7 Tesla磁共振功能成像对癫痫大鼠脑损伤的长期跟踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:癫痫是一种常见的脑部疾病,颞叶癫痫是癫痫发作的常见类型,通常起源于内侧颞叶结构,并累及脑内多个部位。然而,目前关于癫痫动物脑损伤的长期动态研究还相对较少。本研究应用磁共振T2mapping技术、体积测量技术和DTI技术检测毛果芸香碱诱导的大鼠癫痫模型在癫痫后急性期、潜伏期和慢性期脑组织的的动态改变,并评估抗癫痫药地西泮和苯巴比妥的神经保护效果。
     材料和方法:本研究得到了当地动物使用和动物保护制度委员会的批准。实验选取20只成年雌性Sprague Dawley大鼠(荷兰)进行实验,在应用锂剂24小时后,14只大鼠通过使用多次腹腔低剂量注射毛果芸香碱成功地诱发为癫痫发作持续状态。癫痫持续发作l小时后,一组大鼠(7只)采用地西泮终止癫痫,命名为KO组,另一组大鼠(7只)采用苯巴比妥联合地西泮终止癫痫,命名为PB组。然后用7Tesla动物专用磁共振扫描仪在癫痫前及癫痫发作终止后的不同时间点:24小时、48小时、1周、6周、3个月和6个月对以上2组大鼠进行T2mapping检查和DTI检查。本研究采用Image J软件分别在T2mapping序列和DTI序列上测量大鼠顶叶皮层、颞叶皮层、梨状皮层、杏仁核、海马背侧、海马腹侧上部、海马腹侧下部、海马后部、丘脑背侧、丘脑腹侧、黑质、胼胝体的T2弛豫时间和FA值及ADC值,采用ITK-SNAP2.1软件在T2mapping序列上测量脑体积、海马体积、脑脊液体积和颅腔体积。然后用SPSS13.0统计学软件对所测值行独立样本t检验,比较不同感兴趣区T2弛豫时间、FA值和ADC值在两侧大脑半球间、不同时间点及两组之间是否存在显著性差异,P <0.05为差异有显著性。
     结果:T2弛豫时间、海马体积、FA值和ADC值在两半球间均未见明显统计学差异。KO组和PB组大鼠所有兴趣区的T2弛豫时间、FA值及海马体积、脑体积、脑脊液体积和颅腔体积随时随时间变化规律相似,但KO组均较PB组改变明显。各兴趣区ADC值在两组间变化规律不同。
     结论:癫痫后的脑组织改变是一个长期的过程,磁共振T2mapping技术、体积测量技术和DTI技术可以用来监测癫痫过程中的脑改变,苯巴比妥联合地西泮确实有明显的神经保护作用。
Backgroud and obiecte: Status epilepticus (SE) is a common brain insult thatmay lead to development of temporal lobe epilepsy (TLE) which is frequentlycharacterized by hippocampal sclerosis, and other areas can also be involved.However, relatively limited information is available for dynamic changes aboutbrain during disease progresssion. The present study aims to estimate thesechanges in acute, latent and chronic phases of epileptogenesis by using a longterm (until6months) MR imaging follow up in the rat pilocarpine model thatmimics most clinical and neuropathological features of TLE, and to evaluatepossible neuroprotective effect of the drugs diazepam (DZP) andPhenobarbital(PB).
     Materials and Methods: The study was approved by the local Animal WelfareCommittee.20female Sprague Dawley rats were studied. Status epileticus (SE)was successfully induced in14rats by administration of pilocarpine. SE wasinterrupted with either DZP and PB (n=7, group PB) or DZP alone (n=7, groupKO). MR scans were performed before (baseline), and24h,48h,1week,6weeks,3months, and6months after SE onset, to include acute and chronic phasesof epileptogenesis. MR examinations were carried out on a7Tesla animalscanner. Image J software were adapt to measure the T2relaxation time, FA value and ADC value, the region of interest(ROI) including retrosplenialparital cortex, retrosplenial temporal cortex, amygdale, piriform andenthorinal cortex, dorsal hippocampus, ventral hippocampus, posteriorhippocampus, dorsal thalamus, ventral thalamus, substantial nigra and corpuscallosum. Volumes of the hippocampus, CSF (cerebrospinal fluid) andintracranial vault were measured manually by using the free software ITK-SNAP.SPSS13.0was performed to do the Statistical analysis. The T2relaxation time,FA value and ADC value and hippocampal volume between cerebral hemispheres,different time points, and different groups were compared by using thetwo-tailed t-test.
     Resules: There was no significant difference in T2relaxation time, FA valueand ADC value and hippocampal volume between cerebral hemispheres. The T2relaxation time, FA value and volumes of the hippocampus, CSF and intracranialvault time dependence in different ROI showed similar in KO and PB group.However, the values of KO group changed more predominance than PB group. TheADC value time dependence appeared different between two groups.
     Conclusions: SE-induced neurodegeneration is a very long lasting process,which could be detected by MR T2mapping sequence, volume measurement and DTI.The combination of DZP and PB seems to have neuroprotective effects concerningbrain injury.
引文
1. Chang BS, Lowenstein DH. Epilepsy. N. Engl. J. Med.2003,349(13):1257–66.
    2. Epilepsy. World Health Organization. January2009.
    3. Fisher R, Boas W, Blume W, et al. Epileptic seizures and epilepsy: definitionsproposed by the International League Against Epilepsy (ILAE) and the InternationalBureau for Epilepsy (IBE), Epilepsia,2005,46(4):470–2.
    4. Mathern G, Babb T, Armstrong D, et al. Mesial temporal lobe epilepsy. In Engel J Jr,Pedley T (Eds) Epilepsy: a Comprehensive Textbook. Lippincott-Raven, New York,1997,133–155.
    5. Engel J Jr. The timing of surgical intervention formesial temporal lobe epilepsy: a planfor a randomized clinical trial. Archives of Neurology,1999,56:1338–1341.
    6. Brodie MJ, Elder AT, Kwan P, et al. Epilepsy in later life. Lancet neurology2009,8(11):1019–30.
    7. Elaine Wyllie, Gregory D, Cascino Barry E, et al. Wyllie's Treatment of Epilepsy:Principles and Practice, Wolters Kluwer Health,2010,601-609.
    8. Jutila L, Ylinen A, Partanen K. MR volumetry of the entorhinal, perirhinal, andtemporopolar cortices in drug-refractory temporal lobe epilepsy, American Journal ofNeuroradiology,2001,22:1490-1501.
    9. Dube C, Marescaux C, Nehlig A. A metabolic and neuropathological approach to theunderstanding of plastic changes occurring in the immature and adult rat brain duringlithium-pilocarpine induced epileptogenesis, Epilepsia,2000b,41(Suppl.6):S36–S43.
    10. Arida RM,Seorza FA,Peres CA,et al. The course of untreated seizures in thePiloearpine model of epilepsy, Epilepsy Res,1999Apr;34(2-3):99-107.
    11. RegestaG, Tanganelli P, Clinical aspects and biological bases of drug-resistantepilepsies, Epilepsy Res,1999,34:109–122.
    12.陈燕惠,陈文雄,陈珊.苯巴比妥对癫痂大鼠海马苔藓纤维突触重组和认知发育的影响,福建医科大学学报,2005,39(02),129-131.
    13. L scher W. The pharmacokinetics of antiepileptic drugs in rats: consequences formaintaining effective drug levels during prolonged drug administration in rat models ofepilepsy, Epilepsia,2007,48:1245–1258.
    14. Kucker S, Tollner K, PiechottaM, et al. Kindling as amodel of temporal lobe epilepsyinduces bilateral changes in spontaneous striatal activity, Neurobiol Dis,2010,37:661–672.
    15. Jens P. Bankstahl, Wolfgang L scher. Resistance to antiepileptic drugs and expressionof P-glycoprotein in two rat models of status epilepticus, Epilepsy Research,2008,82,70-85.
    16. George Paxinos, Charles Watson. The rat brain, Elsevier公司出版,2007.
    17. O.T. Wolf, V. Dyakin, A. Patel, et al. Volumetric structural magnetic resonanceimaging (MRI) of the rat hippocampus following kainic acid (KA) treatment. BrainResearch,2002,934,87–96.
    18. ManKin Choy, King K. Cheung, David L. Thomas. Quantitative MRI predicts statusepilepticus-induced hippocampal injury in the lithium-pilocarpine rat model, EpilepsyResearch,2010,88,221-230.
    19.蒋文华,刘才栋.神经解剖学,复旦大学出版社,2002.
    20.李振平,刘树伟.临床中枢神经解剖学,科学出版社,2009.
    21. Mathern GW, Bereram EH, Babb TL. In contrast to kindled seizures, the frequency ofspontaneous epilepsy in the limbic status model correlates with greater aberrant fasciadentate excitatory and inhibitory axon spronting and increased staining for NMDA,AMPA and GABA receptors[J], Neuroscienc,1997,77(4):1003-1019.
    22. Veronique Andre, Celine Dube, Jennifer Fran et al. Pathogenesis and Pharmacology ofEpilepsy, Epilepsia,2007,48(Suppl.5):41–47.
    23. FurtadoMdeA, BragaGK, oliveiraJA, etal. Behavioral, morphologic andelectroencephalographic evaluation of seizures induced by intrahippocampalmicroinjection of Pilocarpine, Epilepsia,2002,43Suppl5:37-9.
    24. Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpinein rats: behavioural, electroencephalographic and neuropathological study, BehavBrain Res,1983,9(3):315-35.
    25. Chaudhary G, Malhotra JK,Chaudhari JD, et al. Effect of different lithium Primingschedule on Pilocarpine induced status epilepticus in rats. Methods Find ExP ClinPharmacol,1999,21(1):21-4.
    26. Glien M, Brandt C, Potschka H, et al. Repeated low-dose treatment of rats withpilocarpine: low mortality but high proportion of rats developing epilepsy, EpilepsyRes,2001,46:111–119.
    27. Engelhorn T, Weise J, Hammen, et al. Early diffusion-weighted MRI predicts regionalneuronal damage in generalized status epilepticus in rats treated with diazepam,Neurosci Lett,2007,417(3):275-80.
    28. Rogawski MA, L scher W. The neurobiology of antiepileptic drugs, Nat Rev Neurosci,2004(5):553–564.
    29. Claudia Brandt, Maia Nozadze, Nina Heuchert. Disease-Modifying Effects ofPhenobarbital and the NKCC1Inhibitor Bumetanide in the PilocarpineModel ofTemporal Lobe Epilepsy, The Journal of Neuroscience,2010,30(25):8602–8612.
    30. Stefovska VG, Uckermann O, zuczwar M, et al. Sedative and anticonvulsant drugssuppress postnatal neurogenesis, Ann Neurol,2008,6(4):434-445.
    31.朱海霞,蔡方成,张晓萍,等.长程服用苯巴比妥、氯硝安定、丙戊酸和托吡酯对未成熟脑发育影响的实验研究.中华儿科杂志,2007,45(2):121-125.
    32.王克玲,张梅杰,施荣富,等.苯巴比妥对癫痫大鼠海马神经元Bcl-2、Bax蛋白表达的影响,实用儿科临床杂志,2010,25(12):904-906.
    33. Geoffrey J. Markowitz, Shilpa D. Kadam, Dani R. Smith, et al. Different effects ofhigh-and low-dose Phenobarbital on post-stroke seizure suppression and recovery inimmature CD1mice, Epilepsy Research,2011(94),138-148.
    34. Bederson JB, Bartkowski HM, Moon K, et al. Nuclear magnetic resonance imagingand spectroscopy in experimental brain edema in a rat model [J], J Neurosurg, l986,64(5):795-802.
    35. Whittall KP, MacKay AL, Li DK. Are mono-exponential fits to a few echoes sufficientto determine T2relaxation for in vivo human brain?[J], Magn Reson Med,1999,41(6):1255-1257.
    36. Pieter van Eijsdena, Robbert G.E. Notenboomb, et al. In vivo1H magnetic resonancespectroscopy, T2-weighted and diffusion-weighted MRI during lithium–pilocarpineinduced status epilepticus in the rat, Brain Research,2004(1030):11-18.
    37. Edith V. Sullivan, Elfar Adalsteinsson, Rohit Sood. Longitudinal Brain MagneticResonance Imaging Study of the Alcohol-Preferring Rat. Part I: Adult Brain Growth,Alcohol Clin Exp Res,2006,30(7):1234–1247.
    38. Fujikawa DG, Shinmei SS, Cai B. Lithium-pilocarpine-induced status epilepticusproduces necrotic neurons with internucleosomal DNA fragmentation in adult rats, EurJ Neurosci.1999,11(5):1605-14.
    39. R. C. Scott, D. G. Gadian, M. D. King, et al. Magnetic resonance imaging findingswithin5days of status epilepticus in childhood, Brain,2002,125(9):1951-1959.
    40.陈丽丽,黄靓妹,詹红艳.匹鲁卡品致痫大鼠皮质和海马C-fos的表达变化,中国新药杂志,2011,20(20):2026-2029.
    41. Schwarcz R, Witter MP. Memory impairment in temporal lobe epilepsy: the role ofentorhinal lesions. Epilepsy Research,2002(50):161-177.
    42.高涛,黑质GABA能神经元在锂一匹鲁卡品致痛大鼠中的动态变化及其与癫痛发生的关系,2006年硕士论文。
    43. Peng, Z., Huang, C.S., Stell, B.M., et al. Altered expression of the delta subunit oftheGABAAreceptor inamousemodel of temporal lobe epilepsy, J.Neurosci,2004(24),8629–8639.
    44. Marion Bankstahl, Jens P. Bankstahl, Wolfgang L scher. Inter-individual variation inthe anticonvulsant effect of phenobarbital in the pilocarpine rat model of temporal lobeepilepsy. Experimental Neurology,2012(234):70–84.
    45. Karthik Rajasekaran, Chengsan Sun, Edward H. Bertram. Altered pharmacology andGABA-A receptor subunit expression in dorsal midline thalamic neurons in limbicepilepsy, Neurobiology of Disease,2009(33),119–132.
    46. Wahnschaffe U, L scher W. Effect of selective bilateral destruction of the substantianigra on antiepileptic drug actions in kindled rats. Eur J Pharmacol,1990,186(2-3):157-67.
    47. C.J. Wall, E.J. Kendall, A. Obenaus, et al. Rapid alterations in diffusion-weightedimages with anatomic correlates in a rodent model of status epilepticus, AJNR Am. J.Neuroradiol,2000(21):1841-1852.
    48. C. Roch, C. Leroy, A. Nehlig, et al. Magnetic resonance imaging in the study of thelithium–pilocarpine model of temporal lobe epilepsy in adult rats, Epilepsia,2002(43):325-335.
    49. Y.A. Bhagat, A. Obenaus, M.G. Hamilton, et al. Magnetic resonance imaging predictsneuropathology from soman-mediated seizures in the rodent, NeuroReport,2001(12):1481-1487.
    50. J.F. Payen, E. LeBars, B. Wuyam, et al. Lactate accumulation during moderate hypoxichypoxia in neocortical rat brain, J. Cereb. Blood Flow Metab,1996(16):1345-1352.
    51. Pereira de Vasconcelos, Ferrandon, Nehlig, et al. Local cerebral blood flow duringlithium–pilocarpine seizures in the developing and adult rat: role of coupling betweenblood flow and metabolism in the genesis of neuronal damage, J. Cereb. Blood FlowMetab,2002(22):196-205.
    52. P.F. Fabene, P. Marzola, A. Sbarbati, et al. Magnetic resonance imaging of changeselicited by status epilepticus in the rat brain: diffusion-weighted and T2-weightedimages, regional blood volume maps, and direct correlation with tissue and celldamage, NeuroImage,2003(18):375-389.
    53.尹建忠,祁吉,倪红艳.大鼠L-i Pilocarpine癫痫模型的MRI与海马体积测量动态研究,放射学实践,2004,19(8),563-566.
    54. Bianca Jupp, John P. Williams, Yasvir A. Tesiram. Hippocampal T2Signal Changeduring Amygdala Kindling Epileptogenesis, Epilepsia,2006,47(1),41–46.
    55. Alejandra Sierra, Teemu Laitinen, Kimmo Lehtimaki. Diffusion tensor MRI withtract-based spatial statistics and histology reveals undiscovered lesioned areas inkainite model of epilepsy in rat, Brain Struct Funct,2011(216):123–135.
    56. Li-Wei Kuo, Chun-Yao Lee, Jyh-Horng Chen. Mossy fiber sprouting inpilocarpine-induced status epilepticus rat hippocampus: A correlative study of diffusionspectrum imaging and histology, NeuroImage,2008(41):789–800.
    57. Pieter van Eijsden, WimM.Otte, W. Saskia van der Hel. In vivo diffusion tensorimaging and ex vivo histologic characterization of whitematter pathology in apost–status epilepticusmodel of temporal lobe epilepsy, Epilepsia,2011,52(4):841–845.
    58. Hirsch E, Snead OC, Vergnes M, Gilles F Corpus callosotomy in thelithium-pilocarpine model of seizures and status epilepticus, Epilepsy Res11:183–191.
    59. Devinsky O, Laff R. Callosal lesions and behavior: history and modern concepts,Epilepsy Behav,2003(4):607–617.
    60. Conch a L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities inunilateral temporal lobe epilepsy, Ann Neurol,2005,57(2):188-196.
    61. C. Pierpaoli, A. Righini, I. Linfante, et al. Histopathologic correlates of abnormal waterdiffusion in cerebral ischemic: diffusion-weighted MR imaging and light and lectronmicroscopic study, Radiology,1993,(189):439–448.
    62. T. Engelhorn, A. Doerfer, J. Weise. Cerebral perfusion alterations during the acutephase of generalized status epilepticus: prediction of survival using perfusion weightedmagnetic resonance imaging and histopathology, AJNR,2005(26):1563–1570.
    63. Y. Wang, A. Majors, I. Jajm. Modic, et al. Postictal alteration of sodium content andapparent diffusion coeffcient in epileptic rat brain induced by kainic acid, Epilepsia,1996(37):1000-1006.
    64. Y. Nakasu, S. Nakasu, S. Morikawa. Diffusion-weighted MR in experimental sustainedseizures elicited with kainic acid, AJNR,1995(16):1185–1192.
    65. S. Men, D.H. Lee, J.R. Barron, et al. Selective neuronal necrosis associated with statusepilepticus: MR fndings, AJNR,2000(31):1837–1840.
    66. C.Nicholson, E. Sykova. Extracellular space structure revealed by diffusion analysis,TINS,1998(21):207–215.
    67. Beer J, Mielke K, Zipp M,et al. Expression of c-jun, junB, c-fos, fra-1and fra-2mRNAin the rat brain following seizure activity and axotomy, Brain Res,1998,794(2):255-66.
    68. Yi-Hua Hsu, Wang-Tso Lee, ChenChang, et al. Multiparametric MRI evaluation ofkainic acid-induced neuronal activation in rat hippocampus, Brain,2007(130):3124-3134.
    69. Takaaki Tokumitsu, Anthony Mancuso, Philip R. Weinstein. Metabolic andpathological effects of temporal lobe epilepsy in rat brain detected by protonspectroscopy and imaging. Brain Research,1997(744):57–67.
    1. Chang BS, Lowenstein DH. Epilepsy. N. Engl. J. Med.2003,349(13):1257–1266.
    2. Fisher R, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J. Epilepticseizures and epilepsy: definitions proposed by the International League AgainstEpilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia2005,46(4):470–472.
    3. Epilepsy. World Health Organization,2009.
    4. Brodie MJ, Elder AT, Kwan P, et al. Epilepsy in later life. Lancet neurology2009,8(11):1019–30.
    5. Elaine Wyllie, Gregory D, Cascino Barry E, et al. Wyllie's Treatment of Epilepsy:Principles and Practice, Wolters Kluwer Health,2010,601-609.
    6. RegestaG, Tanganelli P, Clinical aspects and biological bases of drug-resistantepilepsies, Epilepsy Res,1999,34:109–122.
    7. Jutila L, Ylinen A, Partanen K. MR volumetry of the entorhinal, perirhinal, andtemporopolar cortices in drug-refractory temporal lobe epilepsy, American Journal ofNeuroradiology,2001,22:1490-1501.
    8. Schwarcz R, Witter MP. Memory impairment in temporal lobe epilepsy: the role ofentorhinal lesions. Epilepsy Research,2002(50):161-177.
    9.张瑞华,王玉平。癫病点燃模型的研究进展,脑与神经疾病杂志,2006,14(3):235-236.
    10.李国良,肖波,谢光洁。海马苔藓纤维出芽与颞叶癫痫[J],国外医学神经病学神经外科学分册,2002,29(6):515-518.
    11. Lobo MK, Itri JN, Cepeda C, et al. Ionotropic glutamate receptor expression andopaminergic modulation in the developing subthalamic nucleus of the rat: animmunohistochemical and electrophysiological analysis[J], Neurosc,2003,25(6):384-393.
    12.李雪峰,刘绍明,郑刚等。外伤后癫痫大鼠脑内突触素和苔藓纤维的观察,中国神经精神疾病杂志,2008,34(6):373-375.
    13.权青云,林芝惠,徐晓霞等。癫痫后海马齿状回神经发生的研究进展,国际神经病学神经外科学杂志,2008,35,(05):449-452.
    14. Goddard GV, Mcintyre DC, Leech CK. A premanent chang in brain function resultingfrom daily electricalst imulation, Exp Neurol,1969,25:295-330.
    15. Cavazos JE, Das J, Sutula TP. Neuronal loss induced in limbic pathways by kindling:evidence for induction of hippocampal sclerosis by repeated brief seizures, Jneuro-sci,1994,14(5Pt2):3106-21.
    16. Timofeeva OA, Peterson GM. Bilateral hippocampal interictal spiking and kindlingexpression in rabbits, Epilepsy Res,1996,25(3):149-159.
    17.刘学伍,迟兆富,于美娟等。双侧海马同时点燃与单侧海马点燃建立复杂部分性癫痫模型的对照研究,卒中与神经疾病,2003,10(1):27-29.
    18. Teskey GC, Thiessen EJ, Gilbert TH. Alternate-site kindling in the guinea-pig resultsin accelerated seizure progression and generalization,Epilepsy Res,1999,34(2-3):151-159.
    19. Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpinein rats: behavioural, electroencephalographic and neuropathological study, BehavBrain Res,1983,9(3):315-35.
    20. Jope RS, et al. Experimental Neurology,986(91),471-480.
    21. Glien M, Brandt C, Potschka H, et al. Repeated low-dose treatment of rats withpilocarpine: low mortality but high proportion of rats developing epilepsy, EpilepsyRes,2001,46:111–119.
    22. Arida RM,Seorza FA,Peres CA,et al. The course of untreated seizures in thePiloearpine model of epilepsy, Epilepsy Res,1999,34(2-3):99-107.
    23. Pitkanen A, Nissinen J, et al. Progression of neuronal damage after status epilepticusand during spontaneous seizures in a rat model of temporal lobe epilepsy, Prog BrainRes,2002,135:67-83.
    24. Fernandes MJD, Dube C, et al. Correlation between hypermetabolism and neuronaldamage during status epilepticus induced by lithium and pilocarpine in immature andadult rats, Journal of Cerebral Blood Flow and Metabolism,1999,19(2),195-209.
    25. Mathern G, Babb T, Armstrong D, et al. Mesial temporal lobe epilepsy. In Engel J Jr,Pedley T (Eds) Epilepsy: a Comprehensive Textbook. Lippincott-Raven, New York,1997,133–155.
    26. Evans MC, Meldrum BS. Regional brain glucose metabolism in chemically-inducedseizures in the rat, Brain Research,1984,297(2):235-245.
    27. Miller JW, Ferrendelli JA. The central medial nucleus: thalamic site of seizureregulation, Brain Research,1990,508(2),297-300.
    28. Kondziella D, Hammer J, et al. The pentylenetetrazole-kindling model of epilepsy inSAMP8mice: glial-neuronal metabolic interactions, Neurochemistry International,2003,43(7),629-637.
    29. D'Ambro sia R, Fair banks J P, Fender J S, et al. Post-traumatic epilepsy followingfluid percussion injury in the rat [J], Brain,2004,127(2):304-314.
    30. D ixon CE,Lyeth BG,Povlishock JT,etal. A fluid percussion model of experim entalbrain injury in the rat[J], JN eurosurg,1987,67(1):110-119.
    31. D 'A m brosio R, Fender JS, Fairbanks JP, et al. Progression from frontal-parital tomesial-temporal epilepsy after fluid percussion injury intherat[J].Brain,2005,128:174-188.
    32. Kharatishvili I, Nissinen JP, McIntosh TK, et al. A model of posttraumatic epilepsyinduced by lateral fluid-percussion brain injury in rats[J], Neuroscience,2006,140(2):685-697.
    33.田远虎,司军强,刘绍明等。大鼠外伤后癫痫动物模型研制方法的探讨,2008,8(9):1611-1612.
    34.孙振兴,张凯,张超等。外侧液压打击诱导大鼠外伤后癫痫模型的制作,2010,23(3):146-150.
    35.夏黎明,朱文珍。功能性磁共振诊断,人民卫生出版社,2011年。
    36.王娟;周义成;胡章勇等。颞叶癫痫的质子磁共振波谱与PET/CT及术后病理对照研究,中国临床医学影像杂志,2006,12(17):661-664.
    37. Connelly A, Van Paesschen W, Porter D, et al. Protonmagnetic resonance spectroscopyin MRI negative temporal lobe epilepsy[J].Neurology,1998,51(1):61-66.
    38.王亮,李坤成,李勇杰,等.颞叶癫痫的1HMRSI和MR I体积测量研究[J].中国医学影像技术,2005,21(1):52-56。
    39. Savic I, Osterman Y, Helms G. MRS show s syndrome differentiated metabolitechanges in human-generalized epilepsies[J]. Neuroimage,2004,21(1):163-172。
    40. Simister RJ, McLean MA, Barker GJ, et al. A proton magnetic resonance spectroscopystudy of metabolites in the occipital lobes in epilepsy[J]. Epilepsia,2003,44(4):550-558.
    41. Cendes F, Stanley JA, Dubeau F, et al. Proton magnetic resonance spectroscopyimaging for discrimination of abcence and complex partial seizure[J]. AnnNeuro,1997,41(1):74-81.
    42. Cendes F, Andermann F, SilverK, et al. Imaging of axonal damage in vivo inRasmussens syndrome[J]. Brain,1995,118(Pt3):753-758.
    43. Vermanthen P, Ende G, Laxer KD, et al. Hippocampal N-acetylas-part ate inneocortical epilepsy and mesial temporal lobe epilepsy[J]. Ann Neuro1,1997,42(2):194-199.
    44. Ranjeva JP, Confort GS, Le FY, et al. Magnetic Spectroscopy of brain in epilepsy[J].Child Nerv Syst,2000,16(4):235-241.
    45.叶静,张文波,祁吉等。实验性癫痫磁共振波谱与病理学对照研究,中华放射学杂志,2000,34(7):488-491.
    46. W.A. Gomes, F.A. Lado, N.C.de Lanerolle,et al.Spectroscopic Imaging of thePilocarpine Model of Human Epilepsy Suggests that Early NAA Reduction PredictsEpilepsy, Magnetic Resonance in Medicine,2007,58:230–235.
    47. Vielhaber S, Kudin AP, Kudina TA, et al. Hippocampal N-acetyl aspartate levels do notmirror neuronal cell densities in creatine-supplemented epileptic rats. Eur J Neurosci2003,18:2292–2300.
    48. Pieter van Eijsdena, Robbert G.E. Notenboomb, Ona Wu, et al. In vivo1H magneticresonance spectroscopy, T2-weighted and diffusion-weighted MRI duringlithium–pilocarpine-induced status epilepticus in the rat, Brain Research,2004,1030:11–18.
    49. Takaaki Tokumitsu, Anthony Mancuso, Philip R. Weinstein, et al. Metabolic andpathological effects of temporal lobe epilepsy in rat brain detected by protonspectroscopy and imaging,Brain Research,1997(744):57–67.
    50. Huilang Liu, Fang Fang, Hang Zhu, et al. Metabolic changes in temporal lobestructures measured by HR-MAS NMR at early stage of electrogenic rat epilepsy,Experimental Neurology,2008(212):377–385.
    51. Woermarm FG,Barker GJ, Birnie KD, et al. Regional changes in hippocampal T2Relaxation and volume: a quantitative macnetic resonance imagine study ofhippocampal sclerosis[J]. Neurol Neurosurgy, Psychiatry,65(5):656-664.
    52. Bartlett PA, Symms MR, Free SL, et al. T2relaxometry of the hippocampus at3T[J].AJNR,2007,28(6):1095-1098.
    53. Briellmann RS, Syngeniotis A, Fleming S, et al. Increased anterior temporal lobe T2times in cases of hippocampal sclerosis: a mufti-echo T2relaxometry study at3T[J].AJNR Am J Neuroradiol.2004,25(3):389-394.
    54. Kalviainen R, Salmenpera T, Partanen K, et al. Recurrent seizures may causehippocampal damage in temporal lobe epilepsy[J], Neurology,1998,50(5):1377-1382.
    55. Oertzen JV, UrbachH, Blumcke I, et al. Time efficient T2relaxometry of the entirehippocampus is feasible in tem poral lobe epilepsy [J]. Neurology,2002,58(2):257-264.
    56. Grunewald RA, Jackson GD, Connelly A, et al. MR detection of hippocampal diseasein epilepsy: factors influencing T2relaxation time [J], AJNR Am J Neuroradiol,1994,15(6):1149-56.
    57. Irina Kharatishvili,Alejandra Sierra,Riikka J. Immonen,et al. Quantitative T2mapping as a potential marker for the initial assessment of the severity of damage aftertraumatic brain injury in rat, Experimental Neurology,2009,217,154–164.
    58. ManKin Choy, King K. Cheung, David L.Thomas, et al. Quantitative MRI predictsstatus epilepticus-induced hippocampal injury in the lithium-pilocarpine rat model,Epilepsy Research,2010,88,221-230.
    59. P.F. Fabene, P.Marzola, A.Sbarbati, et al.Magnetic resonance imaging of changeselicited by status epilepticus in the rat brain: diffusion-weighted and T2-weightedimages, regionalblood volume maps, and direct correlation with tissue and cell damage,NeuroImage,2003,18,375–389.
    60. Yi-Hua Hsu, Wang-Tso Lee, Chen Chang, et al. Multiparametric MRI evaluation ofkainic acid-induced neuronal activation in rat hippocampus, Brain,2007,130,3124-3134.
    61. Bianca Jupp, John P.Williams, Yasvir A. Tesiram, et al.Hippocampal T2Signal Changeduring Amygdala Kindling Epileptogenesis, Epilepsia,2006,47(1):41–46.
    62. van Paesschen W, Sisodiya S, Connelly A, et al. Quantitative hippocampusMRI and intractable temporal lobe epilepsy. Neurology,1995;45:2233-40.
    63.华勇,MRI对诊断癫痫患者海马硬化的应用价值,中国实用医药,2011,6(26):30-31.
    64.李文化,沈天真,陈星荣,等.海马硬化的MRI诊断,中华放射学,2000,34(12):837-840.
    65.李文华,沈天真,朱锦勇,等.海马头部浅沟消失对海马硬化诊断价值探讨,实用放射学杂志,2003,19(6):502-504.
    66. Jack CR, Sharbrogh FM, Twomey CK, et al. Temporal lob e seizures: lateralizationwith MR volume measurements of the hippocampal for mation[J],Radiology,1990,175(2):423-429.
    67. Alhusaini S, Doherty CP, Palaniyappan L, et al. Asymmetric cortical surface area andmorphology changes in mesial temporal lobe epilepsy with hippocampal sclerosis,Epilepsia,2012,17, doi:10.1111/j.1528-1167.2012.03457.x.[Epub ahead of print]
    68. O.T. Wolf, V. Dyakin, A. Patel, et al. Volumetric structural magnetic resonance imaging(MRI) of the rat hippocampus following kainic acid (KA) treatment, Brain Research,2002,934,87–96.
    69.尹建忠,祁吉,倪红艳等.大鼠Li-Pilocarpine癫痫模型的MRI与海马体积测量动态研究,放射学实践,2004,19(8),563-566.
    70. Assaf BA, Mohamed FB, Abou Khaled KJ, et al. Diffusion tensor imaging of thehippocampal form at ionint emporal lobe epilepsy. AJNR Am J Neuroradiol,2003,24(9):1857–1862.
    71. Yoo SY, Chang KH, Song IN, et al. Apparent diffusion coefficient value of thehippocampus in patients with hippocampal sclerosis and in healthy volunteers[J].AJNR,2002,23(5):809-881.
    72. Lee JH, Chung CK, Song I C, et al.Limited utility of interictal apparent diffusioncoefficient in the evaluati on of hippocampal sclerosis[J]. Acta Neurol Scand,2004,110(1):532-581.
    73. Diehl B, SymmsMR, Boulby PA, et al.Postictal diffusion tens or imaging[J], EpilepsyRes,2005,65(3):1372-1461.
    74. Dumasde A,Oppenheim C, Chassoux F, et al.Diffusion tensor imaging of partialintractable epilepsy[J],EurRadiol,2005,15(2):2792-2851.
    75. Arfanakis K, Hermann BP, Rogers BP, et al. Diffusion tensor MRI in temporal lobeepilepsy, Magn Reson Imaging,2002,20:511-519.
    76. Concha L, Beaulieu C, Collins DL, et al. White-matter diffusion abnormalities intemporal-lobe epilepsy with and without mesial temporal sclerosis. J Neurol NeurosurgPsychiatry,2009,80:312–319.
    77. Govindan RM, Makki MI, Sundaram SK, et al. Diffusion tensor analysis of temporaland extra-temporal lobe tracts in temporal lobe epilepsy, Epilepsy Res,2008,80:30–41.
    78. Nilsson D, Go C, Rutka JT, et al. Bilateral diffusion tensor abnormalities of temporallobe and cingulate gyrus white matter in children with temporal lobe epilepsy. EpilepsyRes,2008,81:128–135.
    79. Arel Slais, Ivan Vorisek, Norbert Zoremba, et al. Brain metabolism and diffusion in therat cerebral cortex during pilocarpine induced status epilepticus, ExperimentalNeurology,2008,209:145–154.
    80. Pieter van Eijsden, WimM.Otte, Saskia van derHel,et al. In vivo diffusion tensorimaging and ex vivo histologic characterization of white matter pathology in apost–status epilepticus model of temporal lobe epilepsy, Epilepsia,2011,52(4):841–845.
    81. Alejandra Sierra, Teemu Laitinen, Kimmo Lehtimaki, et al. Diffusion tensor MRI withtract-based spatial statistics and histology reveals undiscovered lesioned areas inkainite model of epilepsy in rat, Brain Struct Funct,2011,216:123–135.
    82. Li-Wei Kuo,Chun-Yao Lee,Jyh-Horng Chen, et al. Mossy fiber sprouting inpilocarpine-induced status epilepticus rat hippocampus: A correlative study of diffusionspectrum imaging and histology, NeuroImage,2008,41:789–800.
    83. T. Engelhorn, J. Weise c, T. Hammen, et al. Early diffusion-weighted MRI predictsregional neuronal damage in generalized status epilepticus in rats treated withdiazepam, Neuroscience Letters2007,417:275–280.
    84. T. Engelhorn, A. Doerfler, J. Weise, et al. Cerebral Perfusion Alterations during theAcute Phase of Experimental Generalized Status Epilepticus: Prediction of Survival ByUsing Perfusion-Weighted MR Imaging and Histopathology, AJNR,2005,26:1563–1570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700