草/木原料混合热磨制造MDF的工艺研究与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已经是全球最大的人造板生产国、消费国、出口国。2011年我国人造板产量已达到2.09亿立方米。随着产量的逐年加大,原材料短缺的状况越来越制约了行业的发展。作为农业大国,我国农作物废弃物——秸秆资源极其丰富,且据不完全统计每年有超过30%的秸秆被农民焚烧于田头,造成了严重的环境污染和交通危险,迫切需要为秸秆寻找更多的出路
     草/木原料混合热磨制造MDF是实现“以草代木”,缓解当今中密度纤维板生产企业原料紧张矛盾的有效途径;是寻找农作物秸秆合理利用的有效措施;是解决“三农”问题提升农民收入的有效方法。本课题通过理论分析、实验室试验,中试生产试验等方面的工作,对草/木原料混合热磨制造MDF,生产过程中原料控制、生产工艺调节、磨片齿形优化等方面进行了研究,得出以下结论:(1)草/木原料混合热磨理论上是可行的。通过比较木材及非木质原料的纤维特性、化学组成发现:秸秆类原料纤维细短、薄壁组织含量高、木素含量低。因此,相比于木材,秸秆纤维分离所需的软化温度、时间要低。根据Kerekes,Martinez,Batchelor等人的研究成果,两种原料混合热磨时,由于秸秆类原料纤维直径小,其所受的压应力和剪切应力也都比木材纤维小,与两种原料解纤所需的动力恰巧相吻合。秸秆原料由于表面的蜡质存在,其与磨齿的摩擦系数要低于木材,加之其纤维细短的特点,理论上推断,草/木原料混合热磨时应根据随着秸秆含量的提高,适当减小磨盘间隙,提高纤维的分离效果。从纤维板结构角度分析,纤维长度大的针叶材更适合与纤维细短的秸秆材料混合制造MDF。(2)草/木原料混合分离制造MDF的板材性能优于草/木原料先单独分离后混合制板的性能。混合分离一方面提高了两种纤维的混合均匀性,减弱了秸秆原料中蜡质及硅物质对于胶合的不利影响;另一方面,避免了磨齿对于秸秆的过度切削,能有效减少纤维中细粉的含量。(3)草/木原料混合热磨磨片齿形应根据原料中秸秆含量作相应调整。考虑到秸秆纤维细短、所需解纤动力相对较低的特点,草/木原料混合热磨磨片较之普通分离木片磨片应适当减小齿宽,降低齿高,增加磨齿角度,通过合理设置挡齿的数量、位置、角度控制浆料的热磨时间,确保混合纤维的良好分离。(4)调整热磨工艺,控制纤维质量。为控制好纤维中粗梗、长纤维、细粉含量的的比例,随着混合原料中秸秆含量的提升,应适当减小磨盘间隙,降低蒸煮压力,缩短蒸煮时间。三者的协调控制需要综合考虑原料配比、原料含水率、目标纤维的形态等多方面因素而决定。(5)控制制板工艺,提升物理力学性能。随着秸秆含量的提高,板材各项力学性能呈下降趋势。混合纤维长度与MOE、MOR、握钉力正相关,线性关系明显;施胶量与IB、握钉力正相关,线性关系明显;板材密度与各项物理力学性能正相关,线性关系明显。因此,草/木原料混合制板过程中,应根据不同的草/木原料比,结合板材目标物理力学性能,制定合理的原料蒸煮工艺、板材密度和施胶量,确保纤维质量和板材物理力学性能的稳定。考虑到草/木原料在蒸煮工艺、胶合性能方面的差异性,如想在现有的中密度纤维板生产线上,减少设备和工艺调试成本,实现“以草代木”制造草/木复合MDF,则秸秆添加量以重量比30%左右为宜。(6)草/木复合MDF热压工艺控制。通过改善热压工艺,可以提高板材物理力学性能。从热压角度分析,草/木原料混合应尽量以木为主或以草为主,这有利于确定合理的热压温度和热压曲线;可以通过适当提高表面含水率,降低芯层含水率的方式,提高板材的静曲强度(MOR)、弹性模量(MOE);在控制好板坯含水率的基础上,可以适当提高压机的闭合速度,以提高板材表面密度来达到提高表面抗拉性能与抗压性能;随着草纤维含量的增加,应适当降低热压的温度,增加胶粘剂的施加量,有利于防止表面过度热解,提高板坯热传导效率,确保纤维间的良好胶合,根据实验经验,一般情况下热压温度不应超过220℃,施胶量控制在12%以内。提高板材密度有利于物理力学性能的提高,但因充分考虑热压过程中因密度的提高而导致的板材内部蒸汽压力的提高,控制好板坯的含水率和加压工艺,防止板材分层、鼓泡等缺陷的形成。
     本次研究在实验室和中试生产线上验证了草/木原料混合热磨制造MDF工艺的可行性,在后期工作中还可在原料成本控制、工厂化生产工艺调整、板材力学性能改善、产品应用等方面作进一步的研究,以期尽快实现产业化。
China has been the world's largest man-made panel producer, consumer and exporter. Thevolume of production has reached209million m3, in2011. The shortage of raw materialsrestricted the development of the industry, as the production increased year by year. As a bigagricultural country, the agricultural residues such as plant straw are extremely rich. Whilemore than30%of the straw has been burned in the farm, which caused serious environmentalpollution and traffic problems. It is urgent to find more ways out for the straw.Straw/wood MDF is an effective way to reduce the raw material problems of MDF factories; isa good method to rational utilize the agricultural residues; also is a good way to improve thefarmers' income and relieve the “Three Rural Issues” problems. In study, the raw materialcontrol, production process adjustment, disc segment profile optimization, etc. of theStraw/wood MDF production are analyzied, by theoretical analysis, laboratory test, pilotproduction test. The conclusions are in the following:
     (1) Straw/wood raw material refine together is feasible in theory. We discovered the straw fiberis shorter and thinner, higher content of parenchyma, lower content of lignin, than wood fiber,by comparing the fiber characters of wood and straw. Therefore, the softening requirements ofcooking time and temperature for straw are lower than wood. During refining, because of thesmaller fibre diameter,the compressive stress and shear stress of straw fiber are smaller thanwood fiber, according to the research results of Kerekes, Martinez, Batchelor. This happen tomeet the two kinds of material’s different separating power need. The straw’s frictioncoefficient with the segment is lower than wood, because of the wax on the straw’s surface andthe thiner and shorter fiber character, it is necessary to reduce the refining gap to improve thefiber quality, when the straw raw material content raise. From the panel’s structure perspective,the soft wood with longer fiber length is more suitable than hard wood for refine together withstraw which has shorter and thinner fiber.
     (2) The panels made from the straw/wood fibers separated together performed better thanstraw/wood fibers isolated separated. Refine straw/wood raw material together has threeadvantages:1) improve the mixing uniformity of the two kinds of fiber and reduce the bondingdisadvantages of wax and silicone from the straw;2) effectively reduce the fiber powder byavoiding the segment excessively cutting straw fibers.
     (3)The segment of refining disc should be adjusted according to the content of straw.Considering straw fiber’s shorter and thiner character, refining disc separating straw/wood fiberis necessary to reduce the segment width, depth, increase the segment angle, compared withcommon wood chips’ separating. For fibers’ good separation, the number of resist segmentsand its’ location should be reasonable arranged to control the fibers’ refining time.
     (4) Adjust the refining techniques, control fibers’quality. In order to control reasonalbe contentsof stem fiber, qualified fiber and powder fiber in the compound fiber, it is necessary to narrow the disc gap, lower cooking preasure and cooking time when the straw raw material contentraising. The coordination of the three factors(disc gap, cooking preasure,cooking time) shouldbe based on the straw/wood raw material ratio, raw materials’ moisture content and the targetfiber morphology, etc.
     (5) Control panel-making process, improve mechanical properties of panels. Themechanical properties of composites decreased when increasing straw content.The fiber lengthis positive related to the panel’s MOE, MOR, nail holding power; The glue usage is positiverelated to the panel’s IB and nail holding power. The panel density is positive related to everymechanical property of the panel. They all have a liner relationship between the factors.Therefore, it is crucial to set a reasonable cooking process, panel density and gule usageaccording to the straw/wood raw material ratio and panel’s target mechanical properties.Considering the differences in cooking process and bonding performance between straw andwood, the straw raw material content should be around30%, in order to develop thestraw/wood MDF technique in existed wood MDF production line without additionalequipment cost and complicated process adjustment.
     (6) Hot-pressing process control of straw/wood MDF. The panel’s mechanical properties can beimproved by adjust the hot-pressing process. The raw material should be dominated by wood orby straw, avoid equal content, that will be benefit to work out the reasonable hot pressingprocess. The panel’s MOR and MOE can be raised by properly increasing surface moisturecontent and lowering core layers’ moisture content of the slab. The panel’s surface density canbe raised by increasing machine’s closing speed to improve the panel’s tensile and compressiveproperties, base on proper slab moisture content. To prevent panel’s surface excessive hotdestruction, improve the heat conduction efficiency, ensure good bond between fibers, we canproperly lower the hot-pressing temperature increase the glue usage when the straw rawmaterial ratio increase. According to the experiment experience, hot-pressing temperatureshould not exceed180℃, the glue usage should control within12%. Increase panel’s densitycan benefit mechanical properties, while the density increase may result in an increase ofpanel’s internal steam pressure. So when the panel density increased, the slab’s moisturecontent should be properly controlled to prevent the formation of defects such as delaminationand bubbling.
     In the laboratory and pilot plant, this study proved the feasibility in making straw/wood MDFwith the compound fiber refined together. In the further study the raw material cost control, thefactory production process, the panel’s mechanical properties improvement, the productapplication can be deeply researched in order to realize straw/wood MDF industrialization innear future.
引文
[1]钱小瑜.我国木材资源可持续发展商榷[J].人造板通讯,2005(5):8-11.
    [2]汪昉,汪炜.我国秸秆资源开发利用综述[J].资源开发与市场,2008,24(11):1009-1012.
    [3]陈志林,傅峰,叶克林.我国木材资源利用现状和木材回收利用技术措施[J].中国人造板,2007(5):1-3.
    [4]钱小瑜.我国人造板行业的稳步发展及调整升级[J].木材工业,2012,26(1):1-6.
    [5]周定国,张洋,于文吉,黄绍蔑.高中密度稻桔人造板制造技术与产业化[J].林产工业,2003(3):17-21
    [6]周奕莹.浅析秸秆焚烧对环境的危害及综合治理途径[J].科技向导,2012(9):249.
    [7]丁铭,刘志宏,丁光远.江苏省秸秆焚烧污染现状及防治对策[J].环境监测管理与应用,2012,24(5):72-74.
    [8]毕于运.秸秆资源评价与利用研究[D].北京:中国农业科学院,2010.
    [9]郑凤山,何磊.我国麦/稻秸秆板工业的发展与思考[J].木材工业,2006,20(6):30-32.
    [10]温平威,刘玉环,李积华,杨柳,阮榕生.草本植物纤维制造中高密度纤维板的研究现状[J].林业科技,2012,35(3):39-42.
    [11]顾继友,高振华,谭海彦,王佩东.异氰酸酯稻草刨花板制造工艺的研究[J].林产工业,2000,27(3):14-18.
    [12]周定国.关于稻秸秆人造板的几个问题[J].林产工业,2008,35(1):3-6.
    [13]李晓平,高魏,周定国.稻草-木材复合空芯刨花板保温性能研究[J].中国人造板,2007(6):7-8.
    [14] Yang Han-Seung&Kim Dae-Jun&Hyun-Joong Kim.Rice straw-wood particle composite for soundabsorbing wooden construction materials[J].Bioresource Technology,2003,86(2):117-121.
    [15] Grigoriou,A.H.Straw-wood composites bonded with various adhesive[J]. Wood Science andTechnology,2000,34(4):355-365.
    [16]梅长彤.原料混合比对木草复合板性能的影响[J].人造板通讯,2002(11):7-9.
    [17]姚飞.稻草-木纤维复合材料工艺研究[D].南京:南京林业大学,2004.
    [18]潘明珠.草木纤维的复合机理及制板工艺的研究[D].南京:南京林业大学,2005.
    [19]李瑜.草木复合中纤板生物降醛发的机理与应用研究[D].南京:南京林业大学,2006.
    [20]潘晖.麦秆木材混合中密度纤维板的研究[D].哈尔滨:东北林业大学,2002.
    [21]欧阳琳.热磨机磨片[J].人造板通讯,2001(10):15-20.
    [22] Goncharov,V.N. Force factors in a disc refiner and their effect on the beating process[J].BumazhnayaProm,1971(5):12-14.
    [23] Fox,T.S.&Brodkey,R.S.&Nissan, A.H. High speed photography of stock transport in a discrefiner[J].Tappi,1979,62(3):55-58.
    [24]王宝金.热磨机磨盘实际间隙精确测量与主轴运动状态检测的研究[D].南京:南京林业大学,2004.
    [25]陈广琪.新型热磨机系统[J].世界林业研究,1994(4):91-92.
    [26]沈毅.成长中的国产新型热磨机[J].木材加工机械,2009(6):35-37.
    [27]王忠奎.热磨机磨片对中密度纤维板纤维分离质量影响机理的研究[D].哈尔滨:东北林业大学,2003.
    [28]刘长恩.盘磨机的每秒切断长和齿刃比负荷[J].北方造纸,1994(3):27-29.
    [29]高洪亮.浅谈植物纤维分离技术与设备[J].人造板通讯,2003(6):7-18.
    [30] Nyren,J.The transverse compressibility of pulp fibres[J].Tech.Sect.CPPA,1971,72(10):321-323.
    [31] Jang,H.F.&Seth,R.S.Using confocal microscopy to characterize the collapse behavior offibers[J].Tappi,1998.18(5):167-174.
    [32]徐咏兰.中高密度纤维板制造与应用[M].吉林:吉林科学技术出版社,2009.
    [33]华毓坤.人造板工艺学[M].北京:中国林业出版社,2002.
    [34]徐大鹏. MDF纤维分离机理及磨片齿形结构参数优化设计的研究[D].哈尔滨:东北林业大学,2012.
    [35]李军伟.中密度纤维板生产中热磨工艺的改进[J].木材加工机械,1999(1):16-18.
    [36]杨淑蕙.植物纤维化学[M].北京:中国轻工出版社,2001.
    [37]科尔曼等(德).木材学与木材工艺学原理——人造板.中国林业出版社.1984:87-91.
    [38]李得茂.热磨工段在中纤板生产中应如何节能[J].林业机械与木工设备,2006,34(11):45-46.
    [39] Batchelor,W.J.&Martinez,D.M.&Kerekes R.J.Forces on fibres in low consistency refining[J].Tappi,1994,77(12):119-123.
    [40] Alahautala,T.&Lassila,E.&Hernberg,R.&Harkonen,E.Optical Measurement of pulp quantity in aRotating Disc Refiner[J].Measurement Science Technology,2004,15(11):2256.
    [41]向红亮,罗吉荣,宋象军.热磨机盘磨磨片失效分析[J].中国造纸,2002(16):4-6.
    [42]陈光伟,花军,贾娜,刘诚.基于磨片磨损机理分析的磨片结构和齿形优化[J].木材加工机械,2008(3):5-7.
    [43]史玉梅.圆环直齿热磨机磨片的设计分析和结构优化[D].长春:吉林大学,2007.
    [44]某造纸设备有限公司产品信息[EB/OL].http://www.etradenow.cn/StaticShop/shop_158/Shop15871/CN/MySupplyList/MySupplyList.html.
    [45]美卓公司热磨机磨片产品推荐PPT资料[CD].
    [46]Andritz Sprout一Bauer, Graz,Austria, Refiner Systems Sales Literature,1998.
    [47]陈光伟,花军,贾娜,刘诚.影响热磨机磨片齿型结构设计要素分析[J].林业机械与木工设备,2008,36(6):11-13.
    [48] Harkonen.Energy Savings in TMP Pulping[C].International Mechanical Pulping Conference,2001.
    [49]沈立新.浅谈盘磨磨片齿型的设计与选择[J].纸和造纸,1999(1):27-33.
    [50]沈立新.盘磨磨片齿型的设计(上)[J].纸和造纸,1999(4):22-23.
    [51]美卓公司.纤维板生产线热磨机磨片的发展[J].人造板通讯,2004(10):20-22.
    [52]赵和金.浅析影响热磨机磨片齿形结构设计的主要因素[J].林业勘察设计,2008(2):156-158.
    [53]向红亮,罗吉荣.纸浆高浓磨盘磨片材质的研制[J].林业机械与木工设备,2003,31(4):4-7.
    [54] Senger,J.J.&Ouellet,D.&Benmngton,C.P.J.Effects of Pulp Furnish and RefinerSpeed on Residence Timein a High-Consistency Refiner[J].Tappi,1998,81(4):152-158.
    [55] Miles,K.B.&May,W.D.The Flow of Pulp in Chip refiners[J].Journal of Pulp and PaperScience,1990,16(2):J63-J72.
    [56]王志成.浅析TMP制浆过程中的磨片优化[J].中国造纸,2008(4):66-68.
    [57]陈光伟.热磨法磨片纤维分离机理的模型分析与实验研究[D].哈尔滨:东北林业大学,2012.
    [58]宋乃建,沈文浩,杨治国.针叶木浆磨浆过程中浆料的流动、纤维受力及形变[J].中国造纸,2008,27(2):57-64.
    [59] Alan,H.B.Design and Development of a Mechanical Wood Pulp Refiner ForceSensor[D].Kingston:Queen’s university,2000.
    [60] Senger,J.J.&Siadat,A.&Ouellet,D.&Wild,P.Measurement of Normal and shear Forces during RefiningUsing a Piezoelectric Force Sensor[J].Journal of Pulp and Paper Science,2004,30(9):247-251.
    [61] Kerekes,R.J.&Clara,M.&Dharni,S.&Marrtinez,M.Application of the C-Factor to Characterize PulpRefiners[J].Journal of Pulp and Paper Science,1993,19(3):J125-J130.
    [62] Batchelor,W.J.&Martinez,D.M.&Kerekes,R.J&Ouellet D.Forces on Fibres in Low-ConsistencyRefining Normal Force:Share force[J].Journal of Pulp and Paper Science,1997,23(1):J40-J45.
    [63]许威.基于分形理论的木片剪切与冲击断裂特性研究[D].哈尔滨:东北林业大学,2012.
    [64] Senger,J.J.The Forces on Pulp Fibres During Refining[D].Vancouver:University of BritishColumbia,1998.
    [65]霍丽丽,田宜水,赵立欣,姚总路,侯书林,孟海波.农作物秸秆原料物理特性及测试方法研究[J].可再生能源,2011,29(6):86-92.
    [66]王菊华.中国造纸原料纤维特性和纤维图谱[M].北京:中国轻工出版社,1999.
    [67]胡建辉.浅谈中密度纤维板的纤维制备[J].木材加工机械,2003(3):3-6.
    [68] GB/T11718-1999,中华人民共和国中密度纤维板标准[S].
    [69] Wultch,F.&Flucher,W. Der Echer-Wyss-Kleinrefeiner als Standard-Prufger t fur moderneStoffaufbereitungsanlagen[J].Das Papier,1958,23(13):334–342.
    [70] Brecht,W.&Siewert,W.Zur theoretisch-technischen Beurteilung des Mahlprozesses modernMahlmaschinen[J].Das Papier,1966,20(1):4-13.
    [71] Lumininen,J.A new approach to the critical factors affecting refining intensity and refining result inlow-consistency refining[C].TAPPI papermakers Conf,1990:269-273.
    [72] Kerekes,R.J.Characterization of pulp refiners by a C-factor[J].Nordic Pulp Paper ResearchJournal,1990,1:3-8.
    [73]徐登伟,周定国.草木纤维一步分离磨片设计初探[J].木材加工机械,2012(3):26-29.
    [74]苏昭友,王平.盘磨机磨片的设计理论与方法.纸和造纸,2011,30(8):10-16.
    [75]刘靖,李凤坤.热磨机主机功率消耗计算[J].木材加工机械,2001(3):5-7.
    [76]杨劲松,蒋小军.优化磨浆机磨片齿形提高产品质量[J].中国造纸,2010(10):77-78.
    [77]李卫平.高浓盘磨磨片齿形优化[J].湖南造纸,2002(3):9-10.
    [78]艾军.麦秆纤维特性及脲醛树脂麦秆纤维板工艺的研究[D].哈尔滨:东北林业大学,2001.
    [79]艾军.麦秸纤维特性及纤维板工艺的研究[M].东北林业大学出版社.哈尔滨:2002
    [80] Cheng,X.&James,D.&Zhang,S.Y.&Bernard,R.&Alain,C.Properties of MDF from black spruce tops asaffected by thermomechanical refining conditions[J].Orignalarbeiten Originals,2006,64:507-512.
    [81] A.G.Robertson,et. Measurement of fiber length, coarseness and shape with the fiber qualityanalyzer,1999,82(10):30-41.
    [82]陈光伟,花军.纤维产量和质量对热磨机能耗影响的机理分析[J].东北林业大学学报,2009,37(6):40-47.
    [83]马小伍,喻心洲,张双保,曹旗,雷得定,周雄志.MDF备料工段工艺和设备对木材纤维质量的影响[J].人造板通讯,2004(6):8-17.
    [84]卫佩行,张洋,徐登伟,李慧媛,周定国.热磨条件对草木混合原料纤维质量的影响[J].林业机械与木工设备,2012,41(2):29-31.
    [85]王清文,欧荣贤.木质纤维材料的热塑性改性与塑性加工研究进展[J].林业科学,2011,47(6):133-142.
    [86]黄丽君.以稻草为原料制备热塑性纤维素[D].南京:南京林业大学,2008.
    [87]李坚.木材科学[M].哈尔滨:东北林业大学出版社,1994:93-98.
    [88]陈嘉翔.草类原料蒸煮脱木素的特点[J].中国造纸,1987(1):19-33.
    [89]陈荣光,史成坤,汪家仁.改革稻麦草蒸煮工艺提高产品质量增加经济效益[J].中国造纸,1984(4):56-57.
    [90] Hansgery Soine. New Manufacturing Technologies Can Boost the Expansion of MDF[J].WoodworkingTechnology.2000.
    [91]石真勇,郝晓霞.竹木混合蒸煮工艺探讨[J].中国造纸,2007(10):62.
    [92]连海兰,周定国,尤纪雪,潘明珠.预处理对麦秸纤维板性能的影响及机理研究[J].南京林业大学学报,2008,32(4):1-5.
    [93]陆懋圣.提升中纤板质量的措施[J].中国人造板,2008(8):14-16.
    [94]李慧媛,徐登伟,卫佩行,周定国.蒸煮压力对不同配比草木复合板性能的影响[J].林业科技开发,2013,27(1):82-84.
    [95]徐登伟,卫佩行,李慧媛,周定国.草木复合中密度纤维板中试实验—原料配比及蒸煮工艺对板材物理力学性能的影响[J].木材加工机械,2013(1):11-15.
    [96]张扬.纤维板断面密度分布优化控制技术及力学性能预测模型[D].北京:北京林业大学,2011.
    [97]许俊.中密度纤维板(MDF)的密度及其在线检控[D].长沙:中南林学院,2002.
    [98]施静波.中密度纤维板热压传热传质模型[D].南京:南京林业大学,2011.
    [99]雷亚芳.刨花板热压过程中传热特性的研究[D].北京:北京林业大学,2005.
    [100]陈玉竹.纤维板剖面密度分布的研究[D].北京:中南林业科技大学,2009.
    [101]保昆雁.中密度纤维板热压工艺的研究[D].哈尔滨:东北林业大学,2006.
    [102]徐咏兰,张贵麟.工艺因素对中密度纤维板(MDF)板性的影响[J].林业科技开发,1997(4):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700