电化学法直接制备纳米金及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了一种直接在ITO透明导电玻璃上制备纳米金的方法。以ITO玻璃作基底,2.0mmolL~(-1)的亚金氰化钾溶液(pH=8.0)为镀液,采用电化学法在ITO玻璃上直接制备纳米金粒子。通过对镀液温度,循环伏安的扫描圈数、电位范围以及扫描速度等因素的考察,确定最佳试验条件,分别制备了平均粒径约为48nm的纳米金膜和平均粒径约为24nm的纳米金阵列。并借助紫外-可见光度法、扫描电子显微镜、铁氰化钾分子探针、0.05M的硫酸和交流阻抗法对纳米金膜和纳米金阵列进行了表征。
     结合自组装法、纳米技术和溶胶-凝胶(SG)法,将本法制备的纳米金膜电极(GFE)和纳米金阵列电极(GAE)用于制备超氧化物歧化酶传感器,对其电化学行为进行了研究,其式量电位分别为100mV和99mV(参比电极为饱和甘汞电极),呈现准可逆的电化学过程。以二甲亚砜/氢氧化钠体系产生超氧阴离子,研究了酶电极对O_2·~-的响应性能。结果证明酶电极对超氧阴离子有明显的响应,且响应信号与O_2·~-/DMSO溶液的注入量呈线性关系。酶电极在4℃下放置90天后,在该期间间歇性使用,SOD-cys-GS/GFE对超氧阴离子的响应仍保持原来的92%以上,SOD-cys-GS/GAE保持原来的85%以上。并实现了SOD-cys-GS/GFE对污泥系统中O_2·~-的检测。
     将本法制备的纳米金膜电极(GFE)和纳米金阵列电极(GAE)采用自组装法制备辣根过氧化物酶(HRP)传感器,对其电化学行为进行了研究。实现了HRP酶电极的直接电子传递,并考察了电极的稳定性。检测H_2O_2的线性范围分别为5.0μmolL~(-1)~4.2mmolL~(-1)和8.0μmolL~(-1)~3.0mmolL~(-1),检出限分别为0.57μmolL~(-1)和0.6μmolL~(-1)(信噪比为3),米氏常数分别为1.6mmolL~(-1)和0.40mmolL~(-1)。HRP/cys/GFE在4℃下放置85天后,在此期间间歇性使用,对H_2O_2的响应仍保持原来的90%以上,HRP/cys/GAE保持原来的83%以上。实现了HRP/cys/GFE对实际样品的检测。
An effecttive approach to deposit gold nanoparticles (AuNPs) directly on indium tin oxide (ITO) surface through electrochemical method is reported. Using 2.0mmolL~(-1) KAu(CN)2 (pH=8.0) as electroplating solution, the AuNPs were prepared on the ITO surface by CV. Several electroplate factors were studied through single-factor experiments. These factors are the temperature of the electroplating solution, the sweep segments of CV, the potential range, and the scan rate. Then at the best condition, AuNPs with the average sizes about 48nm of gold-nanoparticle film and 24nm of gold-nanoparticle array were prepared. The AuNPs were characterized by UV-vis, SEM, and electrochemical motheds.
     The gold-nanoparticle film electrodes(GFE) and gold-nanoparticle array electrodes(GAE) were applied to fabricate SOD biosensors with self-assembled monolayers, nanothechnology and sol-gel(SG) technology. The electrochemical characteristics of the biosensors were studied. The formal potential were 100mV and 99mV (versus SCE), respectively. The electrode process of SOD is quasi-reversible. The SOD electrodes were used to response to superoxide anion, which was prepared by DMSO/NaOH systems. The biosensors displayed an excellent electrocatalytial response to reduction of O_2·~- without the aid of an electron mediator. The biosensors exhibited high sensitivity, rapid response and long-stability.
     The GFE and GAE were also applied to fabricate HRP biosensors with self-assembled monolayers, and the electrochemical characteristics of the biosensors were studied. The biosensors displayed an excellent electrocatalytial response to reduction of H_2O_2. The calibration range of H_2O_2 were 5.0μmolL~(-1)~4.2mmolL~(-1) and 8.0μmolL~(-1)~3.0mmolL~(-1), with detection limits of 0.57μmolL~(-1) and 0.6μmolL~(-1) at a signal-to-noise ratio of 3, respectively. The KMapp value of HRP immobilized on the electrodes surface were found to be 1.6 mmolL~(-1) and 0.40mmolL~(-1), respectively. The biosensors exhibited high sensitivity, rapid response and long-term stability.
引文
[1] 郭纯生,传感器技术,1998,17(4): 5.
    [2] 丁衡高,微米/纳米技术文集,国防工业出版社,1994.
    [3] 严东生,无机材料学报,1995, 10(1): 1.
    [4] 侯士敏,陶成钢,刘虹雯等,物理学报,2001, 50(2): 223-224.
    [5] Instruction Manual UHV Evaporator E F M3/4. Omicron, Germany.
    [6] The Variable Temperature S T User’s Guide, Omicron, Germany.
    [7] Mafune F., Kohno J., Takeda Y., et al. J. Phys. Chem. B, 2001, 105(22): 5114-5120.
    [8] Henglein A., Giersig M., J. Phys. Chem., B, 1999, 9533.
    [9] Link S., Wang Z L., El-Sayed M A., J. Phys. Chem., 1999, 103: 3529.
    [10] Brust M., Walker A., Bethell D., et al. Chem, Soc. Chem. Commun., 1994, 801.
    [11] Wang S., Li Y L., Du C M., et al. Chinese Chem. Lett., 2001, 12(12): 1141-1144.
    [12] Yonezawa T., Onoue S., Kimizuka N., Langmir, 2001,17(8): 2291-2293.
    [13] Yonezawa T., Yasui K., Kimizuka N., Langmuir, 2001, 17(2): 271-273.
    [14] Rao C N R., Kulkarni G U., Thomas P J., et al. Chem. Soc. Rev., 2000, 29(1): 27-35.
    [15] Bonnemann H., Richards R M., Eur J Inorg Chem., 2001: 2455-2480.
    [16] Mayer A B R., Mark J E., J Macromol Sci Pure Appl Chem., 1997, A34(11): 2151-2164.
    [17] Liu Y, Wang Y, Claus R O., Chem. Phys. Lett., 1998 , 298 (426) : 315-319.
    [18] Sun X P, Zhang Z L, Zhang B L, et al. Chin Chem Lett., 2003, 14(8): 866-869.
    [19] 孙旭平,黄明华,董绍俊,汪尔康,复旦学报(自然科学版),2004, 43(4):477-481.
    [20] Dai X H, Tan Y W, Xu J, Langmuir, 2002, 18(23): 9010-9016.
    [21] Gardea T L L., Tiemann K J., Gomez G., et al. Nanopart. Res., 1999, 1(3): 397-404.
    [22] Dykma L A., Lyakhov A A., Bogaytev V A., et al. Colloid. J, 1998, 60(6): 700-704.
    [23] 兰新哲,金志浩,赵西成等,稀有金属材料与工程,2003, 32(1): 50-53.
    [24] 陈文兴,吴雯,陈海相等,中国科学(B辑),2003, 33(3):185-191.
    [25] Nakamura K., Mori Y., Journal of Chemical Engineering of Japan, 2001, 34(12):1538-1544.
    [26] 朱健,王永昌,王勤,光子学报,2003, 32(3): 58-62.
    [27] Yu Y Y., Chang S S., Lee C L., et al. J. Phys. Chem. B, 1997, 101: 6661-6664.
    [28] Zhang S X, Wang C R C, Chemistry, 1998, 56: 209.
    [29] Wei G T, Liu F K, Wang C R C, Anal. Chem., 1999, 71: 2085-2091.
    [30] 齐航,朱涛,刘忠范,物理化学学报,2000, 16(10): 956-960.
    [31] Holt K B., Sabin G., Compton R G., et al. Marken F. Electroanalysis, 2002, 14(12): 797-803.
    [32] Esumi K., Kameo A., Suzki A., et al. Colloid. Surf. A, 2001, 176(2-3): 233-237.
    [33] Chiang C L., Colloid Interface Sc., 2000, 230(1): 60-66.
    [34] Lin J., Zhou W L O., Connor C J., et al. World scientific Publishing Co Pte Ltd, 1999, 405-410.
    [35] Brown K R., Natan M J., Langmuir, 1998, 14: 726.
    [36] Nikhil R. J., Latha G., Langmuir 2001(17): 6782-6786.
    [37] Zhi-mei Qi, Hao-shen Zhou. J. Phys. Chem. B, 2004(108): 7006-7011.
    [38] Pal A., Materials Letter , 2004, 58: 529-534.
    [39] Tsutsui G., Huang S. J., Sakaue H., et al. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes﹠Review Papers, 2001, 40(1): 346-349.
    [40] Xu X. C., Yang W. S., Liu J., et al. Adv. Mater., 2000, 3(12): 195-197.
    [41] 刘善堂,胡瑞省,朱梓华,朱涛,刘忠范等,物理化学学报,2000,16(4): 294-298.
    [42] 张希,林志宏,高倩合译,超分子化学,长春:吉林大学出版社,1995, 3.
    [43] G T Whiteside., J P Mathoas., C T Seto. Science, 1991,254: 1312.
    [44] Bain C. D.,Troughton E. B., et al. J. Am. Chem. Soc.,1989,111: 321-335.
    [45] Curtiss L. A., Naleway C. A., J. Phys. Chem.,1993, 97, 4050-4058.
    [46] 李海英,张浩力,张锦,刘忠范.物理化学学报,1999, 15(3): 198.
    [47] Michael D. Musick, Christine D. Keating, et al. Chem.Mater.2000,12, 2869-2881.
    [48] Liang Wang, Junyue Bai, et al., Electrochem. Commun., 2006, 8, 1035-1040.
    [49] 刘志敏,河南工业大学学报(自然科学版),2006,27, (3): 1-5.
    [50] Katherine C.Grabar, R.Griffith Freeman, Michael B.Hommer,and Michael J.Natan. Anal.Chem.1995, 67, 735-743.
    [51] Brust M., Donald Bethell. Langmuir 1998, 14, 5425-5429.
    [52] 余海湖,姜德生,光谱学与光谱分析,2002, 22(3): 511-514.
    [53] Li Xuelian, Yuan Ruo, et al., Chinese Journal of Analytical Chemistry, 2006,34(3): 389-392.
    [54] Tanaka H., Mitsuishi M., Miyashita T., Langmuir 2003,19, 3103-3105.
    [55] K. S. Mayya, V. Patil, et al., Langmuir 1997,13, 2575-2577.
    [56] Brust M., Stuhr-Hansen N., N?rgaard K., ChristensenJ. B., Nielsen L. K., Bj?rnholm T., Nano Lett. 2001(1):189-191.
    [57] 周学华,刘春艳,张志颖,江龙,李津如,感光科学与光化学,2004,22(4): 251-258.
    [58] Serge R., Gail E. F., Candace T. S., James H. A., and Daniel R. T., Langmuir, 1998,14, 708-713.
    [59] A.Sgarlata a, A. Angelaccio a, N. Motta a. Surface Science 2000, 466, 167–172.
    [60] 孙双娇,蒋治良,贵金属,2005,26(3): 56-65.
    [61] 杨生春,董守安,唐春,李品将等,化学学报,2005, 63(10): 873-879.
    [62] B.C. King, F.M. Hawkridge, B.M. Hoffman, J. Am. Chem. Soc. 1992,114, 10603.
    [63] A. Fang, H. Ng, X. Su, S. Li, Langmuir 2000, 16, 5221.
    [64] E.F.Bowden, F.M Hawkridge, H.N. Blount, J. Electroanal. Chem.1984,161,355.
    [65] B.C. King, F.M. Hawkridge, J. Electroanal. Chem. 1987, 237, 81.
    [66] I. Taniguchi, K. Watanabe, M. Tominaga, F.M. Hawkridge, J. Electroanal. Chem. 1992, 333, 331.
    [67] J. Chou, H. Zhou, T. Lu, Y. Wu, T. M. Cotton, Bioelectrochem. Bioenerg. 1996, 41, 217.
    [68] R.G. Freeman, K.C. Graber, K.J. Allison, et al, Science 1995, 267, 1629.
    [69] R.G. Freeman, M.B. Hommer, K.C. Graber, et al, J. Phys. Chem.1996,100, 718.
    [70] A. Doron, E. Katz, I. Willner, Langmuir 1995, 11, 1313.
    [71] T. Sato, D. Brown, B.F.G. Johnson, J. Chem. Soc. Chem. Commun. 1997, 1007.
    [72] Li Wang, Erkang Wang,Electrochem. Commun. 2004, 6, 225 229.
    [73] A. Doron, E. Katz, I. Willner, Langmuir 1995, 11, 1313.
    [74] W. Cheng, S. Dong, E. Wang, Langmuir 2002, 18, 9947.
    [75] J Lin et al. Anal. Biochem. 2007, xxx, xxx-xxx.
    [76] ITO-coated glass obtained from Delta Technologies, Inc. Polished float glass, SiO2 passivated, Rs ] 4-8 欧姆, ~200 nm In2O3(90%)-SnO2(10%).
    [77] M. Huang, Y. Shen, W. Cheng, Y. Shao, X. Shu, B. Liu, and S. Dong, Anal. Chim. Acta, 2005, 535, 15.
    [78] F. Patolsky, T. Gabriel, and I. Willner, J. Electroanal. Chem., 1999, 479, 69.
    [79] T. F. Jaramillo, S. Baeck, B. R. Cuenya, and E. W. McFarland, J. Am. Chem. Soc., 2003, 125, 7148.
    [80] G. Chang, J. Zhang, M. Oyama, J. Phys. Chem. B 2005, 109, 1204.
    [81] J. Zhang, M. Kambayashi, M. Oyama, Electrochem. Commun. 2004,6, 683.
    [82] J. Zhang, M. Kambayashi, M. Oyama, Electroanalysis 2005), 17, 408-416.
    [83] J. Zhang, M. Oyama , Electrochimica Acta. 2004, 50, 85–90.
    [84] M. Kambayashi, J. Zhang, M. Oyama, Cryst. Growth Des. 2005, 5, 81.
    [85] H. Bo¨nnemann, G. Braun, W. Brijoux, R. Brinkmann, A. Schulze Tilling, K. Seevogel, K. Siepen, J. Organomet. Chem. 1996, 520,143.
    [86] A. Ali Umar, M. Oyama, Cryst. Growth Des. 2005, 5, 599.
    [87] A.A. Umar, M. Oyama, Applied Surface Science 2006, 253, 2196–2202.
    [88] A.A. Umar, M. Oyama, Applied Surface Science 2006, 253, 2933–2940.
    [89] 林志杰,陶颖,陈晓梅,陈曦,南昌大学学报(理科版)2006, 30, 1197-1198.
    [90] Xuan Dai, Richard G.,Compton, Analytical Sciences April, 2006, 22, 567-577.
    [91] Mirkin C A, Letsinger R L, Mucic R C, et al. Nature, 1996, 382, 607-609.
    [92] Reynolds R. A, Mirkin C. A, Letsinger R. L.,J.Am. Chem.Soc[J]. 2000,122, 3795-3796.
    [93] Tafton T A, Lu G, Marking C A., Am. Chem. Soc, 2001, 123(21): 5164-5165.
    [94] Dubertret B., Calame M., Libchaber A. J., Nature Biotechnology, 2001, 19(4): 365-370.
    [95] Liu Y J, Wang Y X, Claus R, et al. Chemical Physics Letter, 1998, 298, 315-319.
    [96] 蔡强,吴维明,陈裕泉,传感技术学报,2003, 6(2): 124-127.
    [97] J. H. Kim, J. H. Cho, Geun Sig Cha, et al. Bisensor & Bioelectronics, 2000, 1, 907-915.
    [98] Velev O. D., Kaler E. W., Langumuir, 1999, 15, 3693-3698.
    [99] 缪谦,金葆康,林祥钦,高等学校化学学报,2000, 21(1): 27-30.
    [100] 赵秋红,林琳,唐季安等,科学通报,2001, 46(4): 292-296.
    [101] Lahav M., Shipway A. N., Willner I., J. Chem. Soc. Perkin. Trans. 2, 1999, 1925-1931.
    [102] 左国防,陈晶,卢小泉,化学通报,2006, 69, 1-6.
    [103] Y Xiao, H X Ju, H Y Chen, Anal. Chim. Acta, 1999, 391, 73~82.
    [104] H Y Gu, A M Yu, H Y Chen, J. Electroanal. Chem., 2001, 516, 119~126.
    [105] X L Luo, J J Xu, Q Zhang et al. Biosens. Bioelectron, 2005, 21(1): 190~196.
    [106] L Wang, E K Wang, Electrochem. Commun., 2004, 6, 225~229.
    [107] S Q Liu,H X Ju. Anal. Biochem., 2002, 307, 110~116.
    [108] D Marc, W Alain, D C Sophie, Anal. Chim. Acta, 2004, 525, 221~223.
    [109] D Marc, W Alain, D C Sophie, Biosens. Bioelectron, 2005, 20, 1587~1594.
    [110] R. N. Goyal, et al. Analytica Chimia Acta, 2007, 581,32–36.
    [111] 陈晓君,张敏,杨娅,屠一锋,分析化学,2002, 30, 972-974.
    [112] 陈晓君,杨娅,张敏,屠一锋,分析科学学报,2002, 18, 388-340.
    [113] 连鸿丹,九江职业技术学院学报,2003, 3, 15-16.
    [114] Sabatani E., Rubinstein I., J. Phys. Chem.,1987, 91, 6663.
    [115] Iyer R. N., Schmidt W. E., Bioelectrochem. Bioenerg.1992, 27,393.
    [116] E. Laviron, J. Electroanal. Chem., 1979, 101, 19-28.
    [117] Di J.W., Bi S.P., Zhang M., Bioelectron. 2004, 19, 1479-1486.
    [118] E. Laviron, J. Electroanal. Chem.,1979,101,19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700