. P. Alivisatos, Activation volumes for solid-solid transformations in nanocrystals [J]. Science, 2001, 293: 1803-1806.
    [4] P. Michler, A. Imamoglu, et al. Quantum correlation among photons from a single quantum dot at room temperature [J]. Nature, 2000, 406: 968~970.
    [5] M. Y. Odoi, N. I. Hammer, K. Sill, T. Emrick, et al. Observation of enhanced energy transfer in individual quantum dot-oligophenylene vinylene nanostructures [J]. J. Am. Chem. Soc., 2006, 128 (11): 3506-3507.
    [6] N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, Efficient near-infrared polymer nanocrystal light-emitting diodes [J]. Science, 2002, 295: 1506-1508.
    [7] X. Wang, Y. Du, S. Ding, Q. Wang, G. Xiong, et al. Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films [J]. J. Phys. Chem. B, 2006, 110 (4): 1566-1570.
    [8] Y. C. Zhu, Y. Bando, D. F. Xue, D. Golberg, Nanocable-aligned ZnS tetrapod nanocrystals [J]. J. Am. Chem. Soc., 2003, 125 (52): 16196-16197.
    [9] P. D. Yang and C. M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities [J]. Science, 1996, 273: 1836-1840.
    [10] C. Querner, P. Reiss, J. Bleuse, A. Pron, Chelating ligands for nanocrystals' surface functionalization [J]. J. Am. Chem. Soc., 2004, 126 (37): 11574-11582.
    [11] 杨家祥.含二茂铁基功能配合物的设计、合成、结构和性质研究[D].合肥:中国科学技术大学,2001.
    [12] J. X. Yang, Z. Zhang, J. Y. Wu, Y. P. Tian, et al. Preparation, crystal structure and properties of a pentametallic 3-ferrocenyl-2-crotonic acid-bridged copper(Ⅱ) complex [J]. Chin. J. Chem., 2003, 21 (11): 1461-1465.
    [13] J. X. Yang, Z. Zhang, J. Y. Wu, Y. P. Tian, et al. Synthesis and crystal structure of dinuclear cadmium complex [Cd_2(phen)_4(fca)_2](CIO_4)_2·(H_2O)_2 [J]. Chin. J. Struct. Chem., 2003, 22, 558-562.
    [14] J. X. Yang, Z. J. Hun, Z. Zhang, Y. P. Tian, et al. Synthesis, crystal structures and properties of tetrametallic complexes: [M_2(phen)_4(fca)_2](CIO_4)_2·(H_2O)_2 (M=Zn or Co, phen=1,_10-phenanthroline, FCA=anion of 3-ferrocenyl-2-crotonic acid) [J]. Chin. J. Chem., 2005, 23 (5), 533-538.
    [15] G. Li, H. W. Hou, Z. F. Li, X. R. Meng, Y. T. Fan, Novel Zinc(Ⅱ) Coordination Polymers Constructed From Ferrocenyl Carboxylate Ligands, [J]. New J. Chem., 2004, 28, 1595-1599.
    [16] 中本一雄,无机和配合物的红外和拉曼光谱[M].北京:化学工业出版社,1986.
    [17] 尹春风,王晓凤,一系列金属卟啉化合物的合成及光物理性质的研究[J].光谱实验室,1998,15(4):51-53.
    [18] 王文韵,羊彦横,于宝贵,关中素,卟啉和金属卟啉的荧光研究[J].发光学报,1984,5(4):37-44.
    [19] Z. C. Wang, C. J. Medforth, and J. A. Shelnutt, Self-metallization of photocatalytic porphyrin nanotubes [J]. J. Am. Chem. Soc., 2004, 126: 16720-16721.
    [20] 李景泉,潘海波,黄金陵,陈耐生,四苯基卟啉锌/TiO_2纳米复合材料的原位合成及可见光光催化[J].光谱学与光谱分析,2006,26(11):2061-2064.
    [21] Z. C. Wang, Z. Y. Li, C. J. Medforth, and J. A. Shelnutt, Self-assembly and self-metallization of porphyrin nanosheets [J]. J. Am. Chem. Soc., 2007, 129: 2440-2441.
    [22] X. M. Meng, J. Liu, Y. Jiang, et al. Structure and size controlled ultrafine ZnS nanowires [J]. Chem. Phys. Lett., 2003, 382: 434-438.
    [23] 陈新斌,孙咏芬,桑言奎,朱瑞荣,四芳基卟啉化合物荧光性能的研究[J].河南大学学报(自然科学版),2006,36(1):41-43.
    [1] J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner, Role of electron localization in intense-field molecular ionization [J]. Phys. Rev. B, 1993, 48: 2819-2822.
    [2] X. S. Zhao, I. Gorelikov, S. Musikhin, S. Cauchi, et al. Synthesis and optical properties of thiol-stabilized PbS nanocrystals [J]. Langmuir, 2005, 21: 1086-1090.
    [3] A. A. Patel, F. Wu, J. Z. Zhang, et al. Synthesis, optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping [J]. J. Phys. Chem. B, 2000, 104: 11598-11605.
    [4] W. P. Lim, H. Y. Low, and W. S. Chin, IR-luminescent PbS-polystyrene nanocomposites prepared from random ionomers in solution [J]. J. Phys. Chem. B, 2004, 108: 13093-13099.
    [5] R. S. Kane, R. E. Cohen, and R. Silbey, Theoretical study of the electronic structure of PbS nanoclusters [J]. J. Phys. Chem., 1996, 100: 7928-7932.
    [6] Y. Zhou, H. Itoh, T. Uemura, K. Naka, and Y. Chujo, Preparation, optical spectroscopy, and electrochemical studies of novel π-conjugated polymer-protected stable PbS colloidal nanoparticles in a nonaqueous solution [J]. Langmuir, 2002, 18: 5287-5292
    [7] Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, Hierarchical, star-shaped PbS crystals formed by a simple solution route [J]. Cryst. Growth Des., 2004, 4: 351-354.
    [8] Y. H. Ni, H. J. Liu, F. Wang, Y. Y. Liang, J. M. Hong, et al. Shape controllable preparation of PbS crystals by a simple aqueous phase route [J]. Cryst. Growth Des., 2004, 44: 754-764.
    [9] A. Berman, N. Belman, and Y. Golan, Controlled deposition of oriented PbS nanocrystals on ultrathin polydiacetylene templates at the air-solution interface [J]. Langmuir, 2003, 19: 10962-10966.
    [10] C. Zhang, Z. H. Kang, E. H. Shen, E. B. Wang, et al. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route [J]. J. Phys. Chem. B, 2006, 110: 184-189.
    [11] D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu and Y. T. Qian, Synthesis of closed PbS nanowires with regular geometric morphologies [J]. J. Mater. Chem., 2002, 12: 403-405.
    [12] 王彩霞.新型含氮杂环有机发光材料的设计、合成及性质[D].合肥:安徽大学,2006.
    [13] A. A. Patel, F. X. Wu, J. Z. Zhang, C. L. Torres-Martinez, et al. Synthesis, opticalspectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping [J]. J. Phys. Chem. B, 2000, 104: 11598-11605.
    [1] J. H. Hodak, A. Henglein, and G. V. Hartland, Photophysics of nanometer sized metal particles: electron-phonon coupling and cohere excitation of breathing vibrational modes [J]. J. Phys. Chem. B, 2000, 104: 9954-9965.
    [2] D. M. Wood and N. W. Ashcroft, Quantum size effects in the optical properties of small metallic particles [J]. Phys. Rev. B: Condens. Matter, 1982, 25: 6255-6274.
    [3] M. A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes [J]. Acc. Chem. Res, 2001, 34: 257-264.
    [4] S. J. Oldenburg, R. D. Averitt, S. L. Westcott, et al, Nanoengineering of optical resonances [J]. Chem. Phys. Lett., 1998, 288: 243-247.
    [5] A. Mooradian, Photoluminescence of metals [J]. Phys. Rev. Lett., 1969, 22: 185-187.
    [6] R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer Correlating second harmonic optical responses of single Ag nanoparticles with morphology [J]. J. Am. Chem. Soc. 2005, 127: 12482-12483.
    [7] Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, Enhanced magnetooptical response in dumbbell-like Ag-CoFe_2O_4 nanoparticle pairs [J]. Nano Lett., 2005, 5 (9): 1689-1692.
    [8] L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single Silver triangular nanoprisms [J]. Nano Lett., 2006, 6 (9): 2060-2065.
    [9] M. A. Meyers, A. Mishra, et al, Mechanical properties of nano -crystalline materials [J]. Progress in Materials Science, 2006, 51: 427-556.
    [10] C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, and P. C. White, Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering [J]. Langmuir, 1995, 11: 3712-3720.
    [11] Y. G. Sun and Y. N. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium [J]. J. Am. Chem. Soc., 2004, 126: 3892-3901.
    [12] R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294: 1901-1903.
    [13] Y. J. Xiong, Y. Xie, C. Z. Wu, J. Yang, Z. Q. Li, and F. Xu, Formation of silver nanowires through a sandwiched reduction process [J]. Adv. Mater., 2003, 15 (5): 405-408.
    [14] G. J. T. Tiddt, Surfactant-water liquid crystal phase [J]. Phys, Rep., 1980, 57: 1-46
    [15] N. R. Jana, et al. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chem. Commun., 2001, 617-618.
    [16] 杨生春,董守安,唐春,李品将,金纳米粒子自球形向棒状的转变和生长的光化学法研究[J].化学学报,2005,63(10):873-879.
    [1] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271: 933-9371996.
    [2] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281: 2013-2016.
    [3] B. O. Dabbousi, J. Rodriguezviejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M.G. Bawendi, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J. Phys. Chem. B, 1997, 101: 9463-9475.
    [4] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, et al. Optical gain and stimulated emission in nanocrystal quantum dots [J]. Science, 2000, 290: 314-317.
    [5] R. G. Xie, U. Kolb, J. X. Li, T. Basche, A. Mews, Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals [J]. J. Am. Chem. Soc., 2005, 1270: 7480-7488.
    [6] F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, S. R. Marder, J. W. Perry, Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles [J]. J. Am. Chem. Soc., 2003, 125 (2): 328-329.
    [7] M. Lal, L. Levy, K. S. Kim, G. S. He, et al. Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence [J]. Chem. Mater. 2000, 12, 2632-2639.
    [8] G. Kalyuzhny, R. W. Murray, Ligand effects on optical properties of CdSe nanocrystals [J]. J. Phys. Chem. B, 2005, 109: 7012-7021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700