人工林杉木干燥过程传热传质数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干燥过程中的传热传质速率影响锯材的干燥质量与干燥能耗,传热传质数学模型可以定量分析干燥过程中水分与热量的传递规律,为优化干燥工艺与节能减排提供理论基础。因此,开展木材干燥传热传质数学模型构建与分析的研究具有重要的理论意义和实际价值。
     本文以杉木(Cunninghamia lanceolata [Lamb.] Hook.)人工林木材作为试验材料,建立了早晚材密度沿径向分布的数学模型;基于这一密度分布数学模型,考虑了木材早晚材密度不均匀性对木材干燥的影响,分别建立径切板与弦切板干燥过程中传热传质的一维数学模型;并采用X射线扫描法与称重法分别监测干燥过程中无疵小试件的含水率分布规律与锯材平均含水率的经时变化规律,验证了传热传质模型的准确性与可行性;最后,以径切板传热传质数学模型为依据,定性分析了干燥介质、物性参数、锯材厚度对干燥速率的影响。主要结论如下:
     1、通过正弦波函数定量描述了树木生长环境中温度周期性变化,函数拟合的决定系数为0.907;利用分段线性函数定量描述了树木生长环境中降雨量的周期性变化;由此所得的树木生长速率模型可准确分析温度与降雨量对树木生长速率的影响。基于树木生长速率模型所构建的早晚材密度分布模型准确描述了木材密度沿径向的分布规律,为木材密度在宏观与微观上的内在联系提供了理论依据,也为定量分析早晚材密度不均匀性对木材干燥的影响提供了数学基础。
     2、利用菲克扩散定律(Fick's law of diffusion)与傅里叶定律(Fourier law)分别表征了木材干燥过程中的传质与传热过程。基于径切板与弦切板在干燥过程中水分移动方向上不同的密度分布函数,分别建立了木材干燥传热传质的“多场-相变-扩散”一维数学模型,并利用有限差分数学方法及Fortran语言编写计算程序,结合定解条件,得出了木材干燥传热传质数学模型的数值解。
     3、通过切片法验证了X射线扫描法在分层含水率测定中的适用性,两种方法测量的分层含水率无显著差异(P>0.05),表明X射线扫描法能准确获得木材含水率分布。利用该方法,实测了径切板与弦切板的无疵小试件在干球温度60℃(湿球温度40℃)与干球温度90℃(湿球温度75℃)时分层含水率随时间的变化规律,并分别与径切板与弦切板传热传质模型所得的分层含水率进行比较,曲线拟合较好,表明木材传热传质模型可以反映木材干燥过程中含水率的分布状况;通过径切板与弦切板在不同干湿球温度(45℃/25℃、60℃/40℃、75℃/55℃与90℃/75℃)下的干燥试验,测定了木材的平均含水率随时间变化的规律,并与木材传热传质模型计算结果进行比较,二者吻合较好,进一步表明本研究所构建的木材传热传质模型能反映木材干燥的传热传质行为。
     4、通过对干燥传热传质模型的理论分析,在木材恒速干燥阶段,干燥速率取决于表面蒸发率,而干燥介质是表面蒸发率的主要影响因子;干燥介质的温度越高、相对湿度越小、流动速度越大,则木材干燥速率越快;但当干燥介质流动速度超过1.5m/s时,木材干燥速率增加不明显。在减速干燥阶段,干燥速率取决于体积蒸发率与界面蒸发率,而木材自身物性是体积蒸发率与界面蒸发率的主要影响因子;等效质扩散率与导热系数越大、木材厚度越小,则干燥速率越快;但与等效质扩散率相比,导热系数对木材干燥速率的影响较小。
Drying quality and energy consumption was influenced by heat and mass transfer ratesduring the sawn drying. The transfer law of moisture and heat during wood drying can bedescribed quantitatively by heat and mass model, which provided theoretical basis foroptimizing drying process and energy conservation. Therefore, the reaserch on heat and masstransfer model building and analysis had important theoretical significance and practical value.
     A mathematical model about earlywood and latewood density radial distribution wasestablished by taking Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) plantation woodas an example. Based on this model, considering the effect of non-uniform earlywood andlatewood density on wood drying, two one-dimensional mathematical model were establishedfor separately describing heat and mass transfer in quarter-sawn lumber and flat-sawn lumberdrying process. Moisture content (MC.) distribution in small flawless and average MCvariation in sawn lumber during drying was separately detected by X-ray method and weighingmethod, which was used for testing the accuracy and feasibility of the mass and heat transfermodels. In the end, based on the models about heat and mass transfer in quarter-sawed lumber,the effect of drying medium, physical parameters, lumber thickness on drying rate wasqualitatively analyzed. The results showed that:
     1. Tree growth temperature cycling was quantitively described by sine wave function, andthe function fitting coefficient of determination was0.907. Cyclical changes in rainfall duringtree growth was quantitively described by piecewise linear function. Tree growth rate modelgot from them can accurately analyze temperature and rainfall effects on tree growth rate. Themodel about earlywood and latewood density based on tree growth rate model can accuratelydescribe wood density ridial distribution, which provided theoretical basis for the wood densityon the macro and micro intrinsic link, as well as mathematical foundation for quantitivelyanalyzing effects of earlywood and latewood non-uniform density on wood drying.
     2. Heat and mass transfer during wood drying process was separately expressed byFourier law and Fick's law of diffusion. Based on the density distribution function ofquarter-sawed lumber and flat-sawed lumber drying, a one-dimensional mathematical modeldescribing heat and mass transfer “multi field-phase transitions-diffusion” was established.Using finite difference method and FORTRAN language programming, with boundaryconditions, numerical solutions of this model was obtained.
     3. Using slicing method to test the applicability of X-ray scanning method in layer MCdetection. The result showed that there was no significant differece between them (P>0.05),and we can get accurate MC distribution in wood by X-ray scanning method. With this method,layer MC variation of quarter-sawed lumber and flat-sawed lumber under dry bulb temperature60℃(wet bulb temperature40℃) and dry bulb temperature90℃(wet bulb temperature75℃)were detected. Then, it compared with the result got from heat and mass transfer model. Itindicated that the model can reflect the MC distribution during wood drying process. Thevariation of average MC got from drying test that quarter-sawed lumber and flat-sawed lumberunder different dry bulb temperature and wet bulb temperature was good agreement with theresult obtained from heat and mass transfer model. Therefore, it showed that the heat and masstransfer model can reflect heat and water transfer in wood drying.
     4. Through the heat and mass transfer model, we can can draw some condusions: in woodconstant drying stage, drying rate depended on the surface evaporation rate, and dryingmedium was main factors affecting the rate of surface evaporation. The higher the dryingmedium temperature, the smaller the relative humidity, the greater the flow rate, and the fasterthe drying rate of sawn drying. When the flow rate of the air surpassed1.5m/s,it had nosignificant effects on wood drying rate. In the slowly drying stage, drying rate depended onvolume evaporation rate and interface evaporation rate, which were determined by woodphysical properties. The equivalent mass diffusion rate and thermal conductivity had positivecorrelation with wood drying rate; while timber thickness had negative correlation with drying rate. The effect of thermal conductivity was smaller than equivalent mass diffusion rate.
引文
Anta M B, Dorado F C, Diéguez-Aranda U, et al. Development of a basal area growth system for maritimepine in northwestern Spain using the generalized algebraic difference approach[J]. Canadian journal offorest research,2006,36(6):1461-1474.
    Babbitt J D. On the differential equations of diffusion[J]. Canadian Journal of Research,1950,28(4):449-474.
    Beard J N, Rosen H N, Adesanya B A. Temperature, distributions and heat transfer during the drying oflumber[J]. Drying Technology,1983,1(1):117-140.
    Blair R B, Zobel B, Hitchings R C, et al. Pulp yield and physical properties of young loblolly pine withhighdensity juvenile wood[C].Appl. Polym. Symp.1976,28:435-444.
    Bonneau P, Puiggali J R. Influence of heartwood-sapwood proportions on the drying kinetics of a board[J].Wood Science and Technology,1993,28(1):67-85.
    Cai Z. A new method of determining moisture gradient in wood[J]. Forest Products Journal and Index,2008,58(7-8):41-45.
    Cloutier A, Fortin Y, Dhatt G. A wood drying finite element model based on the water potential concept[J].Drying technology,1992,10.
    Cloutier A, Fortin Y, Dhatt G. Wood drying modelling based on the water potential concept: Recentdevelopments[J]. Drying Technol,1992,10(5):1151-1181.
    Cloutier A, Fortin Y. Moisture content—water potential relationship of wood from saturated to dryconditions[J]. Wood science and technology,1991,25(4):263-280.
    Collignan A, Nadeau J P, Puiggali J R. Description and analysis of timber drying kinetics[J]. Dryingtechnology,1993,11(3):489-506.
    De Vries D A. The theory of heat and moisture transfer in porous media revisited[J]. International journal ofheat and mass transfer,1987,30(7):1343-1350.
    Defo M, Fortin Y, Cloutier A. Modeling superheated steam vacuum drying of wood[J]. Drying technology,2004,22(10):2231-2253.
    Dennis J R, Beall F C. Evaluation of a new portable radiofrequency moisture meter on lumber with dryinggradients[J]. Forest Products Journal,1977:24-29.
    FENG Y, Suchsland O. Improved technique for measuring moisture content gradients in wood[J]. Forestproducts journal,1993,43(3):56-58.
    Ferguson W J, Turner I W. A two-dimensional numerical simulation of the drying of pine at hightemperatures[C].Proc.4th International IUFRO Wood Drying Conf., Rotorua, New Zealand.1994:415-422.
    Ferrand J C.Considerations on wood density,Part2.Calculation of density and itsheterogeneity[J].Holzforschung,198236(3):153-158.
    Forest Products Laboratory (US). Wood handbook: wood as an engineering material[M]. United StatesGovernment Printing,2010.4-7.
    Fortin Y. Moisture content-matric potential relationship and water flow properties of wood at high moisturecontents[J].1980.187.
    Fritts H C. Tree rings and climate[M]. London, New York, San Francisco.: Academic Press,1976.567.
    Gardner W H, Campbell G S, Calissendorff C. Systematic and random errors in dual gamma energy soil bulkdensity and water content measurements[J]. Soil Science Society of America Journal,1972,36(3):393-398.
    Gui Y Q, Jones E W, Taylor F W, et al. An application of finite element analysis to wood drying[J]. Woodand fiber science,1994,26(2):281-293.
    Haque M N. Analysis of heat and mass transfer during high-temperature drying of Pinus radiata[J]. DryingTechnology,2007,25(2):379-389.
    Irudayaraj J, Haghighi K, Stroshine R L. Nonlinear finite element analysis of coupled heat and mass transferproblems with an application to timber drying[J]. Drying technology,1990,8(4):731-749.
    James W L. Electric moisture meters for wood[M]. Dept. of Agriculture, Forest Service, Forest ProductsLaboratory,1963. FPL-08.
    Kawai S, Nakato K, Sadoh T. Moisture movement in wood below the fiber saturation point[J]. Journal of theJapan Wood Research Society,1978,24.
    Kawai S, Nakato K, Sadoh T. Prediction of moisture distribution in wood during drying[J]. Journal of theJapan Wood Research Society,1978,24.
    Kim E S. The growth of Korean fir trees (Abies koreanaWilson) affected by the changes of soil moisturecontent on Mt.Halla,Cheju island,Korea[C].International workshop on Asian and pacificdendrochronology.Tsukuba Japan,1995:58-63.
    Kirk C J, Guillon G, Balestre M N, et al. Stimulation, by vasopressin and other agonists, of inositol-lipidbreakdown and inositol phosphate accumulation in WRK1cells[J]. Biochemical Journal,1986,240(1):197.
    Koponen H. Moisture diffusion coefficient of wood[C].5th Inter.Gymp.the Drying held at theMIT,Cambridge.MA.1986:225-232.
    Krabbenhoft K, Damkilde L. A model for non-Fickian moisture transfer in wood[J]. Materials and structures,2004,37(9):615-622.
    Krischer O.Fundamental law of moisture movement in drying by capillary flow and vapordiffusion[J].VDI-Zeitschrift,1938,82(13):373-378.
    Liu J Y, Cheng S. Heat and moisture transfer in wood during drying[M]. Mechanics of cellulosic andpolymeric materials. American Society of Mechanical Engineers,1989:79-85.
    Loos W E. A review of methods for determining moisture content and density of wood by nuclear radiationtechniques[J]. Forest Products Journal,1965.15(3):102-106.
    Loos W E. The relationship between gamma-ray absorption and wood moisture content and density[J].Forest products journal,1961,11(5):145-149.
    Lu J X,Urakami H,Hirkawa Y,et al. Pilot Study to Examine the Radial Variation in Annual RingWidth,Density and Shrinkage[J].Chinese Forestry Science and Technology,2003,2(4):21-26.
    Luikov A V, Shashkov A G, Vasiliev L L, et al. Thermal conductivity of porous systems[J]. InternationalJournal of Heat and Mass Transfer,1968,11(2):117-140.
    Luikov A V. Capillary-Porous Bodies[J]. Advances in heat transfer,1964,1.
    Luikov A V. Heat and mass transfer in capillary-porous bodies.1966. Oxford: Pergamon Press.
    Luikov A V. Heat and mass transfer in capillary-porous bodies[J].Advances Heat Transfer,1964,1:123-184.
    Luikov A V. Systems of differential equations of heat and mass transfer in capillary-porous bodies(review)[J]. International Journal of Heat and mass transfer,1975,18(1):1-14.
    Luikov A V. Systems of differential equations of heat and mass transfer in capillary-porous bodies(review)[J]. International Journal of Heat and mass transfer,1975,18(1):1-14.
    McMillen J M. Drying stresses in red oak[J]. Forest Prod. J,1955,5(1).
    Melvyn L F,R John.Convicted drying model of southern pine[J].Drying Technology,1997,15,(10):2343-2375.
    Mounji H, Kouali M. EL.1991. Modeling of the drying process of wood in3-Dimensions[J]. DryingTechnology,9(5):1259-1314.
    Mujumdar A S. Innovation in drying[J]. Drying Technology,1996,14(6):1459-1475.
    Nabhani M, Laghdir A, Fortin Y. Simulation of high-temperature drying of wood[J]. Drying Technology,2010,28(10):1142-1147.
    Nasrallah S B, Perre P. Detailed study of a model of heat and mass transfer during convective drying ofporous media[J]. International Journal of Heat and Mass Transfer,1988,31(5):957-967.
    Nijdam J J, Langrish T A G, Keey R B. A high-temperature drying model for softwood timber[J]. ChemicalEngineering Science,2000,55(18):3585-3598.
    Pang S. Airflow reversals for kiln drying of softwood lumber: Application of a kiln-wide drying model and astress model[C].Proceedings of the14th International Drying Symposium, vol. B.2004:1369-1376.
    Pang S. Mathematical modeling of kiln drying of softwood timber: Model development, validation, andpractical application[J]. Drying technology,2007,25(3):421-431.
    Pang, S. Relative importance of vapour diffusion and convective flow in modelling of softwood drying[J].Drying Technology1998,16(1&2),271-281.
    Peishi C, Pei D C T. A mathematical model of drying processes[J]. International Journal of Heat and MassTransfer,1989,32(2):297-310.
    Pernest l K, Jonsson B, Larsson B. A simple model for density of annual rings[J]. Wood Science andTechnology,1995,29(6):441-449.
    Perre P, Maillet D. Drying of softwoods: The interest of a two-dimensional model to simulate anisotropy orto predict degrade[C].Wood Drying Symposium, IUFRO, July.1989,23:28.
    Perre P, Moser M, Martin M. Advances in transport phenomena during convective drying with superheatedsteam and moist air[J]. International Journal of Heat and Mass Transfer,1993,36(11):2725-2746.
    Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradients[J].Transactions, American Geophysical Union,1957,38:222-232.
    Rennolls K, Geary D N, Rollinson T J D. Characterizing diameter distributions by the use of the Weibulldistribution[J]. Forestry,1985,58(1):57-66.
    Scheidegger A E. The physics of flow through porous media[J]. Soil Science,1958,86(6):355.
    Schweingruber F H. Tree ring:Basics and applications of dendrochronology[M].Kluwer AcademicPublishers,London.1988,20-83.
    Sherwood T K. The drying of solids—I[J]. Industrial&Engineering Chemistry,1929,21(1):12-16.
    Sherwood T K. The drying of solids—II[J]. Industrial&Engineering Chemistry,1929,21(10):976-980.
    Shusheng P, Langriah T A G, Keey R B. Moisture movement in softwood timber at elevated temperatures[J].Drying Technology,1994,12(8):1897-1914.
    Siau J F. An investigation of the external and internal resistance to moisture diffusion in wood[J]. Woodscience and technology,1987,21(3):249-256.
    Siau J F. Chemical potential as a driving force for nonisothermal moisture movement in wood[J]. WoodScience and Technology,1983,17(2):101-105.
    Siau J F. Nonisothermal diffusion model based on irreversible thermodynamics[J]. Wood Science andTechnology,1992,26(5):325-328.
    Siau J F. Transport processes in wood[J]. Transport processes in wood.,1984,245.
    Simpson W T. Equilibrium moisture content of wood in outdoor locations in the United States andworldwide[M]. US Dept. of Agriculture, Forest Service, Forest Products Laboratory,1998.
    Skaar C. Analysis of methods for determining the coefficient of moisture diffusion in wood[J]. J. For. Pdts.Res. Soc,1954:403-10.
    Smith S A, Langrish T A G. Multicomponent solid modeling of continuous and intermittent drying of Pinusradiata sapwood below the fiber saturation point[J]. Drying Technology,2008,26(7):844-854.
    Spolek G A, Plumb O A. Capillary pressure in softwoods[J]. Wood Science and Technology,1981,15(3):189-199.
    Sprague J R, Talbert J T, Jett J B, et al. Notes: Utility of the Pilodyn in Selection for Mature Wood SpecificGravity in Loblolly Pine[J]. Forest science,1983,29(4):696-701.
    Stanish M A, Schajer G S, Kayihan F. A mathematical model of drying for hygroscopic porous media[J].AIChE Journal,1986,32(8):1301-1311.
    Stanish M A. The roles of bound water chemical potential and gas phase diffusion in moisture transportthrough wood[J]. Wood science and technology,1986,20(1):53-70.
    Steele P H, Cooper J E. Moisture and density detector (MDD): U.S. Patent6,784,671[P].2004-8-31.
    Sutherland J W, Turner I W, Northway R L. A theoretical and experimental investigation of the convectivedrying of Australian Pinus radiata timber[J]. Drying Technology,1994,12(8):1815-1839.
    Tesoro F O, Choong E T, Kimbler O K. Relative permeability and the gross pore structure of wood[J]. Woodand Fiber Science,1974,6(3):226-236.
    Thomas H R, Lewis R W, Morgan K. An application of the finite element method to the drying of timber[J].Wood and Fiber Science,1980,11(4):237-243.
    Truscott S L, Turner I W. A heterogeneous three-dimensional computational model for wood drying[J].Applied mathematical modelling,2005,29(4):381-410.
    Watanabe K, Saito Y, Avramidis S, et al. Non-destructive measurement of moisture distribution in woodduring drying using digital X-ray microscopy[J]. Drying technology,2008,26(5):590-595.
    Wiberg P, Sehlstedt-P S M B, Morén T J. Heat and mass transfer during sapwood drying above the fibresaturation point[J]. Drying Technology,2000,18(8):1647-1664.
    Withaker S. Simultaneous heat, mass and momentum transfer in porous media. A theory of drying porousmedia[J]. Adv. Heat Transfer,1977,13:119-200.
    Yasue Koh,Funada Ryo,Fukazawa Kazumi. Effect of climate factors on the maximum density of Piceaglehnii[C].International workshop on Asian and pacific dendrochronology.Tsukuba Japan,1995,58-63.
    Youngs R L. Drying stress and check development in the wood of two oaks[J]. IAWA JOURNAL,1996,17:15-30.
    Yu C, Dai C, Wang B J. Heat and mass transfer in wood composite panels during hot pressing: Part3.Predicted variations and interactions of the pressing variables[J]. Holzforschung,2007,61(1):74-82.
    Zobel B J, Buijtenen J P. Wood variation: its causes and control[M]. Springer-Verlag,1989.
    Lewis R B著.干燥原理及其应用[M].上海:上海科学技术文献出版社,1986.
    鲍甫成,侯祝强.针叶树材纵向气体渗透的三维流阻网络[J].林业科学,2002,38(4):111-116.
    成俊卿.木材学[M].北京:中国林业出版社,1985.
    方琼英,张秀玲.重复测量资料统计分析方法的选择[J].中国医院统计,2012,19(4):298-300.
    胡晓龙.长白落叶松林分断面积生长模型的研究[J].林业科学研究,2003,16(4):449-452.
    胡云云,亢新刚,赵俊卉.长白山地区天然林林木年龄与胸径的变动关系[J].东北林业大学学报,2009(011):38-42.
    李坚.木材科学[M].北京:高等教育出版社,2002.
    李贤军,蔡智勇,傅峰.干燥过程中木材内部含水率检测的X射线扫描方法[J].林业科学,2010,46(2).
    李贤军,张璧光,李文军,等.木材中非等温水分迁移的研究[J].北京林业大学学报,2005,27(2):96-100.
    李延军,李梁,张璧光.非稳态法测定杉木板材的水分扩散系数[J].浙江林学院学报,2007,24(2):121-124.
    刘刚,陆元昌,李晓慧,等.六盘山地区气候因子对树木年轮生长的影响[J].东北林业大学学报,2009,37(4).
    刘昊,高建民,张璧光.巨尾桉与青杨热学参数影响因素的实验研究[J].华北电力大学学报,2010(001):102-105.
    吕建雄,林志远,赵有科,等.杉木和I-72杨人工林木材干缩性质的研究[J].林业科学,2005,41(5):127-131.
    吕建雄,王金林,黄安民.中国杨树木材加工利用研究进展[C].第二届中国林业学术大会-S11,木材及生物质资源高效增值利用与木材安全论文集,广西南宁,2009,233-241.
    马尔妮,赵广杰.木材物理学专论[J].2012.
    苗平,顾炼百.马尾松木材的横向渗透性[J].南京林业大学学报,2000,24(3):29-31.
    徐金梅,吕建雄,鲍甫成,等.祁连山青海云杉木材密度对气候变化的响应[J].北京林业大学学报,2011,33(5):115-121.
    尹思慈.木材学[M].北京:中国林业出版社,1996.
    余乐,吕建雄,李贤军,等.采用X射线扫描法测量木材含水率的初步研究[J].中南林业科技大学学报ISTIC,2012,32(1).
    俞昌铭.多孔材料传热传质及其数值分析[M].北京:清华大学出版社,2011,13.
    俞自涛,胡亚才,洪荣华,等.温度和热流方向对木材传热特性的影响[J].浙江大学学报(工学版),2006,40(1).
    张建国,段爱国.理论生长方程与直径结构模型的研究[M].北京:科学出版社,2004.
    张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700