高粘生物质焦油进料喷嘴的数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物质焦油、重油催化裂解等具有巨大潜力和广泛应用的能源利用技术研究中,高粘度液体进料喷嘴的研究是一个热点问题,对于焦油等液体燃料而言,喷嘴技术是进料技术的核心,喷嘴性能好坏直接影响反应结果及喷嘴自身的使用寿命,关系到反应过程能否正常稳定运行。多年来关于雾化机理和理论的研究都仅停留在针对某一种物质进行冷态实验得出的半经验公式,未有实质性突破。迫切需要相关雾化机理的研究和相适应雾化进料喷嘴的研发。
     本文首先对生物质焦油等四种液体进行了粘温特性实验,焦油粘度从12.6mPa·s降低到2.7mPa·s,从中得出了计算方便的四种液体的粘温特性经验公式;在对旋流喷嘴的设计计算方法进行了研究和总结的基础上,结合设计要求和进料喷嘴应满足的性能,根据反应器的结构尺寸和工作条件设计了不同雾化锥角和工作压力下针对生物质焦油的6种不同结构参数的喷嘴。
     通过在降粘基础上的雾化实验研究发现,粘度降低和压力升高使雾滴的平均粒径变小,而其大小分布范围逐渐变小,液滴尺寸分布变得均匀,焦油粘度对雾化质量的影响可以用昂色格数Z来总结;液滴平均喷射轴向速度随加热温度的升高即液体工质粘度的降低和压力的升高而增加;雾化锥角的实验值全部小于设计值,而且雾化锥角随着压力的升高而逐渐增大,并接近设计值;粘度越大,雾化锥角越小,粘度对雾化锥角的影响并不明显。由实验得到本文工作条件下所设计的最佳结构喷嘴,并实现液滴SMD为35.5μm,满足设计要求。
     在对喷嘴内部流场的数值模拟研究后发现,液体从喷嘴入口进入旋流腔后速度变大,在进入旋流室后,其速度又逐渐变大直至进入喷孔后速度有所减小,内部流场符合旋涡运动理论,旋流室自由涡区和强制涡区之间存在一个过渡区,但在喷孔处并不存在过渡区;喷孔内径向速度为正值,而旋流室内径向速度为负值,且每个截面上径向速度分布并不均匀;在强制涡内部接近轴心处压力为负值并形成空气锥;越靠近轴心处静压越小,动压与速度的分布状态相似,总压在强制涡区域沿径向分布近似呈二次曲线,在半自由涡区域近似呈对数分布;旋流腔的入口处和喷孔近壁面处湍流动能损耗为主要能量损失来源,液体在旋流室内温度几乎不变,而在喷孔内越接近轴心处温度越低。
     在实验的基础上对旋流雾化的半经验公式进行了总结分析,提出了SMD预测方程,与实验结果拟合良好,最后在实验数据的基础上得到了以生物质焦油为液体工质的2#和6#喷嘴在设计操作条件下雾化平均液滴直径SMD与温度r之间的拟合方程;本研究实现了高粘液体的雾化,并对解释旋流雾化流场及旋流喷嘴设计的进一步优化、雾化质量的提高提供了理论依据和实验数据。
In the field of energy technology research with huge potential and wide application such as catalytic cracking of biomass tar and heavy oil, the feed nozzle for the high viscosity liquid is a hot issue. For tar and other liquid fuel, nozzle is the core of feed technology, the quality of nozzle performance directly affect the reaction results and its own lifespan of nozzle as well as related to the stability of reaction process operation of the project. Atomization mechanism and the atomizing feed nozzles adapted are of urgent need to be researched and developed.
     Firstly, viscosity-temperature characteristics empirical formula of the four liquid, including biomass tar were obtained through viscosity-temperature characteristic experiment, the viscosity of tar dropped from12.6to2.7mPa·s.6nozzles with different structural parameters, atomizing cone angle and pressure for biomass tar were designed according to the design and performance requirements.
     Experimental study about swirl nozzle atomization characteristics was carried out to find that reduced viscosity and the increased pressure made average particle size of the droplet become small, and its size distribution range gradually change narrow, the droplet size distribution becomes uniform. The influence of tar viscosity on the quality of atomization can be summarized with cell number Z. The average axial velocity of jet droplet increased with the increase in pressure and decrease in viscosity of the working fluid, all of the experimental values of the spray cone angle were smaller than the design value, and the atomizing cone angle gradually increased as the pressure increased, and tend to close to the design value. The greater the viscosity, the smaller the angle of the spray cone, the influence of viscosity on the spray cone angle is not obvious. It can conclude by experiments that the nozzle6#is with the best structure designed under the conditions of this work, which generated droplets with SMD as small as35.5μm, meeting the requirement.
     It was found through the numerical simulation of the flow field inside the velocity of the liquid got larger when into the vortex chamber, and its speed gradually got larger in the swirl chamber until into the orifice, where its speed decreased. The internal flow field was in accordance with the swirling motion theory and there is a transition zone between the free vortex region and the forced vortex zone of the swirl chamber, but the transition region did not exist in he injection hole. The radial velocity of the nozzle hole was positive, and that in the swirl chamber was negative, and the radial velocity of each cross-section was not evenly distributed. Air cone was formed close to the axis because of the negative pressure inside the forced vortex. The closer to the axis, the smaller static pressure was, distribution of dynamic pressure was similar to the speed. The distribution of total pressure in the forced vortex region was like a quadratic curve, and logarithmic in semi-free vortex region. Turbulent kinetic energy loss at entrance of the vortex chamber and region near the wall of nozzle was the main energy loss sources. The liquid temperature in the swirl chamber is almost unchanged, while the closer to the axis, the lower temperature was in nozzle hole.
     Prediction equation for SMD was proposed and it fitted well with the experimental results. Fitting equation for SMD and T of2#and6#nozzle under given operating conditions was obtained on the basis of experimental data. This study accomplished atomization of highly viscous liquid and will provide theoretical basis and experimental data for further optimization of swirl nozzle and improvement of the atomization quality.
引文
[1]张栋.生物质热解油雾化燃烧及气化的实验研究与数值模拟[D].合肥:中国科学技术大学,2012.
    [2]孙云娟.生物质热解气化产物中焦油的催化裂解研究[J].林产化学与工业,2007,27(5):15-20.
    [3]崔彦栋.气力式喷嘴雾化机理研究及水煤浆气化喷嘴的开发[D].杭州:浙江大学,2006.
    [4]曹建明.喷雾学研究的国际进展[J].长安大学学报(自然科学版),2005,25(1):82-87.
    [5]姚悦.高粘度流体气力雾化机理及试验研究[D].杭州:浙江大学,2006.
    [6]田春霞,仇性启,崔运静.喷嘴雾化技术进展[J].工业加热,2005,34(4):40-43.
    [7]高振宇.液固两相低压旋流雾化喷嘴数值模拟与实验研究[D].重庆:重庆大学,2006.
    [8]李冬青.气力式喷嘴雾化过程的实验研究与数值模拟[D].杭州:浙江大学,2007.
    [9]段辉琴.脱硫岛吸收塔专用喷嘴的开发及其性能检测的实验研究[D].北京:北京工业大学,2006.
    [10]黄学章.基于图像处理技术的喷嘴流量分布不均匀度检测方法的研究[D].长沙:中南大学,2006.
    [11]周扬铭.水泥生产关键设备及其节能降耗技术研究[D].武汉:武汉理工大学,2010.
    [12]金浙萍.MEMS中PZT铁电材料的雾化湿法刻蚀技术研究[D].合肥:中国科学技术大学.2006
    [13]吴志合.旋流式喷嘴在横向流中的雾究化研[D].上海:上海交通大学,2009.
    [14]魏繁林,李宗吉,王树宗,等.鱼雷用离心喷嘴的雾化特性建模与仿真计算[J].海军工程大学学报,2005,17(5):92-94,99.
    [15]刘乃玲.细雾喷嘴射流特性分析及雾滴分布特性研究[C].全国暖通空调制冷2006年学术年会文集,2006:150-152.
    [16]Warnakulasuriya F S K, Worek W M. Drop formation of swirl-jet nozzles with high viscous solution in vacuum-new absorbent in spray absorption refrigeration[J]. International Journal of Heat and Mass Transfer,2008,51(13-14):3362-3368.
    [17]范文宏,凌宗余,富庆飞,等.小几何特性小孔径细水雾离心喷嘴的数值模拟[J].北京航空航天大学学报,2011,37(5):538-544.
    [18]. Mandal S K, Chattopadhyay H. Studies on Swirl Hole Nozzle using ANOVA[J]. International Journal of Fluid Mechanics research,2011,38(6):509-21.
    [19]. Som S K. Air Core in a Swirl Atomizing Nozzle[J]. Atomization and Sprays,2012, 22(4):283-303.
    [20]徐刚.CFD在旋流喷嘴设计中的应用研究[D].上海:上海交通大学,2008.
    [21]张林.镍钛合金牙弓丝表面聚合物基复合材料涂层研究[D].沈阳:沈阳理工大学,2012.
    [22]Honghai Jia, Zhan Yu. Water modelling on the effect of swirling flow nozzle on flow field in continuous casting mold of billet[J]. Acta Metallurgica Sinica,2008,44(3):375-380.
    [23]邓群林.细水雾喷嘴及网格的雾化特性分析与实体灭火试验研究[D].武汉:武汉理工大学,2007.
    [24]余明高,李喜玲.喷头设计参数对雾场特性影响分析[J].煤炭科学技术,2007,35(6):55-59.
    [25]于巧玲,仇性启,闫广豪,等.气体辅助雾化喷嘴气液初始作用角度实验研究[J].石油化工设备,2008,37(1):21-24.
    [26]Gangxian Zhu, Dichen Li. Influence of Deposited Layer's Structure on Flow Field of Coaxial Powder Feeding Nozzle[J]. Chinese Journal of Lasers,2010,37(6):1636-42.
    [27]Ariyapadi S, Balachandar R, Berruti F. Spray characteristics of two-phase feed nozzles[J]. Canadian Journal of Chemical Engineering,2003,81(5):923-939.
    [28]Chun-guo,YueYu,Zhang Xiang, et al. The Experimental Study on New Type and High Efficiency Feeding Atomization Nozzle Used for Catalyse and Cracking[J]. Journal of Propulsion and Power,2011,17(2):277-280.
    [29]Kumar A, Balu G. Performance of isolator fed by laval nozzle[J]. International Journal of Turbo & Jet Engines,2005,22(4):265-280.
    [30]李天友.压力式喷嘴雾化特性实验研究及喷雾干燥热质传递特性数值模拟[D].成都:四川大学,2006.
    [31]曹建明.喷雾学研究的国际进展[C].中国内燃机学会第六届学术年会,上海,2002.中国内燃机学会,2002:258-263.
    [32]周林华.SNCR气力式雾化喷嘴雾化特性的实验研究[D].杭州:浙江大学,2007.
    [33]刘志超.直通式旋流细水雾喷嘴雾化理论分析及灭火实验研究[D].成都:西南交通大学,2007.
    [34]许存娥.鱼雷离心式喷嘴喷雾特性研究[D].西安:西北工业大学,2007.
    [35]许存娥,党建军,李海燕,等.可调离心式喷嘴喷雾流场的数值模拟研究[J].西北工业大学学报,2007,25(3):388-392.
    [36]熊伟.低质柴油喷雾过程的多维数值模拟研究[D].武汉:中科技大学,2009.
    [37]刘娟,孙明波,李清廉,等.基于VOF界面追踪方法模拟离心式喷嘴不稳定现象[C].2011年中国工程热物理学会多相流学术会议,乌鲁木齐,2011.中国工程热物理学会,2011:314-318.
    [38]刘娟,李清廉,王振国,等.基于VOF方法模拟离心式喷嘴内部流动过程[J].航空动力学报,2011,26(9):1986-1994.
    [39]李习臣.大型水煤浆喷嘴的开发与雾化机理研究[D].杭州:浙江大学,2004.
    [40]姜鹏.喷嘴内部流场及空化现象的数值模拟[D].太原:太原理工大学,2011.
    [41]Xingtao Dong, Lei Sun, Delin Lu, et al. Numerical simulation and results analyzing on low-pressure swirl nozzle spray characteristics[J]. Mechanical & Electrical Engineering Magazine,2011,28(11):1306-9.
    [42]Bloor M I G, Dumouchl C. Viscous flow in a swirl atomizer[Magazine Article].1993, 48(1):81-87.
    [43]Daniels D M, Hutt J J. Internal flow enviroment of swirl injector[Magazine Article].1998, 36(2):86-91.
    [44]Jog M A, Jeng S M. Computational and experimental study of liquid sheet emanating from simple fule nozzle[Magazine Article].1998,36(2):74-79.
    [45]王晓琦,尹俊连,张海平,等.中空压力旋流喷嘴内流场特性研究[J].流体机械,2008,36(3):5-10.
    [46]何光华,周智力,弓永军,等.直射-旋流雾化细水雾喷头设计与仿真[J].机床与液压,2008,36(10):80-84.
    [47]刘存喜,毛艳辉,刘富强,等.离心喷嘴内部流场和雾化特性研究[C].2012年中国工程热 物理学会燃烧学学术年会,北京,2012.中国工程热物理学会,2012:155-160.
    [48]陈川,逢燕,刘赵淼,等.单路离心式喷嘴流场数值模拟研究[C].北京力学会第18届学术年会,北京,2012.北京力学会,2012:237-241.
    [49]于巧玲.复合雾化催化裂化进料喷嘴开发研究[D].东营:中国石油大学,2008.
    [50]Douglas J F. Fluid Mechanics[M]. New York:Dover Publications,1979:187-193.
    [51]Hougen O A. C.P.P.Charts[M]. New York:John Wiley & Sons Inc,1960:325-330.
    [52]Hougen O A. Chemical Process Principles[M]. New York:John Wiley & Sons Inc,1947:604.
    [53]Bode R B, Stewart W. E.传递现象[M].北京:化学工业出版社,2004:126-132.
    [54]Masanori Kameyama, Hiroki Ichikawa Arata Miyauchi. A linear stability analysis on the onset of thermal convection of a fluid with strongly temperature-dependent viscosity in a spherical shell[J]. Theoretical and Computational Fluid Dynamics,2013,27(1-2):21-40.
    [55]Garcia-Valles M, Hafez H S. Calculation of viscosity-temperature curves for glass obtained from four wastewater treatment plants in Journal of Egypt [J]. Thermal Analysis and Calorimetry,2013,111(1):107-114.
    [56]Patel R. Effect of temperature on rotational viscosity in magnetic nano fluids[J]. European Physical Journal E,2012,35(10910):246-252.
    [57]Ram P. Kumar V. Effect of temperature dependent viscosity on revolving axi-symmetric ferrofluid flow with heat transfer[J]. Applied Mathematics and Mechanics(English Edition), 2012,33(11):1441-1452.
    [58]Amirfazlia Heidrick, Et Rahmanm T. An experimental study of the atomization of a two-phase industrial nozzle[C]. Proceeding of the International Conference on Mechanical Engineering, Dhaka, Bangladesh,2007. Dhaka, Bangladesh:International society for mechanical, 2007:336-342.
    [59]李文科.工程流体力学[M].合肥:中国科技大学出版社,2007:235-238.
    [60]Rahman M Q,Chuah K S. The effect of pH, dilution, and temperature on the viscosity of ocular lubricants-shift in rheological parameters and potential clinical significance[J]. EYE,2012, 26(12):1579-1584.
    [61]Deosarkar S D. Temperature dependence of density, viscosity, ultrasonic velocity, and other properties of substituted pyrazoles in acetone-water mixtures[J]. Russian Journal of Physical Chemistry A,2012,86(10):1507-1511.
    [62]Fayaz Ahmad Sheikh,Parvaiz Ahmad Bhat. Effect of Temperature and Concentration on Density and Ultrasound Velocity[J]. Journal of chemical and engineering data,2012, 57(12):3368-3374.
    [63]朱静,李传宪,辛培刚.稠油粘温特性及流变特性分析[J].石油化工高等学校学报,2011,24(2):66-68,72.
    [64]姜永明,吴明,谢飞,等.盘锦线原油粘温特性及流变特性实验研究[J].辽宁石油化工大学学报,2011,31(2):24-26.
    [65]孙玉秋,陈波水,孙玉丽,等.植物油粘温特性及流变特性研究[J].内燃机,2009,2):52-53,58.
    [66]许世森,王保民,等.一种预测煤灰粘温特性的数学模型[J].热力发电,2007,36(7):5-7,20.
    [67]吴玉国,王为民,李广宇,等.曙光特稠油粘温特性及流变特性实验研究[J].当代化工,2010,39(3):239-241.
    [68]ChunguoYue, Yuxiang Zhang. The Experimental Study on New Type and High Efficiency Feeding Atomization Nozzle Used for Catalyse and Cracking[J]. Fuel,2011,88 (2):277-280.
    [69]Fengjie Tian. Development on coaxial feeding nozzle with unloading carrier gas for laser manufacturing[J]. China Mechanical Engineering,2011,22(19):2298-302.
    [70]徐展.重渣油复合雾化喷嘴设计及实验研究[D].东营:中国石油大学(华东),2011.
    [71]Daniell MalschNils Gleichmann. Dynamics of droplet formation at T-shaped nozzles with elastic feed lines[J]. Microfluidics and Nanofluidics,2010,8(4):497-507.
    [72]Anfeng Zhang, Dichen Li.3D numerical simulation of coaxial powder feeding nozzle powder convergence characteristics[J]. Infrared Laser Engineering,2011,40(5):859-63.
    [73]孙云娟,蒋剑春.生物质热解气化产物中焦油的催化裂解研究[C].2006中国生物质能科学技术论坛,哈尔滨,2006.哈尔滨:中国可再生能源学会,2006:422-427.
    [74]Soon Hyun,YoonDo Yeon Kim. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic[J]. Journal of Mechanical Science and Technology,2011, 25(7):1761-1766.
    [75]An hong,Bao Ming,Jin Yang, et al. research on Swirl-Core Nozzle With Adjustable Spray Angle Based on Vortex Theory[J].2011,37:1082-1087.
    [76]Jintao Liu, Leqin Wang Experimental study of swirl nozzle's outer field with axial wind[J]. Journal of Zhejiang University,2010,44(6):1160-3,1177.
    [77]YongtangWang,Shaohua Wu. Experimental Study on Atomization Characteristics of Gas/liquid Coaxial Swirling Nozzle in Pressurized Space[J]. Proceedings of the CSEE,2011, 31(35):110-16.
    [78]Huifen Guo, Bingang Xu, Shengyan Li,et al. Study on 3D Unsteady Swirling recirculating Flow in a Nozzle with a Slotted-tube[J]. CMES:Computer Modeling in Engineering & Sciences,2011,80(2):87-111.
    [79]Vanierschot M, Vanden Bulck E. Influence of the nozzle geometry on the hysteresis of annular swirling jets[J]. Combustion science and technology,2007,179(8):1451-1466.
    [80]Fengjie Tian. Development on coaxial feeding nozzle with unloading carrier gas for laser manufacturing[J]. China Mechanical Engineering,2011,22(19):2298-302.
    [81]Baokuan Li.Fengsheng Qi, Fang Wang,et al. Study of increasing the swirling flow in a centrifugal flow tundish by using bending nozzle[J]. Acta Metallurgica Sinica,2007, 43(3):303-306.
    [82]Copan J,Balachandar R, Berruti F. Droplet size-velocity characteristics of sprays generated by two-phase feed nozzles[J]. Chemical Engineering Communications,2001,184(105-124.
    [83]王晓琦.压力旋流喷嘴设计和实验研究[D].东营:中国石油大学,2007.
    [84]王鹏.旋流喷嘴设计计算和两相流动模拟分析[D].大连:大连理工大学,2012.
    [85]王国辉,蔡体敏,何国强,等.一种旋流式喷嘴的实验和数值研究[J].推进技术,2003,24(1):28-32.
    [86]周奎.旋流式喷嘴横向流中雾化场实验及数值分析[D].上海:上海交通大学,2010.
    [87]吴志合.旋流式喷嘴在横向流中的雾化研究[D].上海:上海交通大学,2009.
    [88]王彬.雾化角对压力式液体雾化效果影响的理论及实验研究[D].重庆:重庆大学,2007.
    [89]Yongyin Yang,Deyong Zou. A swirling jet from a nozzle with tangential inlets and its characteristics in breaking-up rocks[J]. Pretroleum Science,2012,9(1):53-58.
    [90]Malsch D, Gleichmann N, Kielpinski M, et al. Dynamics of droplet formation at T-shaped nozzles with elastic feed lines[J]. Microfluidics and Nanofluidics,2010,8(4):497-507.
    [91]赵岩.催化裂化装置高效雾化进料喷嘴的试验研究[D].大连:大连理工大学,2003.
    [92]Vanierschot M, Van den Bulck E. Influence of the nozzle geometry on the hysteresis of annular swirling jets[J]. Combustion science and technology,2007,179(8):1451-1466.
    [93]Halder M R, Dash S K, Som S K. Influences of nozzle flow and nozzle geometry on the shape and size of an air core in a hollow cone swirl nozzle[J]. Proceedings of the institution of mechanical engineers part c-journal of mechanical engineering science,2003,217(2):207-217.
    [94]Lapieniene A, Slezas R. The influence of nozzle shape on the structure of swirling jet[J]. Energetika,2001,3):24-31.
    [95]侯凌云,侯晓春.喷嘴技术手册[M].北京:中国石化出版社,2002.
    [96]张海平.轴流风速下压力旋流喷嘴外流场特性研究[D].东营:中国石油大学(华东),2009.
    [97]康振兴.新型水煤浆气化喷嘴的开发与数值模拟[D].杭州:浙江大学,2008.
    [98]刘志超.直通式旋流细水雾喷嘴雾化理论分析及灭火实验研究[D].成都:西南交通大学,2007.
    [99]李占宝.重油催化裂化新型进料喷嘴的开发应用[J].河南石油,1996,10(2):44-48.
    [100]Jihui Gao,Guoqing Chen. Numerical simulation on atomizing performance of pressure swirl nozzle for semi-drying FGD[J]. Journal of Harbin Institute of Technology,2010, 42(3):437-441.
    [101]Vanierschot M, Vanden Bulck E. Numerical study of hysteresis in annular swirling jets with a stepped-conical nozzle[J]. International Journal for Numerical Methods in Fluids,2007, 54(3):313-324.
    [102]Wei Liu,Tao Yang. Numerical study of the swirl flow effects on the performance of axisymmetric nozzle[J]. Journal of Aerospace Power,2010,25(3):709-712.
    [103]Yunfei Yan, Li Zhang, Zhenyu Gao. Numerical Study on Liquid-solid Two-phase Flow in Low-pressure Swirl Atomizing Nozzle[J]. Proceedings of the CSEE,2009,29(26):63-70.
    [104]钟丽娜.喷嘴流场数值模拟[J].安徽工业大学学报(自然科学版),2009,26(3):221-224.
    [105]李占宝.重油催化裂化新型进料喷嘴的开发应用[J].河南石油,1996,10(2):44-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700