铌镁酸铅和铌锌酸铅基铁电单晶中声表面波传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型弛豫铁电-正常铁电型固溶体单晶在最近十几年中受到了很大的重视。这是由于和传统的压电材料相比较,新型弛豫型铁电单晶铌镁酸铅-钛酸铅(1-x)Pb(Mg_(1/3)Nb_(2/3))O_3-xPbTiO_3(PMN-PT,又简写为PMN-xPT,其中x指晶体中PbTiO_3含量)和铌锌酸铅-钛酸铅(1-x)Pb(Zn_(1/3)Nb_(2/3))O_3-xPbTiO_3(PZN-PT,又简写为PZN-xPT,其中x指晶体中PbTiO_3含量)等表现出良好的压电、介电、光学和声学性能,这种新型晶体在各种机电设备中具有广泛的应用前景,如医学超声换能器,大位移压电驱动器和超声电机等。PMN-PT、PZN-PT等弛豫铁电单晶对于声表面波器件同样是非常有应用前景的压电材料。虽然有研究者测量了个别晶体的SAW相速度,然而并没有对该晶体的声表面波性能进行系统的理论分析。为了未来的潜在应用,我们研究了PMN-PT、PZN-PT及铌镁铟酸铅-钛酸铅(PIN-PMN-PT)系列晶体的声表面波传播特性,希望能对声表面波器件的设计有所帮助。
     首先,本论文利用实验已测得的多种组分的[001]c极化PMN-PT弛豫铁电单晶的弹性、介电和压电参数,求解了半无限大条件下的克里斯托夫方程,理论上首先详细讨论了三方相、四方相和处于准同型相界的PMN-PT单晶的声表面波传播特性。分析了晶体具有优异声表面波性能的原因。理论计算结果表明三方相、准同型相界和四方相PMN-PT晶体均具有比较优异的声表面波特性。声表面波相速度都比较小,都具有声表面波机电耦合系数比较大的切型,能流角均明显小于传统压电材料。这些特性将有助于减小声表面波器件尺寸,增加器件工作带宽,降低能量损耗。与其他组分晶体相比,处于准同型相界的PMN-33%PT晶体的声表面波特性最为优异。k2值高达33.46%,同时声表面波相速度不超过1800m/s,能流角小于1.5o。PMN-33%PT单晶具有优异的声表面波机电性能的内部机理是PMN-33%PT单晶处于准同型相界附近,极化后PMN-33%PT晶体内存在三方—四方两相共存区,等效的极性畴对称地靠近极化方向分布形成工程化的畴结构。工程化的畴结构改变了晶体的宏观对称性,产生较大应变。同时畴壁的运动受到抑制,场致应变的回滞很小。对比发现四方相PMN-38%PT晶体的SAW性能略逊色于PMN-33%PT,同时四方相PMN-38%PT晶体的各向异性强于三方相晶体。PMN-PT单晶虽然具有很好的SAW性能,但其不太好的温度稳定性限制了单晶的应用范围。
     此外,研究了极化方向和晶体成分变化对PMN-PT晶体声表面波性能的影响。结果表明,组分相同但极化方向不同时,PMN-PT晶体的声表面波性能不同。沿[001]c方向极化和[111]c方向极化的PMN-33%PT晶体的声表面波性能接近但并不相同。这说明在铁电单晶材料中,铁电畴的取向效应在晶体的SAW性能中起重要作用,因此可以通过改变畴的结构和取向来优化铁电单晶的SAW性能。加入铟可以有效的提高弛豫铁电晶体的SAW性能,本论文初步讨论了加入铟对PMN-PT晶体SAW性能的影响。对比0.71PMN-0.29PT晶体对0.26PIN-0.46PMN-0.28PT晶体的声表面波传播特性进行了研究。结果发现,铟的加入在提高晶体稳定性的同时,牺牲了部分SAW性能。但综合来看,[011]c极化0.26PIN-0.46PMN-0.28PT单晶仍具有相对传统压电材料比较优异的SAW性能和较好的温度稳定性。
     由于PZN-PT晶体的温度稳定性好于PMN-PT单晶,本论文讨论了接近准同型相界的三方相、远离准同型相界的三方相和四方相PZN-PT晶体的声表面波传播特性。在我们所研究的各种组分的PZN-PT晶体中,接近准同型相界的三方相PZN-7%PT晶体的声表面波性能最好。PZN-8%PT晶体的SAW性能与PZN-7%PT晶体接近。相比其它组分PZN-PT晶体PZN-7%PT和PZN-8%PT单晶具有较好SAW性能的原因是三方相的PZN-PT晶体的自发极化方向为[111]c,当沿[001]c极化后晶体具有工程畴结构。而工程畴组态的单晶具有更高的电学活性,压电性能远远高于其单畴态。而四方相PZN-PT晶体的自发极化方向为[001]c,当沿[001]c极化时晶体为单畴结构。因而沿[001]c极化的PZN-12%PT晶体的声表面波性能低于同样沿[001]c极化的三方相PZN-PT晶体。如PZN-12%PT晶体声表面波k2最大值仅为6.97%,远低于PZN-7%PT(14.3%)、PZN-8%PT(13.8%)和PZN-4.5%PT(12.54%)。组分相同时,沿不同方向极化的PZN-PT晶体的SAW性能同样存在较大差异。沿[011]c方向极化的具有mm2宏观对称性的PZN-7%PT单晶的SAW性能要优于沿[001]c极化的PZN-7%PT单晶。如[011]c极化的PZN-7%PT单晶声表面波k2最大值可达24.16%,远高于[001]c极化的PZN-7%PT单晶。
Relaxor-based ferroelectric single crystals lead magnesium niobate-leadtitanate (1-x)Pb(Mg_(1/3)Nb_(2/3))O_3-xPbTiO_3(PMN-PT) and lead zinc niobate-leadtitanat (1-x)Pb(Zn_(1/3)Nb_(2/3))O_3-xPbTiO_3(PZN-PT) have attracted considerable attentionin the past several years due to theirs excellent piezoelectric, dielectric, optical andacoustical properties compared to traditional piezoelectric materials. Hence, thesecrystals are favored in the next generation electromechanical devices, includingultrasonic transducers, actuators, ultrasonic motors, etc. The PMN-PT and PZN-PTsingle crystals have tremendous potential applied in surface acoustic wave (SAW)devices. SAW velocities of PMN-33%PT have been measured by Choi KH et al.However, there is no report on the literature on the detailed theoretical analysis ofSAW propagation properties for PMN-PT and PZN-PT single crystals. For meeting theplenteously potential application requirements in the future, surface acoustic wavepropagation characteristics of PMN-PT, PZN-PT and lead indium niobate-leadmagnesium niobate-lead titanat (PIN-PMN-PT) crystals are studied in this paper,and results could contribute to the design of SAW devices.
     Firstly, using the measured material parameters of PMN-PT relaxor-basedferroelectric single crystals, the SAW propagation characteristics in PMN-PT singlecrystals at rhombohedral, tetragonal and morphotropic phase boundary be governed bythe Christoffel equation with semi-infinite boundary conditions. Reasons whyPMN-PT single crystals have superior SAW performance were analyzed from thecrystal structure. The theoretical results indicate that, the PMN-PT single crystals allhave superior SAW performance at rhombohedral, tetragonal and morphotropic phaseboundary. We found that the PMN-PT have lower phase velocity and higherelectromechanical coupling coefficient compared and small power flow angle (PFA)to traditional piezoelectric materials, which could drastically improve the performanceof SAW devices. The SAW propagation properties of PMN-33%PT single domainsingle crystals poled along [001]care even better than that of the other componentscrystals. For example; the maximumk2value could reach as high as33.46%in thedirection5o canted, SAW phase velocity and power flow angle be less than1800m/sand1.5o, respectively. Components near MPB are the reasons why PMN-PT singlecrystals have superior SAW performance. After poling, rhombohedral phase andtetragonal phase are coexisting in PMN-33%PT single crystals, and engineereddomain configuration are formed, change of the crystals symmetry brings the largertrain. Moreover, the motion of domain wall was inhibited, and strain delay is small. By comparison, SAW properties of tetragonal phase PMN-38%PT single crystal bejust shy of PMN-33%PT. Moreover, the anisotropy of tetragonal phase PMN-38%PTsingle crystal was more significant than rhombohedral phase crystal. AlthoughPMN-PT single crystal has excellent properties, but poor temperature stability limitsits application.
     In addition, we also studied influence of polarization direction and ingredientchange on SAW propagation properties in PMN-PT ferroelectric single crystals. Ourresults showed that the same component but different polarization direction, PMN-PTsingle crystals have different SAW performance. SAW propagation properties inPMN-33%PT ferroelectric single crystals poled along [001]cdiffer from those of[111]c. It shows, the SAW properties of ferroelectric single crystals can be optimizedthrough changing crystals structure. The appropriate doping can effectively improvethe SAW properties of relaxor-based ferroelectric single crystals. In this paper theeffects of doping on SAW properties of single crystals were preliminary studied. TheSAW properties of0.26PIN-0.46PMN-0.28PT single crystals were studied bycontrast with0.71PMN-0.29PT single crystals. The study found lead indium niobatedoping can be helpful to enhance the temperature stability, which depresses the SAWperformance of0.26PIN-0.46PMN-0.28PT single crystals. But overall, the SAWpropagation properties of0.26PIN-0.46PMN-0.28PT single crystals poled along [011]care even better than that of the traditional piezoelectric materials.
     Because of the PZN-PT single crystals have better temperature stability thanPMN-PT, the we discussed the SAW propagation characteristics in PZN-PT singlecrystals at rhombohedral, tetragonal and near morphotropic phase boundary. We foundthat the SAW propagation properties of PZN-7%PT single crystal are even better thanthat of the other components crystals. The SAW propagation properties of PZN-8%PTsingle crystal are approximate to those of PZN-7%PT. The PZN-7%PT andPZN-8%PT single crystals have superior SAW performance, because spontaneouspolarization direction of rhombohedral PZN-PT single crystal is [111]c, when thePZN-PT single crystals are polarized along [001]c, they have engineered domainconfiguration with better piezoelectric properties than single domain structure.Moreover, the spontaneous polarization direction of tetragonal PZN-PT single crystalis [001]c. After poling along [001]c, the PZN-PT single crystals have single domainstructure, therefore SAW propagation properties of PZN-12%PT single crystal arelower than that of the rhombohedral crystals poled along [001]c. For example; themaximumk2value of PZN-12%PT single crystal only is about6.97%, far below thatof PZN-7%PT, PZN-8%PT and PZN-4.5%PT. In addition, when the same componentbut different polarization direction, PZN-PT single crystals have different SAW performance. The PZN-7%PT ferroelectric single crystals poled along [011]cwithmm2symmetry have better SAW propagation properties than crystals poled along[001]c, such as the maximumk2value of PZN-7%PT poled along [011]ccould reachas high as24.16%, this is far higher that of PZN-7%PT poled along [001]c.
引文
[1]罗斯(美)著.固体中的超声波[M].北京:科学出版社,2004:73-80.
    [2]应崇福.超声学[M].北京:科学出版社,1990:40-46.
    [3]田民波,刘德令.薄膜科学与技术手册(下册)[M].北京:机械工业出版社,1991:4-10.
    [4] Tashtoush N M, Cheeke J D N, Eddy N. Surface acoustic wave humidity sensorbased on a thin Polyxio film[J]. Sensors and Actuators B,1998,49(3):218-224.
    [5] A Buvailo, Y Xing, J Hines, E Borguet. Thin polymer film based rapid surfaceacoustic wave humidity sensors[J]. Sensors and Actuators B: Chemical,2011,156:443-449.
    [6] Fu YQ, Li Y, Zhao C et al. Surface acoustic wave nebulization onnanocrystalline ZnO film[J]. Applied Physics Letters,2012,101(19):194101.
    [7] Di Pietrantonio, F, Cannata, D et al. Detection of odorant molecules via surfaceacoustic wave biosensor array based on odorant-binding proteins[J]. Biosensors&Bioelectronics,2013,41:328-334.
    [8] Raj, VB,Singh, H,Nimal, AT et al. Oxide thin films (ZnO, TeO2, SnO2, andTiO2) based surface acoustic wave (SAW) E-nose for the detection of chemicalwarfare agents[J]. Sensors and Actuators B-chemical,2013,178:636-647.
    [9] Di Pietrantonio F, Benetti M et al. Volatile toxic compound detection bysurface acoustic wave sensor array coated with chemoselective polymersdeposited by laser induced forward transfer: Application to sarin[J]. Sensorsand Actuators B-chemical,2012,174:158-167.
    [10] Naumenko NF, Effect of Anisotropy on Characteristics and Behavior of ShearHorizontal SAWs in Resonators Using Langasite[J]. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control,2012,59:2515-2521.
    [11]钱莉荣.多层结构声表面波传播特性的理论研究[D].天津:天津理工大学,2009:10-12
    [12] Li BD, Morsy AM, Kosel J, Optimization of Autonomous Magnetic FieldSensor Consisting of Giant Magnetoimpedance Sensor and Surface AcousticWave Transducer[J]. IEEE Transactions on Magnetics,2012,48:4324-4327.
    [13] Yang J, Racz Z, Gardner JW, Ratiometric info-chemical communication systembased on polymer-coated surface acoustic wave microsensors[J]. Sensors andActuators B-chemical,2012,173:547-554.
    [14] SHENG Zhengmao, QIN Yali, XIE Changming. SAW Bandpass Filter Designof Improved Ladder-type Resonator[J]. Audio Engineering,2011,35:31-37.
    [15] J Yang, Z Rácz, JW Gardner, M Cole, H Chen. Ratiometric info-chemicalcommunication system based on polymer-coated surface acoustic wavemicrosensors[J]. Sensors and Actuators B: Chemical,2012,173:547-553.
    [16] Changjian Zhou, Yi Yang, Jing Zhan, Tianling Ren, Xinchang Wang, andSifang Tian. Surface acoustic wave characteristics based on c-axis (006)LiNbO3/diamond/silicon layered structure[J]. Appl. Phys. Lett,2011,99:022109.
    [17] Takeda N, Motozawa M, Extremely Fast1mu mol. mol(-1) Water-VaporMeasurement by a1mm Diameter Spherical SAW Device[J]. InternationalJournal of Thermophysics,2012,33(8-9):1642-1649.
    [18] Tasaltin C, Ebeoglu MA, Ozturk ZZ, Acoustoelectric Effect on the Responsesof SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film[J].Sensors,2012,12(9):12006-12015.
    [19] Buyukkose, Vratzov B et al. Ultrahigh-frequency surface acoustic wavetransducers on ZnO/SiO2/Si using nanoimprint lithography[J]. Nanotechnology,2012,23(31):315303.
    [20] JL Vivancos, Z Rácz, M Cole, J Soto, JW Gardner. Detergents sensing systembased on SH-SAWdevices[J]. Procedia Engineering,2011,25:1124-1128.
    [21] DT Phan, GS Chung. The effect of post-annealing on surface acoustic wavedevices based on ZnO thin films prepared by magnetron sputtering[J]. AppliedSurface Science,2011,257:4339-4343.
    [22] JP Yang, CY Shen, YJ Chen, HC Huang. The estimations of ammoniaconcentration by using neural network SH-SAW sensors[J]. Expert Systemswith Applications,2011,38:4773-4779.
    [23] Wen Wang, Shitang He, Shunzhou Li, Minghua Liu and Yong Pan. Advances inSXFA-Coated SAW Chemical Sensors for Organophosphorous CompoundDetection[J]. Sensors,2011,11:1526-1541.
    [24] Dutta I, Singh RN, Effect of electrical fatigue on the electromechanicalbehavior and microstructure of strontium modified lead zirconate titanateceramics[J]. Materials Science and Engineering B-advanced FunctionalSolid-state Materials,2010,166(1):50-60.
    [25] SG Pawar, SL Patil, MA Chougule, BT Raut. New Method for Fabrication ofCSA Doped PANi-Thin-Film Ammonia Sensor[J]. Sensors Journal,2011,11:2980-2984.
    [26] S Seok, J Kim, M Fryziel, N Rolland. Wafer-level BCB CAP packaging ofintegrated MEMS switches with MMIC. Microwaves symposium Digest (MTT),2012IEEE MTT-S International,2012:1-3.
    [27] Xiu Ying Yang, Quan Liang Zhao, De Qing Zhang, Ran Lu, Hong Mei Liu,Mao Sheng Cao. Preparing and Ferroelectrical Properties of PZT NanoparticleModified PZT Thick Film by Alternately Spinning Technique[J]. AppliedMechanics and Materials,2012,151:226-230.
    [28] Dmitry E.Milovzorov. Acoustoelectric Effect in Microcrystalline andNanocrystalline Silicon Films Prepared by CVD at Low and High DepositionTemperatures[J]. Journal of Physics,2012,1:38-49.
    [29] H Yoo, K Chung, YS Choi, CS Kang, KH Oh et al. Microstructures of GaNThin Films Grown on Graphene Layers[J]. Advanced Materials,2012,24(4):514-518.
    [30]王竹.铌镁酸铅基铁电单晶机电性质和电场诱导电畴反转研究[D].哈尔滨:哈尔滨工业大学,2012:78-81.
    [31]钟维烈.铁电体物理学[M].北京:科学出版社,1996:3-31.
    [32] Fu Huaxiang and Cohen Ronald E. Polarization rotation mechanism forultrahigh electromechanical response in single-crystal piezoelectrics[J]. Nature,2000,403:281-283.
    [33] Y P Guo and H S Luo. Effect of Composition and Poling Field on theProperties and Ferroelectric Phase-Stability of Pb(Mg1/3Nb2/3)O3-PbTiO3Crystals[J]. J. Appl. Phys,2002,92(10):6133-6138.
    [34] D La-Orauttapong, B Noheda, Z–G Ye, P M Gehring, J Toulouse, D E Cox,and G Shirane. Phase Diagram of the Relaxor Ferroelectric(1-x)PbZn1/3Nb2/3O3-xPbTiO3[J]. Phys. Rev. B,2002,65(14):144101.
    [35] Rui Zhang, Bei Jiang, and Wenwu Cao. Elastic, piezoelectric, and dielectricproperties of multidomain0.67PbMg1/3Nb2/3O3–0.33PbTiO3single crystals[J].J. Appl. Phys.2001,90:3471-3474.
    [36] Diouma Kobor, Modou Tine, Abdelowahed Hajjaji, Laurent Lebrun, DanielGuyomar. Mn Effect on Nonlinear and Structural Properties of <110> OrientedPZN-3.5PT Single Crystals[J]. Journal of Modern Physics,2012,3,403-411.
    [37] Tsai CC, Chu SY, Lu CH, Doping Effects of CuO Additives on the Propertiesof Low-Temperature-Sintered PMnN-PZT-Based Piezoelectric Ceramics andTheir Applications on Surface Acoustic Wave Devices[J]. IEEE Transactionson Ultrasonics Ferroelectrics and Frequency Control,2009,56(3):660-668.
    [38] Myl'nikova I E, Bokov V A. Growth of Crystals[M]. New York: ConsultantsBureau,1959,3:309.
    [39] J Kuwata, K Uchino, and S Nomura. Phase Transitions in thePb(Zn1/3Nb2/3)O3-PbTiO3system[J]. Ferroelectrics,1981,37:579-582.
    [40] S E Park, and T R Shrout. Ultrahigh Strain and PiezoelectricBehavior in Relaxor Based Ferroelectric Single Crystals[J]. J.Appl. Phys,1997,82(4):1803-1811.
    [41] Kouichi Harads, Senji Shimanuki, Tsuyoshi Kobayashi et al. Crystal Growthand Electrical Properties of Pb(Zn1/3Nb2/3)0.91Ti0.09) O3Single Crystal Producedby Solution Bridgman Method [J]. J Am Ceram Soc,1998,81(11):2784-2788.
    [42] Yin Z, Luo H S, Wang P, et al. Growth, Characterization and Properties ofRelaxor Ferroelectric PMN-PT Single Crystals[J]. Ferroelectrics,1999,229:207-216.
    [43] Guisheng Xu, Haosu Luo, Haiqing Xu et al. Structural Defects of Pb(Mgl/3Nb2/3) O3-PbTiO3single crystals Growth by a Bridgman Method [J]. J CrystalGrowth,2001,222:202-208.
    [44] Xu J, Tong J, Shi M. Flux Bridgman Growth of Pb[(Zn1/3Nb2/3)0.93Ti0.07]O3Piezocrystals[J]. Journal of Crystal Growth,2003,253(1-4):273-279.
    [45] Lim L C, Rajan K K, Jin J. Characterization of Flux-grown PZN-PT SingleCrystals for High-performance Piezo Devices[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2007,54(12):2473-2478.
    [46] Dong M, YE Z-G. High-temperature solution growth and characterization of thepiezo/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3[PMNT] single crystals[J].Journal of crystal growth,2000,209:81-90.
    [47] L Zhuang, M Dong, Z-G Ye. Flux Growth and Characterization of the Relaxor-based Pb[(Zn1/3Nb2/3)1-xT ix]O3[PZNT] Piezocrystals[J]. Material Science andEngineering:B,2000,78:96-103.
    [48]王评初,罗豪,李东林等. PMN-PT单晶与陶瓷在性能及相变方面的特点[J].无机材料学报,2001,16(1):56-62.
    [49] G Xu, H Luo, H Xu et al. Third Ferroelectric Phase in PMN-PT SingleCrystals Near the Morphotropic Phase Boundary Composition[J]. Phys. Rev. B,2001,64(2):020102.
    [50] R Zhang, B Jiang, and W W Cao. Orientation Dependence of PiezoelectricProperties of Single Domain0.67Pb(Mn0.33Nb0.67)O3-0.33PbTiO3Crystals[J]. Appl. Phys. Lett,2003,82(21):3737-3739.
    [51] T Liu and C S Lynch. Ferroelectric Properties of [110],[001] and [111] PoledRelaxor Single Crystals:Measurements and Modeling[J]. Acta Materialia,2003,51:407-416.
    [52] H R Zeng, H F Yu, R Q Chu et al. Domain Orientation Imaging of PMN-PTSingle Crystals by Vertical and Lateral Piezoresponse Force Microscopy[J].Journal of Crystal Growth,2004,267:193-198.
    [53] H Wang, J Zhu, N Lu, A A Bokov, Z G Ye, and X W Zhang. HierarchicalMicro-/Nanoscale Domain Structure in MC Phase of(1–x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Single Crystal[J]. Appl. Phys. Lett,2006,89(4),042908.
    [54] C S Tu, C M Hsieh, V H Schmidt, R R Chien, and H Luo. PiezoelectricResponse and Origin in (001) Pb(Mg1/3Nb2/3)0.70Ti0.30O3Crystal[J]. Appl. Phys.Lett,2008,93(17):172904.
    [55] Chiaki Okawara and Ahmed Amin. dc field effect on stability of piezoelectricPZN-0.06PT single crystals under compressive stress[J]. Appl. Phys. Lett,2009,95:072902.
    [56] Wang zhu, Zhang rui, Sun erwei, Wao wenwu. Contributions of domain wallmotion to complex electromechanical coefficients of0.62Pb (Mg1/3Nb2/3)O3–0.38PbTiO3crystals[J]. Journal of applied physics,2010,107(1):014110.
    [57] Xiaozhou Liu, Shujun Zhang, Jun Luo, Thomas R. Shrout, and Wenwu Cao. Acomplete set of material properties of single domain0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3single crystals[J].Appl. Phys. Lett,2010,96:012907.
    [58] Junjie Gao, Zhuo Xu, Fei Li, Chonghui Zhang, Yi Liu, Gaomin Liu, andHongliang He. The effect of the hydrostatic pressure on the electromechanicalproperties of ferroelectric rhombohedral single crystals Pb(Mg1/3Nb2/3)-Pb(In1/2Nb1/2)-PbTiO3[J]. Appl. Phys. Lett,2011,99:062903.
    [59] Enwei Sun, Wenwu Cao, Pengdi Han. Complete set of material properties of
    [011]cpoled0.24Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.30PbTiO3singlecrystal[J]. Materials Letters,2011,65:2854-2857.
    [60] F Fang, X Luo, and W Yang. Polarization Rotation and MultiphaseCoexistence for Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals at the MorphotropicPhase Boundary under Electric Loading[J]. Phys. Rev. B,2009,79:174118.
    [61]王竹溪,郭敬仁著.特殊函数概论[M].北京:北京大学出版社,2000:33-34.
    [62]梁昆淼著.数学物理方法[M].北京:人民教育出版社,1979:163-164.
    [63] Kook Hyun Choi, Jin Ho Oh, and Hyeong Joon Kim. Surface acoustic wavepropagation properties of the relaxor ferroelectric pmn-pt single crystal. IEEEULTRASONICS SYMPOSIUM,2001,1:161-163.
    [64] Yuan Ling, Ren Xudong, Yan Gang, Shen Zhong hua, Ni Xiaowu, Lu Jian,Zhang Yong kang. Experimental Study of Laser Generated Surface AcousticWaves in Laser Shock Hardening Metals[J]. Chinese Journal of Lasers,2008,35(1):120-123.
    [65]王亚非,袁敬阂.激光扫描探测声表面波特性[J].压电与声光,1993,15(4):33-36.
    [66] K C Cheng, H L W Chan, C L Choy et al. Single crystal PMN-0.33PT/epoxy1–3composites for ultrasonic transducer applications[J]. IEEE Trans.Ultrason.Ferroelectr. Freq. Control.2003,50:1177-1183.
    [67] LUO HaoSu, XU HaiQing, YIN QingRui, WANG PingChu, HE TianHou, XUGuiSheng, YIN ZhiWen. The growth, properties and applications of pmnt, anew piezocrystal[J]. Physics,2002,31(3):154-158.
    [68] Zhang Guowei, Han Tao, Ji Xiaojun, and Shi Wenkang. Comparison of surfaceacoustic waves propagation on LGT and quartz substrates[J]. Acta acustica,2004,29:12-17.
    [69]温传敬.声表面波及其在声光可调谐滤波器中应用的研究[D].天津:天津大学,2006:14-18.
    [70] DA Berlincourt, DR Curran, and H. Jaffe. Piezoelectric materials and theirfunction in ransducers, in Physical Acoustics[M]. New York: Academic Press,1964:218-270.
    [71]李国荣,罗豪甦,殷庆瑞. PMN-PT驰豫铁电单晶及其超声换能器性能研究.无机材料学报,2001,16(6):1077-1083.
    [72] S E Park and T R Shrout. Characteristics of Relaxor-Based Piezoelectric SingleCrystals for Ultrasonic Transducers[J]. IEEE Trans. UFFC.1997,44(5):1140-1147.
    [73] S Zhang, J Luo, W Hackenberger, and T R Shrout. Characterization ofPb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3ferroelectric crystal with enhancedphase transition temperatures[J]. Journal of Applied Physics,2008,104:064106.
    [74] R Zhang, W Jiang, and W Cao. Frequency dispersion of ultrasonic velocity andattenuation of longitudinal waves propagating in0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3single crystals poled along [001] and [110][J]. Appl. Phys. Lett,2005,87:1829031.
    [75] R Zhang, W Jiang, B Jiang, and W Cao. Elastic, dielectric and piezoelctriccoefficients of domain engineered0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3singlecrystal. AIP Conference Proceedings,2002,626:188-197.
    [76]徐家跃.新型弛豫铁电单晶及其超声医学应用[J].硅酸盐学报,2003,31(11):1091-1094.
    [77]彭钰.新型压电单晶PMN-PT的性能及其在医用超声换能器中的应用[D].武汉:中国地质大学,2005:43-44.
    [78] Anhua Wu and Jiayue Xu. Growth,Properties and SAW Applications ofLa3Ga5SiO14Single Crystals[J]. Journal of Synthetic Crystals,2002,31:559-563.
    [79] Colla E V et al. Dielectric properties of (PMN)(1x)(PT)xsingle crystals forvarious electrical and thermal histories[J]. J. App1. Phys,1998,83(6):3298-3303.
    [80]曹虎,方必军,徐海清,罗豪甦.四方相铌镁酸铅-钛酸铅(PMN-PT)铁电单晶的弹性,介电,压电和机电性能[J].无机材料学报,2003,18(2):464-469.
    [81] Luo Haosu, Xu Guisheng, Xu Haiqing et al. Compositional Homogeneity andElectrical Properties of Lead Magnesium Niobate Titanate Single CrystalsGrown by a Modified Bridgman Technique[J]. J.App1.Phys,2000,39(9B):5581-5585.
    [82] G S Kino. Acoustic Waves: Devices, Imaging, and Analog SignalProcessing[M]. Englewood Cliffs,NJ: Prentice-Hall,1987:591-601.
    [83] Hu Cao and Haosu Luo. Elastic, Piezoelectric and Dielectric Properties ofPb(Mg1/3Nb2/3)O3-38%PbTiO3Single Crystal[J]. Ferroelectrics,2002,274:309-314.
    [84] W Zhang, X M Li, R Zhang, N X Huang, and W W Cao. Numerical Calculationof SAW Propagation Properties at the x-Cut of Ferroelectric PMN-33%PTSingle Crystals[J]. Chin. Phys. Lett,2009,26:064301.
    [85] R Zhang and W Cao. Transformed material coefficients for single-domain0.67Pb(Mg13Nb23)O3–0.33PbTiO3single crystals under differently definedcoordinate systems [J]. Appl. Phys. Lett,2004,85:6380-6382.
    [86] X B Hu, J Y Wang, L L Ma, X G Xu, H S Luo, P P Zhu, and Y L Tian. Domainstructures and phase transitions of PMNT single crystals[J]. J. Cryst. Growth,2005,275: e1703-e1706.
    [87] Hosono Y, Yamashita, Y, Sakamoto H et al. Large Piezoelectric Constant ofHigh Curie Temperature Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)-PbTiO3TernarySingle Crystal near Morphotropic Phase Boundary[J]. Japanese Journal ofApplied Physics,2002,41(11A): L1240-L1242.
    [88] Hosono Y, Yamashita Y, Hirayama K et al. Dielectric and PiezoelectricProperties of Pb[(In1/2Nb1/2)0.24(Mg1/3Nb2/3)0.42Ti0.34]O3Single Crystals[J].Japanese Journal of Applied Physics,2005,44(9B):7037-7041.
    [89] Tian J, Han P, Huang X et al. Improved Stability for Piezoelectric CrystalsGrown in the Lead Indium Niobate–lead Magnesium Niobate–lead TitanateSystem[J]. Applied Physics Letters,2007,91(22):222903.
    [90] Sun P, Zhou Q, Zhu B et al. Design and Fabrication of PIN-PMN-PTSingle-crystal High-frequency Ultrasound Transducers[J]. IEEE Transactionson Ultrasonics, Ferroelectrics and Frequency Control,2009,56(12):2760-2763.
    [91]孙恩伟.铌锌酸铅-钛酸铅和铌镁铟酸铅-钛酸铅单晶的物性研究[D].哈尔滨:哈尔滨工业大学,2011:52-56.
    [92] F F Wang, L H Luo, D Zhou, X Y Zhao, and H S Luo. Complete Set of Elastic,Dielectric, and Piezoelectric Constants of Orthorhombic0.71Pb(Mn1/3Nb2/3)O3-0.29PbTiO3Single Crystal[J]. Appl. Phys. Lett,2007,90(21):212903.
    [93] Yohachi Yamashita. Large Electromechanical Coupling Factors in PerovskiteBinary Material System[J]. Jpn J Appl Phys,1994,33:5328-5331.
    [94] Maureen L, Mulvihill, Seung Eek Park, George Risch, Zhuang Li, KenjiUchino and Thomas R. Shrout. The Role of Processing Variables in the FluxGrowth of Lead Zinc Niobate-Lead Titanate Relaxor Ferroelectric SingleCrystals[J]. Jpn J Appl Phys,1996,35:3983-3990.
    [95] Fang B, Xu H, He T et al. Growth Mechanism and ElectricalProperties of Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3Single Crystals by a ModifiedBridgman Method[J]. Journal of Crystal Growth,2002,244(3-4):318-326.
    [96] Park S E, Shrout T R. Relaxor Based Ferroelectric Single Crystals forElectromechanical Actuators[J]. Materials Research Innovations,1997,1(1):20-24.
    [97]徐家跃,新型弛豫铁电单晶(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3生长的技术创新[J],硅酸盐学报,2007,35:82-88.
    [98]项阳.铌锌酸铅-钛酸铅铁电单晶机电性能与畴结构关联性研究[D].哈尔滨:哈尔滨工业大学,2011:33-33.
    [99] Rui Zhang, Bei Jiang, Wenwu Cao, Complete set of material constants of0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3domain engineered single crystal[J]. Journalof Materials Science Letters,2002,21:1877-1879.
    [100]Zhang R, Jiang B, Cao W W. Superior d32and k32Coefficients in0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3and0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3SingleCrystals Poled along [011][J]. Journal of Physics and Chemistry of Solids,2004,65(6):1083-1086.
    [101]Rajan K K, Jin J et al. Transverse-mode Properties of [011]-poledPb(Zn1/3Nb2/3)O3-PbTiO3Single Crystals: Effects of Composition, LengthOrientation, and Poling Conditions[J]. Japanese Journal of Applied Physics,2007,46(2):681-684.
    [102]Zhou Q, Wu D, Jin J et al. Design and Fabrication of PZN-7%PT Single CrystalHigh Frequency Angled Needle Ultrasound Transducers[J]. IEEE Transactionson Ultrasonics, Ferroelectrics and Frequency Control,2008,55(6):1393-1399.
    [103]Okawara C, Robinson H, Stace J et al. Coupling (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3Single Crystals for Sound Projectors[J]. IEEE Ultrasonics,Ferroelectrics, and Freqquency Control Society,2010,57(7):1497-1503.
    [104]Liu S F, Park S E, Shourt T R, and Cross L E. Electric field dependence ofpiezoelectric properties for rhombohedral0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3single crystals[J]. J. Appl. Phys,1999,85:2810-2813.
    [105]Xu J, Tong J, Shi M. Flux Bridgman Growth of Pb[(Zn1/3Nb2/3)0.93Ti0.07]O3Piezocrystals[J]. Journal of Crystal Growth,2003,253(1-4):273-279.
    [106]Zhang R, Jiang B, Jiang W H, and Cao W W. Complete set of elastic, dielectric,and piezoelectric coefficents of0.93Pb (Zn1/3Nb2/3)O3–0.07PbTiO3singlecrystal poled along [011][J]. Applied Physics Letters,2006,89:242908.
    [107]Chongjun He. Linear electro-optic properties of orthorhombic PZN-8%PTsingle crystal[J]. Ultrasonics, Ferroelectrics and Frequency Control,2011,58(6):1118-1121.
    [108]E H Kisi and J S Forrester. The phase transition sequence in the relaxorferroelectric PZN–8%PT[J]. J. Phys.: Condens. Matter,2008,20:165208.
    [109]S M Farnsworth, E H Kisi, and M A Carpenter. Elastic softening andpolarization memory in PZN-PT relaxor ferroelectrics[J]. Phys. Rev. B,2011,84(17):174123-174128.
    [110]Rui Zhang, Bei Jiang, Wenhua Jiang, Wenwu Cao. Complete set of propertiesof0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3single crystal with engineered domains.Materials Letters,2003,57:1304-1308.
    [111]XU Jia Yue. Some key issues in the growth of relaxor ferroelectric crystalPZNT[J]. J Chin Ceram Soc,2004,32(3):378-383.
    [112]Iwata M, Katsuraya K, Aoyagi R et al. Domain Wall Observations and thePhase Transition in Pb(Zn1/3Nb2/3)O3-8%PbTiO3by AFM[J]. Ferroelectrics,2007,347:157-161.
    [113]肖敬忠,殷绍唐,田玉莲,朱佩平,张新夷.0.92PZN-0.08PT晶体的缺陷与畴结构研究.功能材料,2004,35:1473-1477.
    [114]Jianhua Yin, Bei Jiang, and Wenwu Cao. Elastic, Piezoelectric, and DielectricProperties of0.955Pb(Zn1/3Nb2/3)O3-O.45PbTiO3Single Crystal with DesignedMultidomains[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2000,47(1):284-291.
    [115]Yin J H, Cao W W. Effective Macroscopic Symmetries and MaterialsProper-ties of Multidomain0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3singlecrystals[J]. Journal of Applied Physics,2002,92:443-448.
    [116]Yin J H, Cao W W. Domain Configurations in Domain Engineered0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3Single Crystals[J]. Journal of Applied Physics,2000,87:7438-7441.
    [117]Chang W S, Lim L C, Yang P et al. Nanotwin Domains in High-StrainFerroelectric89.5%Pb(Zn1/3Nb2/3)O3-10.5%PbTiO3Single Crystal[J]. Journalof Applied Physics,2010,108:106102.
    [118]S Zhang, L Lebrun, C A Randall, and T R Shrout. Orientation dependenceproperties of modified tetragonal0.88Pb(Zn1/3Nb2/3)O30.12PbTiO3singlecrystals[J]. Phys. Status Solidi A,2005,202:151-157.
    [119]J J Lima-Silva, I Guedes, J Mendes Filho, A P Ayala, M H Lente, J A Eirasand D Garcia. Phase diagram of the relaxor (1x)Pb(Zn1/3Nb2/3)O3–xPbTiO3investigated by dielectric and Raman spectroscopies[J]. Solid State Commun,2004,131:111-113.
    [120]T Delaunay et al. Full tensorial characterization of PZN-12PT single crystal byResonant Ultrasound Spectroscopy[J]. Ieee, Transactions on UltrasonicsFerroelectrics and Frequency Control,2008,55(2):476-488.
    [121]Ye Z G, Dong M. Morphotropic Domain Structures and Phase Transitions inRelaxor-based Piezo-ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals[J].Journal of Applied Physics,2000,87(5):2312-2319.
    [122]Ye Z G, Noheda B, Dong M et al. Monoclinic Phase in the Relaxor-basedPiezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3System[J]. PhysicalReview B,2001,64(18):184113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700