环己烯环氧化催化剂的合成、表征及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在河南省杰出人才创新基金项目(编号:0121001900)资金资助下完成的。
     目前已知的烯烃环氧化用高活性催化剂大多是均相催化剂(如过渡金属V(Ⅴ)、Mo(Ⅵ)、W(Ⅵ)、Ti(Ⅳ)等的配合物),虽反应条件温和、选择性好、转化率高,但难于从反应体系中分离回收和重复使用。因此选择合适的方法将活性组分负载到有机或无机载体上,是均相催化剂多相化研究的关键之一。许多研究表明,有机或无机高分子材料不仅是负载金属活性物种的一个惰性载体,而且还可以提供一种特定的环境(可充当配体,或提供酸碱性等),通过三维空间的多点作用,可对金属活性中心进行修饰,使催化剂结构发生变化,从而影响催化剂性能达到高活性和选择性。还具有与反应物、产物易分离,可多次重复使用之优点。本文以二乙烯基苯交联的大孔聚苯乙烯树脂及价廉易得的无机高分子材料SiO_2为载体,键合引入前期已筛选出的活性、选择性都很优良的Mo(Ⅵ)活性物种,合成出了一系列高分子Mo配合物并用于催化环己烯环氧化反应研究,进而筛选出了具有工业应用价值的多相催化剂品种,消除了均相催化剂的诸多缺陷,达到了催化剂反应后分离方便且能循环使用之目的。
     本文主要在以下几方面开展了研究工作并获得重要成果,具体如下:
     (1)、选择过渡金属Mo(Ⅵ)为活性物种,以分子结构特别且具有优异活性和选择性的MoO_2(acac)_2为催化剂多相化研究样本,探讨了物料摩尔比,反应时间、温度、反应氛围、溶剂用量等因素对合成环氧环己烷反应的影响,用正交实验技术优化了环氧化合成条件,即:,以n(t-BuOOH)=0.1mol计,溶剂用量10ml,温度80℃,时间60min,MoO_2(acac)_2用量0.1g。以t-BuOOH计,环氧环己烷收率在99.5%以上。此外,还建立了易于操作的环氧环己烷气相色谱分析方法。
     (2)、采用PS树脂为载体,设计并合成了以N为配位原子的乙二胺类系列高分子配体,首次合成了PS负载乙二胺类系列Mo(Ⅵ)配合物;设计并制备了以O为配位原子的乙酰丙酮(β—二酮)、乙二醇(α—二醇)类系列高分子配体,首次合成了PS负载乙酰丙酮系列Mo(Ⅵ)配合物和乙二醇系列配体Mo(Ⅵ)配合物;设计并制备了含有N、O为配位原子的乙醇胺、乙二胺缩水杨醛Schiff碱高分子配体,首次合成了PS负载乙醇胺及乙二胺缩水杨醛Schiff碱Mo(Ⅵ)配合物。用红外光谱(IR)、原子吸收光谱(AAS)、X-光电子能谱(XPS)等技术对合成催化剂进行了表征,检验了PS负载Mo(Ⅵ)活性组分的有效性,测定了负载金属Mo活性组分的量及其化合价态。工作中,还建立了PS负载Mo配合物中Mo的化学分析新方法。
    
    环己烯环氧化催化剂的合成、表征及其催化性能研究
     将上述PS负载Mo(vi)配合物用于催化t一Bu0OH环氧化环己烯反应,结果发现,
    仅含有N配位原子的M。配合物虽具有很高催化活性,但N配位原子的强碱性,降低
    了Mo活性中心的L酸性,反应时催化选择性严重下降。催化活性和选择性皆较高的
    是含O配位原子的乙酞丙酮(p一二酮)、乙二醇(。一二醇)系列以及含N、O配位原
    子的乙醇胺、乙二胺缩水杨醛等类Mo(vi)配合物,尤其是PS负载乙酞丙酮Mo少D、
    乙二胺缩水杨醛Mo(VI)配合物的催化活性和选择性更为优秀。5次循环使用后,仍可
    保持最初的优良催化性能。虽催化剂外观上有些微碎裂,但并不影响其催化效果。
     (3)首次以Mo的3d52电子结合能值为判据,提出了Mo(Vl)催化环氧化规律,即:
    对于结构相似的PS负载Mo(VI)配合物,若其M。的3d,2电子结合能值小(大),其催
    化环氧化活性和选择性就相对较低(高);当M。(VI)配合物的Mo3山2电子结合能值相
    同(近)时,空间效应大的Mo(V工)催化选择性低,因此在Mo(VI)中心与载体表面间保持
    适当的距离对选择性有利。
     由于PS载体表面具有化学惰性,孔道为大孔,反应具有类液体特性,与结构相似
    的小分子MO配合物具有相同的反应信息,因此本规律可外延至小分子M。配合物,对
    寻找和设计新的Mo配合物环氧化催化剂,具有指导性和可操作性。
     (4)、为减小催化剂成本,以无机高分子材料一510:代替PS树脂为载体,采用化
    学键合方法,将 Mo活性组分在510:载体中进行新的设计与组装,并检测其催化性能。
    结果发现,与PS载体负载乙酞丙酮、乙醇胺以及乙二醇类M。配合物相比,制备的
    5102键合相同小分子配体M。配合物具有更优良的催化性能。优异催化剂品种为5102
    键合乙酞丙酮MO配合物,循环使用5次后基本保持原始高活性和高选择性。此外,
    还发现510:载体表面结构氧与M。活性中心存在强相互作用,使M。的3d5:结合能
    值升高,有利于环氧化反应。
     (5)、首次以(MoOCll)2/510:为前体,设计并合成出了MoO‘:2一/510:催化剂。该催化
    剂具有优异的催化性能且循环使用5次后基本保持最初的高活性和选择性。
     鉴于以上以PS负载或510:键合的乙酞丙酮\1o配合物、Mo叭2一/5102催化剂具有优
    异催化环氧化活性和选择性,5次循环使用后,基本保持最初的催化活性和选择性,
    特推荐为t一BuOOH环氧化环己烯合成环氧环己烷工业用催化剂品种样本。
This dissertation was financially supported by Henan Province Elitist Innovation Fund.
    The epoxidation of alkene is a kind of complicated reactions because the oxidation can take palce either at the C=C double bond or at the a - H atom which result in low selectivity of the epoxidation. At present, most of the well-known catalysts with high activity for the epoxidation are homogeneous, such as high valence transition metal complexes of Ti(IV), V(V), Cr(VI), Mo(VI) and W(VI), which possess the merits of moderate reaction condition, high activity, selectivity and so on, but are difficult to be separated from the reaction system and to be reused. Thus, the methods and techniques to surpport high valence transition metal complexes on organic or inorganic materials is one of the key steps to make the homogeneous catalysts heterogeneous.
    Divinylbenzene cross-linked macropore polystyrene resin( simply named with PS) is a kind of organic macromolecule materials which do not dissolve in water, acid, alkali or organic solvent, and own the merits of strong anti-oxidizability, good stability, easiness of being functionalized and due to the presence of macropores, their reactive properties are same to those of liquids. In this work, we designed and prepared several series of of macromolecule ligands and macromolecule metal complexes catalysts based on the structural characters of PS resin. Moreover, inexpensive and available inorganic macromolecule materials SiC>2, are also used as carriers to be anchored with Mo active species, which have the promising properties of anti-oxidizability, thermal stability, mechanical intensity, porousness, high specific surface area and which can also form strong chemical bond or absorption with the active sites through the H groups in the surface. All the above supported catalysts are used in the catalytic epoxid
    ation of cyclohexene.
    In the dissertation, we mainly carried out the following several aspects of research works and have made significant achievements:
    (1) We have synthesized three kinds of micromolecule homogeneous catalysts, i.e. VO(acac)2, MoO2(acac)2 and MoO2(oxine)2, which are characterized by elemental analysis, IR etc. The results of epoxidation of cyclohexene with f-BuOOH catalyzed by such catalysts as VO(acac)2, MoO2(acac)2, Mo02(oxine)2, MoO3, WO3, Na2MoO4 and Na2W04, are compared to those of the previous researches with the transition metal complexes catalysts and finally we selected Mo(VI) O2(acac)2 as the active species. Effects of different factors, such as the mole ratio between different matariels, reaction time, tempreture,
    
    WLPage]=006
    reactive circumstance and amount of solvent on the yield of cyclohexene oxide, were discussed in this epoxidation and the optimal synthesis conditions were obtained by orthogonal technique, which are detailed as follow: ( based on 0.1 mol of f-BuOOH), 10 mL of solvent, temperature 353 K, raction time 60 min and 0.1 g of MoO2(acac)2. Under the above conditions, the yield of cyclohexene oxide were all over 99.5% and which are also used as the main reaction conditions to test the catalytic properties of different macromolecule Mo(VI) complexes prepared. In this research, we also found the easily operable GC analysis method of cyclohexene oxide.
    (2) In this section, we designed and prepared three series of macromolecule ligands, i.e. ethylenediamine Hands in which the coordinate atom is N, acetylacetone( 3 -dione) and glycol( a -diol) ligands in which the coordinate atom is O and other macromolecule ligands with the coordinate atoms of both N and O, such as ethanolamine and the condensate of ethylenediamine and salicylaldehyde Schiff Base. And for the first time, we have synthesized PS-grafted different Mo(VI) complexes with the above ligands which are characterized by using IR, AAS, XPS etc to confirm that Mo active species have been grafted on the PS resin. We also determined the amount and the valence of the grafted Mo(VI) active species and built the chemical analysis method of amount of Mo in the PS-grafted Mo co
引文
[1] 韩飞.环氧环己烷的制备和回收及光固化应用[J].甘肃化工,1999,(3):5-12.
    [2] 蒋登高,章亚东,周彩荣主编.精细有机合成反应及工艺[M].北京:化学工业出版社,2001.
    [3] 侯薇,陶风岗.合成环氧化合物的新途径[J].化学工业与工程,1996,13(3):47-50
    [4] Crwello J V, Yang B. Studies of Synthesis and Cationic Photopolymerization of Three Isomeric Monoterpene Dieppoxides[J]. J Polym Sci, Part A: Poly. Chem., 1995,33 (11): 1991-1890
    [5] Carruthers W. Some Modern Methods of Organic Synthesis(3rd edition) [M]. Cambrige University Press, 1986.
    [6] LI Xuegeng, WANG Fan, LU Xiaoling, et al. A Novel Method for Epoxidation of Cyclohexene Catalyzed by Fe_2O_3 with Molecular Oxygen and Aldehydes[J]. Synthetic Communications, 1997, 27(12): 2075-2079
    [7] 张文智,关锡.环己烯电化学环氧化的研究[J].高等学校化学学报,1998,10(12):1260-1262
    [8] Smith J R L, Cooke P R. Alkene epoxidation catalysed by iron(Ⅲ) and manganese(Ⅲ) tetraarylporphyrins coordinatively bound to polymer and silica supports[J]. J Chem Soci , Perkin Transactions, 1994, (1): 14-19
    [9] 王杏乔,高爽,曹昌盛,等.诱捕在沸石超笼内的金属卟啉的催化性能[J].催化学报,1996,17(4):343-345
    [10] 韩飞.环氧环己烷的综合利用[J].精细石油化工,1998,(5):1-4
    [11] 张侦祥,冯利民.1.2—环氧环己烷的开发与利用[J].湖南化工,1995,25(3):19-22
    [12] 雷忠华.1,2—环氧环己烷[J].湖南化工,1989,(2):63
    [13] 徐克勋主编.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1996.
    [14] 李莉,邓国才,陈荣悌.环己二醇脱氢制邻苯二酚研究进展[J].精细石油化工,1999,3(2):47-51.
    [15] 王荣民,冯辉霞,何玉凤,等.分子筛基类卟啉金属络合物模拟生物氧催化作用[J].精细石油化工,2000,(2):48-51
    [16] Keilani A, Schreiner A F, Hilal H S, et al. The catalytic activity of poly(siloxane)-supported metalloporphyrins in olefin oxidation reactions: The effect of the support on the catalytic activity and selectivity[J].J Mol Catal A: Chemical, 1996,113(1/2): 151-157
    [17] 肖友发,游劲松,余孝其,等.高分子负载锰卟啉的合成及其催化烯烃环氧化反应研究[J],化学研究与应用,1996,8(3):376-380
    [18] Herron N. The selective partial oxidation of alkanes using Zeolite based catalysis. phthalocynine(PC) "ship-in-bottle" species[J]. J Coord Chem,1988, 19:25-38
    [19] 秦笃捷,王国甲,吴越.单取代杂多化合物在以分子氧为氧化剂的环己烯氧化反应中的催化作用[J].高等学校化学学报,1994,15(2):279-280
    [20] [美]House H.O.著 花文廷,李书润,王定基译.叶秀林校.现代合成反应[M].北京:北京大学出版社,1985.
    [21] 张铸勇主编.精细有机合成单元反应[M].上海:华东理工大学出版社,1999
    [22] Batzer H. Cycloaliphatic epoxides. Their synthesis and properties[J]. Chemistry and Industry, 1964, 5:179-189
    [23] Turk H, Ford W T. Epoxid ation of styrene with aqueous hypochlorite catalyzed by a mangauese porphyrine bound to colloidal anion-exchange particles[J]. J Org Chem, 1991,
    
    56(3):1253-1260
    [24] 马红竹,索继栓.MnTFPPCl模拟体系催化环己烯氧化反应性能研究[J].分子催化,1999,13(3):165-168
    [25] Chatterjee D, Mukherjee S, Mitra A. Epoxidation of olefins with sodium hypochloride catalysed by new Nickel Ⅱ-Schiff base complexes[J]. J Mol Catal A: Chemical, 2000,154: 5-8.
    [26] Razenberg J, Van der Made A, Smeets J. Cyclohexene epoxidation by the mono-oxygenase model tetraphenylporphyrinato)manganese(Ⅲ) acetate-sodium hypochlorite[J]. J Mol Catal, 1985, 31(3): 271-287.
    [27] 沈敏敏,哈成勇.酯环族环氧树脂的合成[J].广州化学,2000,25(1):50-57
    [28] Carruthers W. Some modern methods of organic synthesis[M]. Cambridge: Cambridge University Press, 3rd edition, 1986
    [29] 李金林,张曼征.烯烃环氧化催化剂的种类和特征[J].中南民族学院学报,1994,13(2):81-88
    [30] 杨启云,戚建英,刘振义,等.环己烯催化环氧化反应的研究进展[J].云南师范大学学报,2000,20(4):36-40
    [31] Goto M. Epoxidation of olefin with alkyl hydroperoxide catalyzed by molybdenum complex supported on activated carbon[J], J Mol Catal,1990,57(3):361-366.
    [32] 章亚东,蒋登高,高晓蕾,等.叔丁基过氧化氢环氧化合成环氧环己烷工艺研究[J].精细化工,2002,19(5):291-294
    [33] Talsi E P, Zamaraev K I, Chinakov V D. Role of vanadium alkylperoxo complexes in e poxidation of cyclohexene and oxidation of cyclohexane by organic hydroperoxides in the presence of bis(acetylacetonato)vanadyl[J]. J Mol Catal, 1993,81(2): 235-254
    [34] Talsi E P, Shalyaev K V. H-1 and O-17 NMR spectroscopic detection and charaterzation of titanium(Ⅳ) alkylperoxo complex[J]. J Mol Catal A :Chemical, 1996,105:131-136.
    [35] Sobczak J M, Ziolkowski J J. Structure and catalytic reactivity of some bis-carboxylate molybdenum(Ⅴ) complexes[J]. J of the Less-Common Metals, 1977, 54(1): 149-157.
    [36] Sobczak J M, Ziolkowski J J, Li W. Bimetallic olybdenum-rare earth complexes as catalysts of olefin epoxidation[J]. J Mol Catal, 1m989,52(2):L1-L4.
    [37] Tempesti E, Giuffre L, Di Renzo F. Heterogenized boron(Ⅲ)-molybdenum(Ⅵ) mixed oxo derivatives as new bimetallic catalysts for cyclohexene liquid-phase epoxidation[J]. J Mol Catal, 1988,45(2):255-261.
    [38] Berentsveig V. V., Barinova T. V. Synergistic effect and its mathematical modeling in catalysis of liquid-phase oxidation/epoxidation of cyclohexene by heterogenized metal complexes[J]. Kinetics and Catalysis, 1987,28(4):742-747.
    [39] 章亚东,蒋登高,高晓蕾,等.聚苯乙烯接枝钼络合物催化合成环氧环己烷的研究[J].化学工程与工艺,2002,18(4):304-309
    [40] Sherrington D C, Simpson S. Polymer-supported Mo alkene epoxidation catalysts[J]. Reactive Polymers, 1993,19(1-2): 13-25.
    [41] Miller M M,Sherrington D C. Alkene epoxidation catalysed by Mo(Ⅵ) supported on Imidazole-containing polymers. Ⅰ. Synthesis, characterization and activity of catalysts in the epoxidation of cyclohexene[J], J Auto Chem, 1994,162(53):368
    [42] Ezio T, Paolo F, Elisabetta R. On the catalytic activity of Mo(Ⅵ)-grafted poly(thioether-amido-acid) crosslinked resins in liquid-phase cyclohexene epoxidation with t-butyl hydroperoxide[J]. Reactive and Functional Polymers, 1995,26(1-3):67-74.
    [43] Kotov S V, Balbolov E. Comparative evaluation of the activity of some homogeneous and
    
    polymeric catalysts for the epoxidation of alkenes by organic hydroperoxides[J]. J Mol Catal A: Chemical,2001,176(1-2):41-48.
    [44] Filippov A P, Polishchuk O A. Kinetics of the epoxidation of cyclohexene with butyl hydroperoxide, catalyzed by molybdenum(Ⅵ) fixed on phosphate cellulose[J]. Kinetics and Catalysis, 1984,25(6): 1150-1157.
    [45] Barradas E F M, Cestari A R, Airoldi C. Epoxidation of cyclohexene on heterogenized molybdenum compounds[J]. Brazilian Journal of Chemical Engineering, 1998,15(2): 146-150.
    [46] Kotov S V, Boneva St, Kolev T. Some molybdenum-containing chelating ion-exchange resins polyampholites as catalysts for the epoxidation of alkenes by organic hydroperoxides[J]. J Mol Catal A: Chemical, 2000, 154: 121-129.
    [47] Kotov S V, Boneva S. Catalytic epoxidation of alkenes in the presence of a weakly acidic cation exchanger containing transition metal ions[J]. J Mol Catal A: Chemical, 1999, 139: 271-283.
    [48] Teixeira, Dallmann, Schuchardt. Molybdenum-based epoxidation catalysts heterogenized in silica matrixes via the sol-gel method[J]. J Mol Catal A :Chemical,2002,182-183:167-173.
    [49] Jitsukawa K., Oka Y., Hisahiko Einaga and Hideki Masuda. Activity, selectivity and stability of metallosilicates containing molybdenum for the epoxidation of alkenes[J]. J Mol Catal A: Chemical, 2001, 165: 149-158.
    [50] Antonya R., Tembea G.L., Ravindranathana M., Ramb R.N.. Synthesis and catalytic property of poly(styrene-co- divinylbenzene) supported ruthenium(Ⅲ)-2-aminopyridyl complexes[J]. European Polymer Journal, 2000, 36:1579-1589.
    [51] 张义华,王祥生,郭新闻.钛硅催化材料的研究进展[J].化学进展,2001,13(9):382-391)
    [52] 李明丰,于桂燕,王祥生.钛硅沸石TS-2的合成及表征[J].石油化工,1998,27(2):110-115
    [53] Tuel A. Synthsis, Characterization and Catalytic Properties of the New Ti-ZSM-12[J]. Zeolite, 1995,15:236-242
    [54] Wu P, Komatsu T, Yashima T. Preparation of Titanosilicate with Mordenites Structure by Atom-Planting Method and Its Catalytic Properties for Hydroxylation of Aromatics[J]. Stud Surf Sci Catal, 1997,105: 663-670.
    [55] Wu P, Komatsu T, Yashina T. Ammoximation of Ketones over Titanium Mordenite[J]. J Catal,1997,168: 400-410.
    [56] Corma A, Navarra M T, Perez-Pariente J. Synthsis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons[J]. J Chem Soc, Chem Commun.,1994,147-148.
    [57] Blasco T, Coma A, Nararro M T et al. Synthsis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures[J]. J Catal,1995,156: 65-73.
    [58] Tanev P T, Chibwe M and Pinnavaia T J. Titanium-Containing Mesoporouse Molecular Sieves for Catalytic Oxidation of Aromatic Compounds[J]. Nature, 1994, 368:321-323.
    [59] Gontier S and Tuel A. Synthesis and Characteriziton of Ti-Containing Mesoporous Silicas[J]. Zeolites, 1995,15: 601~610.
    [60] 张小明,张兆荣,索继栓,等.中孔分子筛MSU及其杂原子衍生物的合成、表征和催化性能研究[J].分子催化,2000,14(2):103-106
    [61] Corma A, Esteve P, Martinez A et al. Oxidation of olefines with hydrogen peroxidation and tert-butyl hydroperoxidation on Ti-Beta catalyst[J]. J Catal,1995,152:18-24
    [62] Vander Waal J C, Lin P, Rigutto M S et al. Synthesis of aluminium free titanium silicate with
    
    the BEA structure using a new and selective template and its use as a catalst in epoxidation[J]. Stud Surf Sci Catal, 1997,105:1093-1100
    [63] Vander Waal J C, Kumkeler P J, Tan K et al. A Selective Catalyst for the Gas -Phase Meerwein-Ponndorf- Verley and Uppenauer Reactions[J]. J Catal, 1998,173:74-83
    [64] Saxton R J. Zajacek J G, Crocco G L. Epoxidation Process and Catalyst Therefore[P]. U S Patent 5374747,1994
    [65] Rigutto M S, de Riter R, Niderer J P M et al. Titanium-Containing Large Pore Morecular Sievevs from Boron-Beta:Prepaation, Characterization and Catalysis[J]. Stud Surf Sci Catal, 1994,84:2245-2252.
    [66] Koyano K A and Tatsumi T. Synthsis of Titanium-Containing Mesoporus Molecular Sieves with a Cubic Stucture [J]. J Chem Soc, Chem Commun,1996,145-146.
    [67] 魏长平,周美娟,甄开吉等.Ti(Zr)-MCM-48催化剂上由a—高碳醇制高碳酸的红外光谱研究[C].第六届全国青年催化会议论文集.1998:239-241.
    [68] 李钢,王祥生,郭新闻.丙烯环氧化反应溶剂效应和酸碱效应研究[J].石油学报(石油加工),2001,17(3):62-67
    [69] 王祥生,郭新闻,刘靖.钛硅沸石的制备及其选择氧化性能[J].大连理工大学学报,1998,38(3):348-353
    [70] 王洪林,王祥生.钛硅选择性氧化催化剂的研究进展[J].石油加工,1998,27(11):844-848
    [71] Xia Q-H, Chen X, Tatsumi T. Epoxidation of cyclic alkenes with hydrogen peroxide and tertbutyl hydroperoxide on Na- containing Tiβ zeolites[J], J Mol Catal A: Chemical, 2001, 176(1-2): 179-193 1381-1169.
    [72] Laha S C, Kumar R.I. Highly Selective Epoxidation of Olefinic Compounds over TS-1 and TS-2 Redox Molecular Sieves Using Anhydrous Urea Hydrogen Peroxide as Oxidizing Agent[J]. J Catal, 2002, 208: 339-344.
    [73] Jorda E, Tuel A, Teissier R, and Kervennaly J. Synthesis, Characterization, and Activity in the Epoxidation of Cyclohexene with Aqueous H_2O_2 of Catalysts Prepared by Reaction of TiF_4 with Silica[J]. J Catal, 1998, 175: 93-107.
    [74] Marchese, Leonardo, Maschmeyer. Probing the titanium sites in Ti-MCM-41 by diffuse reflectance and photoluminescence UV-vis spectroscopies[J]. Journal of Physical Chemistry B, 1997, 101 (44):8836-8838
    [75] Oldroyd, Richard D, Sankar. Enhancing the performance of the supported titanium epoxidation catalyst by modifying the active center[J]. Journal of Physical Chemistry B,1998,102(11):1849-1855.
    [76] Chatterjee M, Hayashi H, Saito N. Role and effect of supercritical fluid extraction of template on the Ti(Ⅳ) active sites of Ti-MCM-41[J]. Microporous and Mesoporous Materials, 2003,57:143-155.
    [77] Ahn, Kim, Jeong. Synthesis, characterization, and catalytic properties of Ti-containing mesoporous molecular sieves prepared using a flurosilicon compound[J].Catalysis Today,2001,68(1-3):83-88.
    [78] Shan Z, Jansen J C, Marchese L. Synthesis, characteriztion and catalytic testing of a 3-D mesoporous titanosilica, Ti-TUD-1[J]. Microporous and Mesoporous Materials, 2001, 48(1-3):181-187 1387-811.
    [79] Figueras, Francois, Kochkar. Crystallization of hydrophobic mesoporous titano-silicates useful as epoxidation catalysts. Microporous and Mesoporous materials, 2000, 39(1): 249-256.
    [80] Hagen A, Schueler K, Roessner F. The performance of Ti-MCM-41 in aqueous media and after
    
    mechanical treatment studied by in situ XANES, UV/Vis and test reactions[J]. Microporous and Mesoporous materials, 2002, 51(1) : 23-33.
    [81] Windenmayer M, Crasser S, Kohler K. TiOx overlayers on MCM-48 silica by consecutive grafting[J]. Microporous and Mesoporous Materials, 2001,44-45, 327-336.
    [82] Zahedi-Niaki M. Hassan, Mahendra Parkash Kapoor, and Serge Kaliaguine. H2O2 Oxidation and Epoxidation of Hydrocarbons and Alcohols over[J]. J Catal, 1998, 177:231-239.
    [83] Francoise Quignard, Agnes Choplin, Remy Feissier. A molecular route towards silica supported zirconium catalysts active for the mild oxidation of olefins with H2O2[J]. J Mol Catal A: Chemical: 1997, 120: L27-L31.
    [84] Nowak I, Kilos B, Ziolek M, Lewandowska A. Epoxidation of cyclohexene on Nb-containing meso-and macroporous materials[J]. Catalysis Today, 2003, 78: 487-498.
    [85] Niederer, Holderich. Oxidation capabilities of BEA isomorphously substituted with molybdenum, vanadium and titanium: An explorative study[J]. Applied Catalysis A: general, 2002,229(l-2) :51-64.
    [86] Maschmeyer T, Rey F, Sankar G heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica[J]. Nature, 1995, 378: 159-162.
    [87] Hafedh Kochkar , Fran.cois Figueras. Synthesis of Hydrophobic TiO2-SiO2 Mixed Oxides for the Epoxidation of Cyclohexene[J]. JCatal, 1997, 171: 420-430; Article No. CA971820.
    [88] Wang S, Yang Q, Wu Z, Li M, Lu J, Tan Z, Li C. Epoxidation of cyclohexene on Ti/SiO2 catalysts prepared by chemical grafting TiCl4 on deboronated silica xerogel[J]. J Mol Catal A: Chemical: 2001, 172:219-225.
    [89] Mandelli D, Michiel C A Van Vliet, Arnold LI. Epoxidation of alkenes with hydrogen peroxide catalyzed by ReO4-SiO2-Al2O3 and ReO4-Al2O3[J]. J Mol Catal A: Chemical, 2001, 168: 165-171.
    [90] Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphrine complexes[J]. J Am Chem Soc, 1979,101(4) : 1032-1045
    [91] Tabushi I, Koga N. P-450 type oxygen activation by porphyryin-manganese complex[J]. J Am Chem Soc, 1979, 101: 6456-6458.
    [92] Tabushi I, Yazaki A. P-450 type dioxygen activation using H2/colloidal Pt as an effective electron donor[J]. J Am Chem Soc, 1981, 103: 7371-7376.
    [93] Tabushi I, kodera M. Flavin-catalyzed reductive dioxygen activation with N-methyldihydronicotinamide[J]. J Am Chem Soc, 1986, 108: 1101-1107.
    [94] Masuy D, Fontecave M, Bartoli J F. Mono-oxygenase-like dioxygen activation leading to alkene hydroxylation and olefin epoxidation by an MnⅢ(porphyryin)-ascorbate biphasic system[J]. J Chem Soc, Chem Commun, 1983, 253-254.
    [95] Grove J T, Quinn R. Models of oxidation hemeproteins, preparation and characterization of a trans-dioxoruthnium (VI) pophyrin complex[J]. Inorganic Chemistry, 1984, 23: 3844-3846.
    [96] Groves J T, Quinn R. Aerobic epoxidation of olefins with ruthnium pophyrin complex[J]. J Am Chem Soc, 1985, 107: 5790-5792.
    [97] Groves J T, Ahn K H. characterization of an oxoruthnium (VI) porphyrin complex[J]. Inorganic Chemistry, 1987, 26:3831-3833.
    [98] Yoshihiro Tsuda, Kohshin Takahashi, Takahiro Yamaguchi. Dioxygen-activated reductive epoxidation of cyclohexene using Mn(III) porphyryin as catalyst and hexylviologen as electron mediator[J]. J Mol Catal A: Chemical, 1999, 138:145-153.
    [99] 倪春林,许登清,姚中荣.新型尾式谷氨酸四苯基卟啉锰(Ⅲ)催化烯烃环氧化研究[J].化学世界, 1999, 4: 187-190.
    
    
    [100] 倪春林,许登清,孔凌云,张昕.单取代苯丙氨酸四苯基卟啉锰(Ⅲ)催化烯烃环氧化研究[J].化学研究与应用.1998,10(6):632-635.
    [101] Yoshihiro Tsuda, Kohshin Takahashi , Takahiro Yamaguchi , Syuichi Matsui. Catalytic epoxidation of cyclohexene by covalently linked manganese porphyrin-viologen complex[J]. J Mol Catal A: Chemical, 1998,130: 285-295.
    [102] 游劲松,蓝仲薇,余孝其.负载化金属卟啉研究进展[J].石油化工,1996,25(1):56-61
    [103] Martha E N, Sonia A G, Edgar A P. Olefin oxidation with dioxygen catalyzed by porphyrins and phthalocyanines intercalated in zirconium phosphate[J]. J Mol Catal A: Chemical, 2001,175: 139-151.
    [104] Birnbaum E R, Le Lacheur R M, Horton A C, Tumas W. Metalloporphyrin-catalyzed homogeneous oxidation in supercritical carbon dioxide[J]. J Mol Catal A: Chemical, 1999, 139:11-24.
    [105] 孙强,姚晓华,王丽萍.多核磺化镍(Ⅱ)酞菁催化下的环己烯环氧化[J].化学粘接,1995,1:5-7.
    [106] 孙强,张天云,姚晓华,王丽萍.多核金属磺化酞菁催化下的环己烯环氧化反应[J].东北师大学报自然科学版,1995,1:79-82.
    [107] 孙强,王丽萍,邵长路.多核金属酞菁镍(Ⅱ)的使用寿命及其对环己烯环氧化反应的催化机理[J].河南师范大学学报(自然科学版),1996,24(1):55-57,104.
    [108] Khan M M T, Rao A P. Epoxidation of cyclohexene,methylcyclohexene and cis-cylooctene by molecular oxygen using ruthenium(Ⅲ) aquo ion as catalyst. A kinetic study[J]. J Mol Catal, 1990,62(3):265-276.
    [109] Khan M M T, Rao A P. Oxygen atom transfer in the epoxidation of cyclohexene catalysed by Ru(Ⅲ)-EDTA[J]. J Mol Catal, 1987, 39(3):331-340.
    [110] Chatterjee D, Bajaj H C, Venkatasubramanian K. Nitrosyl ethylenediaminetetraacetato Ruthenium(Ⅲ)-An efficient oxygen atom transfer agent for the oxidation of olefins by molecular O_2 and PhIO through ligand-mediated nitrosyl/nitro couple[J]. J Mol Catal, 1992, 72(3).
    [111] 雷自强,韩相恩,樊巩学.小分子修饰型负载钌配合物组成及其催化性能[J].西北师范大学学报,1998,34(4):100-102
    [112] 戚建英,马红霞,杨启云,等.[Co(p-Me-PPA)_2(H_2O)_2]Cl的合成及其催化环己烯氧化反应的研究[J].化学研究与应用,1999,11(5):537-538
    [113] 戚建英,杨启云,胡家元,等.吡啶酰胺基配体与Mn~(2+)、Fe~(3+)、Ru~(3+)配合物的合成和催化环己烯的氧化反应[J].化学研究与应用,1999,11(5):535-536
    [114] Corain B, Tessari A, Zecca M. Epoxidation of cyclohexene by copper(Ⅱ) complexes under Mukaiyama's conditions[J]. J Mol Catal A: Chemical: 1995, 96: L9-L10.
    [115] Yoshihiro Tsuda, Syuichi Matsui, Kohshin Takahashi. Highly selective epoxidation of cyclohexene by reductive activation of molecular dioxygen using hexylviologen as catalyst[J]. J Mol Catal A: Chemical, 1999,148:183-187.
    [116] 南光明,陈骏如,施颖.双齿单Schiff碱钴、锰配合物的合成、表征及催化氧化性能的研究[J].分子催化,2002,16(3):166-170.
    [117] Boghaei D M, Mohebi S. Non-symmetrical tetradentate vanadyl Schiffbase complxes derived from 1,2-phenylene diamine and 1,3-naphthalene diamine as catalysts for the oxidation of cyclohexene [J]. Tetrahedron, 2002, 58: 5357-5366.
    [118] Boghaei D M, Mohebi S. Synthesis, characterization and study of vanadyl tetradentate Schiff base complexes as catalyst in aerobic selective oxidation of olefins[J]. J Mol Catal A: Chemical, 2002, 179:41-51.
    
    
    [119] Krishnan R, Vancheesan S. Polynuclear manganese complexes catalyzed epoxidation of olefins with molecular oxygen[J]. J Mol Catal A:Chemical, 2002,185:87-95.
    [120] Wang R M, Hao C J, Wang Y R Amino acid schiff base complex catalyst for effective oxidation of olefins with molecular oxygen[J]. J Mol Catal A:Chemistry, 1999, 147(1-2): 173-178.
    [121] Wang R M, Feng H X, He Y F, et al. Preparation and catalysis of Na Y-encapsulated Mn(Ⅲ) schiff-base complex in presence of molecular oxygen[J]. J Mol Catal A: Chemical, 2000,151:253-259
    [122] 王荣民,俞天智,何玉凤.用GC-MS和GC-IR研究环己烯分子氧氧化的络合催化反应[J].高等学校化学学报,1999,20(11):1772-1775
    [123] Chatterjee D, Mitra A. Olefin epoxidation catalysed by Schiff-base complexes of Mn and Ni in heterogenised-homogeneous systems[J]. J Mol Catal A: Chemical, 1999, 144: 363-367.
    [124] Balkus K J, Jr Khanmamedova A K, Dixon K M. Oxidations catalyzed by zeolite ship-in-a-bottle complexes[J]. Applied catalysis A: general, 1996, 143: 159-173.
    [125] 田部浩三,御园生诚,小野嘉三等著 郑禄彬,王公尉,张盈珍等译 新固体酸和碱及其催化作用[M] 北京:化学工业出版社,1992
    [126] Neumann R, Dahan M. Transition metal substituted Keggin type polyoxomolybdates as bifunctional catalysts for the epoxidation of alkenes by molecular oxygen[J]. J Chem Soc, Chemistry Communication, 1995, 171-172.
    [127] Neumann R, Gara M. The manganese-containing polyoxometalate, [WZnMn2(ZnW9O34)2]12-, as a remarkably effective catalyst for hydrogen peroxide mediated oxidations[J]. J Chem Soc, 1995, 117:5066-5074.
    [128] Neumann R, Khenkin A M. A new dinuclear rhodium(Ⅲ) 'sandwich' polyoxometalate [(WZnRh~(111)_2)(ZnW_9O_(34))_2]~(10-). Synthesis, characterization and catalytic activity[J]. J Mol Catal A: Chemical, 1996, 114: 169-180.
    [129] Noritaka Mizuno, Heiko Weiner, Richard G Finke. Co-oxidative epoxidation of cyclohexene with molecular oxygen, isobutyraldehyde reductant, and the polyoxoanion-supported catalyst precursor [(n-C_4H_9)_4N]_5Na_3[(1,5 -COD)Ir·P_2W_(15)Nb_3O_(62)]. The importance of key control experiments including omitting the catalyst and adding radical-chain initiators[J]. J Mol Catal A:Chemical, 1996, 114:15-28.
    [130] Iwamoto M, Tateishi M, Mizuno N, et al. Regioselectivity in epoxidation of dienes on PW_(11)CoO_(39)~5 by molecular oxygen in the presence of aldehyde[J]. Chemistry Letters, 1993, (11):1125-1131
    [131] 秦笃捷,王国甲,张林,等 杂多化合物催化性能的研究[J].分子催化,1996,10(5):357-362
    [132] Passoni L C, Rafiq M, Siddiqui H, Steiner A, Kozhevnikov I V. Niobium peroxo compounds as catalysts for liquid-phase oxidation with hydrogen peroxide[J]. J Mol Catal A: Chemical, 2000, 153:103-108.
    [133] Neumann R, Dahan M. A ruthenium- substituted polyoxometalata as an onorganic dioxygenase for activation of molecular oxygen[J]. Nature(London), 1997, 388(6640): 353-355.
    [134] 宋国强,王钒,吕晓玲.应用分子氧/正戊醛/三氧化二钴体系氧化环己烯的研究[J].江苏石油化工学院学报,1999,11(3):13-15.
    [135] Li Xuegeng, Wang Fan, Lu Xiaoling, etc. A Novel Method for Epoxidation of Cyclohexene Catalyzed by Fe_2o_3 with Molecular Oxygen and Aldehydes[J]. Syn Commun, 1997, 27(12):
    
    2075-2079
    [136] Guo J, Jiao Q Z. Catalytic oxidation of cyclohexene with molecular oxygen by polyoxometalate-intercalated hydrotalcites[J]. Catalysis Letter, 1996,40:43-45.
    [137] Guo J, Wang N, Jiao Q. Catalytic oxidation of cyclohexene with molecular oxygen on hydrotalcite-like compounds[J]. Chemical Research in Chinese Universities, 1995,11(3):256-258.
    [138] 郭军,矫庆泽,段淑江,等 过渡金属取代型杂多阴离子柱撑滑石上环己烯的催化氧化性能[J]高等学校化学学报,1998,19(1):129-131
    [139] Kaneda K, Ueno S, Ebitani K. Catalysis of layered hydrotalcites in heterogeneous hydrocarbon oxidations[J]. Current Top Catalysis, 1997, 1:91-105.
    [140] Kovtyukhova N I, belousov V M, Konishevskaya G A. Oxidation of cyclohexene with oxygen catalyzed by a graphite intercalation compound with MoCl_5. 1. Kinetics and mechanism of the decomposition of cyclohexenyl hydroperoxide[J]. Kinetics and Catalysis, 1986, 27(6): 1158-1163.
    [141] Payne G B, Williams P H. Simplified procedure for epoxidation by benzonitrile hydrogen peroxide. Selective oxidation of 2-allycyclohexanone[J]. Tereahedron, 1962,18:763-765)
    [142] Baiker A, Mallat T. Heterogeneously catalyzed selective oxidation in the liquid phase[J]. Catalysis Today, 1994,19(2): 274-283
    [143] Jorda E, Tuel A, Teissier R. New Ti/SiO_2 catalysis for liquid-phase epoxidations with aqueous H_2O_2[J]. J Chem Soc, Chem Commu, 1995, 17:1775-1776
    [144] Talsi E P, Babushkin D E. Nature od the reactive intermediates from the titanium-induced activation of hydrogen peroxide: studies using ~1H and ~(17)O NMR[J]. J Mol Catal A: Chemical, 1996,106: 179-185.
    [145] Lourdes T K, Fernandez M J, Tmjillo B S. Kinetics of Fe~(11) -cyclam complex with H_2O_2 in acetonitrile and the mechanism of epoxidation of cyclohexene[J]. Ployhedron, 1997, 16(21): 3827-3833.
    [146] Beatse E, Vankelecom I F J, Jacobs PA. Epxidation of olefins with PDMS membranes containing zeolite occluded manganese diimine complexes[J]. Catalysis Today A, 1996, 16(32): 1-4.
    [147] Knops-Gerrits P P, Vankelecom I F J, Jacobs P A. Epoxidation of olefins with PDMS membranes containing zeolite occluded manganese diimine complexes[J]. Catalysis Today, 1996, 32: 63-70.
    [148] 肖友发,游劲松,余孝其,等.长链烷氧基金属卟啉/H_2O_2体系催化烯烃环氧化反应研究[J].化学研究与应用,1996,8(2):270-272
    [149] Sun Y, Xi Z, Cao G. Epoxidation of olefins catalyzed by [π—C_5H_5NC_(16)H_(33)]_3[PW_4O_(16)] with molecular oxygen and a recyclable reductant 2-ethylanthrahydroquinone[J]. J Mol Catal A:Chemical, 2001, 166:219-224.
    [150] 李坤兰,周宁,奚祖威.溶剂和杂多酸盐中季铵阳离子对环己烯环氧化反应控制相转移催化的影响[J].催化学报.2002,23(2):125-126.
    [151] Kuznetsova L I, Kuznetsova N I, Likholobov V A. Catalytic properties of Cr-containing heteropolytungstates in H_2O_2 participated reactions: H_2O_2 decomposition and oxidation of unsaturated hydrocarbons with H_2O_2 [J]. J Mol Catal A:Chemical, 1996, 108(3): 56-62
    [152] Nolen S A, Lu J, Brown J S. Olefin epoxidations using superitical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy acids[J], Indurstrial and Engineering Chemistry Research, 2002, 41(3): 316-323.
    [153] Mandelli D, Sheldon V V. Alumium-catalyzed alkene epoxidation with hydrogen peroxide[J].
    
    Applied Catalysis,2001,219(1-2) :209-213
    [154] Grwello J V, Yang B. Studies of synthesis and cationic photopolymerization of three isomeric monoterpene diepoxides[J]. J Polym Sci, Part A: Poly Chem, 1995, 33(11): 1881-1890
    [155] Smith J R L, Cooke P R. Alkene epoxidation catalysed by iron(Ⅲ) and manganese(Ⅲ) tetraarylporphyrins coordinatively bound to polymer and silica supports[J], J Chem Soc, Perkin Transactions, 1994,(1): 14-19
    [156] Adriana Nascimento de Sousa, Maria Eliza moreira Dai de Carvalho, Ynara Marina Idemori. Manganeseporphyrin catalyzed cyclohexene epoxidation by iodosylbenzene The remarkable effect of the meso-phenyl ortho-OH substituent[J]. J Mol Catal A: Chemical, 2001(169): 1-10.
    [157] Nam W, Lee H J, Oh S Y. First successs of catalytic epoxidation of olefins by an electron-rich iron(Ⅲ) porphyryin complex and H_2O_2: imidazole effect on the activation of H_2O_2 by iron porphyryin complexes in aprotic solvent[J]. J Inorg Biochem, 2000(80): 219-225.
    [158] Abatli D, Elisabete M, Zaniquell D, Iamamoto Y. Porphyrin LB film as acatalyst for alkene epoxidation[J]. Thin Solid Films, 1997, 310: 296-302.
    [159] 李东红,陈淑华,赵华明.杯[6]芳烃—双金卟啉仿P-450酶模型的研究[J].分子催化,1999,13(2):81-86.
    [160] Delmon B,Gaigneaux E M, Ruiz P, et al. Epoxidation of cyclohexene by iron and cobalt phthalocyanines, study of the side reactions [J]. J Mol Catal A:Chemical,1996,109(1): 11-16
    [161] Keilani A, Schreiner A F, Hilal H S, et al. The catalytic activity of poly(siloxane)-supported metalloporphyrins in olefin oxidation reactions: The effect of the support on the catalytic activity and selectivity[J]. J Mol Catal A: Chemical, 1996,113(1/2): 151-157
    [162] Iamamoto Y, Idemori Y M, Nakagaki S. Cationic ironporphyrins as catalyst in comparative oxidation of hydrocarbons:homogeneous and supported on inorganic matrices systems[J]. J Mol Catal A:Chemical, 1995(99): 187-193.
    [163] Li Zhen, Xia Chun-Gu, Zhang Xiao-Ming. Preparation and catalysis of DMY and MCM-41 encapsulated cationic Mn(Ⅲ)-porphyrin complex[J]. J Mol Catal A:Chemical, 2002,185(1-2): 47-56.
    [164] Agarwal D D, Bhatnagar R P, Jain Rajeev. Epoxidation of olefins catalyzed by Fe(Ⅲ) schiff base complexes as catalyst[J]. J Mol Catal, 1990, 59(3): 385-395.
    [165] 杜向东,俞贤达.非对称Schiff碱过渡金属配合物模拟酶催化烯烃环氧化(Ⅰ)[J].高等学校化学学报.1997,18(4):567-570.
    [166] Du Xiang-Dong, Yu Xian-Da. Synthesis of Catalytically active polymer-bound schiff base manganese complexes for selective epoxidation of unfunctionalized olefins[J]. J Polym Sci, Part A: polymer Chemistry, 1997, 35(15): 3249-3254.
    [167] Jitsukawa K, Oka Y, Einaga H and Masuda H. Reverse reactivity in hydroxylation of adamantane and epoxidation of cyclohexene catalyzed by the mononuclear ruthenium-oxo complexes with 6-substituted tripodal polypyridine ligands[J]. Tetrahedron Letters, 2001, 42: 3467-3469.
    [168] Bekir C, Engin C. Maurice B T. Ruthenium(Ⅱ) complexes with 2,6-pyridyl-diimine ligands:synthesis, characterization and catalytic activity in epoxidation reactions[J]. J Mol Catal A: Chemical, 1999,142(2):101-112.
    [169] Prakash B S, Bhattacharya P K, Ganeshpure A A.. Mixed ligand complexes of chromium(Ⅲ) and iron(Ⅲ):synthesis and evaluation as catalyst for oxidation of olefins[J]. J Mol Catal A: Chemical, 1996, 110: 89-94.
    
    
    [170] Taqui K M M, Ramachandraiah G, Mehta S H. Trans- dioxo- bis(dimethylglyoximato) ruthenium (Ⅶ) perchlorate: An active oxidation catalyst for the electrochemical epoxidation of olefins[J]. J Mol Catal, 1989, 50(2): 123-129.
    [171] Taqui K M M, Mehta S H, Prakash R A. Electrocatalytic oxidation of organic substrates with oxygen using ruthenium-schiff base comolex[J]. J Mol Catal, 1992, 75(3): 245-251.
    [172] 张文智,吴锡尊.环己烯电化学环氧化反应机理的探讨[J].应用化学,1989,6(1):69-71
    [173] 何俊翔,周锦成 环己烯的电化学环氧化研究[J].化学世界,1996,(3):145-147
    [174] Peter E E, Wilhelm K. Halogenated oxo- and peroxotitanium porphyrinates as sensitizers for the photooxygenation of olefinic compounds[J]. J Mol Catal A: Chemical, 1999, 140: 13-24.
    [175] Kachasakul P, Assabumrungrat S,, Praserthdam P, Pancharoen U. Extractive reaction for epoxidation of cyclohexene to cyclohexene oxide using dioxirane in ketone/Oxone system[J]. Chemical Engineering Journal, 2003, 92:131-139.
    [176] O' Connell A., Smyth T., Hodnert B.K.. The epoxidation of cyclohexene by dioxiranes over ketone catalysts[J]. Catalysis Today, 1996, 32: 273-278.
    [177] 黄维垣,闻建勋主编.高技术有机高分子材料进展[M].北京:化学工业出版社,1994:362
    [178] Ciardelli F, Tsuchida E, Wohrle D. Macromolecule-metal complexes[M]. Berlin: Springer-Verlag Berlin Heidelbeg, 1996.
    [179] Masteri-Farahani M, Farzaneh F, Ghandi M. Molybdenum incorporated silicalite as catalyst for epoxidation of olefins[J]. J Mol Catal A: Chemical, 2003,192:103-111.
    [180] 姜恒,官红.烯烃环氧化反应的高分子负载催化剂研究进展[J].石油化工,1998,27(7):538-542
    [181] 王杏乔,高爽,刘玉文,等.卟啉钴分子筛的制备、表征和催化性能[J].高等学校化学学报,1994,15(6):789-793
    [182] 许正辉,奚祖威,姜子奇.金属卟啉-聚乙二醇催化烯烃环氧化反应[J].分子催化,1992,6(2):211-219
    [183] Matthew M M, Sherrington D C, Simpson S. Alkene epoxidations catalysed by molybdenum(Ⅵ) supported on imidazole-containing polymer (Ⅲ)[J]. J Chem Soc, Perkin Trans. 2, 1994, 2091-2096
    [184] Linden G L, Farona M F. Polymer-anchored vanadyl catalyst for the oxidation of cyclohexene[J]. J Catal, 1977,48:284-291
    [185] Linden G L, Farona M F. A resin-bound vanadyl catalyst for the epoxidayion of olefins[J]. Inorganic Chemistry, 1977, 16(12):3170-3173
    [186] 成都科学技术大学分析化学教研组,浙江大学分析化学教研组编.分析化学实验[M].北京:人民教育出版社,1982.
    [187] 《实用精细化学品手册》编写组编,实用精细化学品手册(有机卷)[M].北京:化学工业出版社,1996.
    [188] 李良助,林垚,宋艳玲等编著.有机合成原理和技术[M].北京:高等教育出版社,1992.
    [189] Sadter Research Laboratories Inc., Subsidiary of Block Engineering Inc. 1975: 36048K.
    [190] Sheldon R A, Van Doorn J A. Metal-catalyzed epoxidation of olefins with organic hydroperoxides (Ⅰ)[J]. J Catal, 1973, 31:427-437
    [191] Mimoun H, Mignard M, Brechot P, et al. Selective Epoxidation of Olefins by Oxo[N-(2-oxidophenyl)salicylidenaminato]vanadium(V)Alkylperoxides. On the Mechanism of the Halcon Epoxidation Process[J]. J Am Chem Soc, 1986, 108:
    
    3711-3718
    [192] Rummel S, Schnurpfeil D. Technetium compounds as catalysts in hydroperoxide decomposition and epoxidation process[J]. Oxidation Communications, 1984, 6(1-4):319-329
    [193] 大连理工大学无机化学教研室编 无机化学(第三版)(下)[M] 北京:高等教育出版社,1995
    [194] Ciardelli F, Tsuchida E, Wohrle D. Macromolecule-metal complexes[M]. Berlin: Springer-Verlag Berlin Heidelbeg, 1996.
    [195] 游劲松,余孝其,肖友发,等高分子Mn(Ⅲ)卟啉/PhIO体系催化烯烃环氧化反应研究[J].分子催化,1996,10(3):165-170.
    [196] 俞善信,钟为标,郭灿成.卟啉化合物的合成及其对细胞色素P-450的模拟(ⅩⅢ)PVC和CPVC同载TPPMn(Ⅲ)OH的合成及其对惰性氢键的温和催化活化[J].催化学报,1994,15(3):232-235
    [197] 钱延龙,陈新滋主编.金属有机化学与催化[M].北京:化学工业出版社,1997
    [198] 李华.氯化石蜡中氯含量测定方法[J].河南化工,1993,(11):678-679.
    [199] 何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995.
    [200] 刘新玲,周原,葛成喜.钼(Ⅵ)—硫氰酸盐—结晶紫分光光度法测定钢铁中钼[J].冶金分析,1998,18(1):24-26
    [201] 高礼让,吴秀红,高志明,等.人工神经网络分光光度法同时测定钼和铬[J].光谱学与光谱分析,1999,19(2):244-246
    [202] 张延军,朱仲量,邓子峰,等.多元校正—动力学谱法同时测定铬、钼、钨[J].福州大学学报(自然科学版),1999,27(增刊):239-241
    [203] 李芳,谷波,李奇志.辽宁师范大学学报(自然科学版),1998,21(1):51-54
    [204] 华东理工大学分析化学教研组,成都科学技术大学分析化学教研组编.分析化学(第四版)[M].北京:高等教育出版社,1998
    [205] 孙爱新,付银聚.EDTA络合滴定法测定钢铁中钼[J].河北冶金,1995,(2):57-59,43
    [206] 王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社,1992
    [207] 章亚东,高晓蕾,蒋登高,等.三相相转移催化合成对硝基苯甲醚的研究[J].现代化工,2002,22(1):27-30
    [208] 章亚东,蒋登高,高晓蕾,等.聚苯乙烯-二乙烯苯接枝聚乙二醇催化合成对硝基苯甲醚[J].高校化学工程学报,2002,16(5):524-529
    [209] 章亚东,高晓蕾,蒋登高,等.季铵盐相转移催化合成对硝基苯甲醚[J].精细石油化工,2002,(4):6-10
    [210] 章亚东,高晓蕾,蒋登高,等.聚乙二醇相转移催化合成对硝基苯甲醚工艺[J].郑州大学学报(工学版),2002,23(2):23-26
    [211] 章亚东,高晓蕾,蒋登高,等.三相相转移催化合成对硝基苯甲醚的研究[J].现代化工,2002,22(1):27-30
    [212] 黄艳刚,徐玫,刘必芳等.相转移催化技术在对硝基苯甲醚合成中的应用[J].河南化工,1992,(3):8~10
    [213] [美]F.A.科顿,[英]G.威尔金森著.北京师范大学、兰州大学、吉林大学、辽宁大学译.高等无机化学[M].北京:人民教育出版社,1981
    [214] 高健,钟顺和.负载型双氯基桥联双核钼(Ⅴ)催化剂的合成、表征及其催化合成碳酸乙烯酯的性能[J].催化学报,2000,21(4):341-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700