Si/SiGe异质结器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信、GPS、雷达及高速数据处理系统等的高速发展对半导体器件的性能,如截止频率、功耗和成本等提出了更高的要求。相对于Si器件和化合物半导体器件,Si/SiGe异质结器件能以更高的性能价格比满足该要求,故成为目前国内外研究的热点之一。本文通过对Si/SiGe异质结材料特性、生长技术、p-MOSFET、SiGe-HBT的研究,设计优化、试制出了SiGe-p-MOSFET和SiGe-HBT器件样品。
     首先,通过理论分析和模拟,给出了Si/SiGe-p-MOSFET优化设计原则,主要包括:(1)栅材料的选择;(2)沟道层中Ge组分及其分布曲线的确定;(3)栅氧化层及Si盖帽层厚度的计量优化;(4)阈值电压的调节。应用以上原则设计了器件各参数,并制备了器件样品。测试结果显示,SiGe-p-MOSTET(L=2gm)跨导为45mS/mm(300K)和92mS/mm(77K),而作为对照的常规Si-p-MOSTET的跨导为33mS/mm(300K)和39mS/mm(77K)。
     同时,提出了一种描述Si/SiGe-p-MOSFET中量子阱内空穴面密度的模型,其中考虑到了SiGe量子阱中最低的两个子价带,但暂未计及Si盖帽层中寄生沟道的影响。模型计算结果与MEDICI模拟结果的比较表明该模型可准确描述寄生沟道形成之前SiGe量子阱沟道中的空穴面密度。在大规模集成电路设计中该模型可用于模拟预测SiGe-p-MOSFET的阈值电压、电流-电压及电容-电压特性。
     其次,详细分析了SiGe-HBT中基区不均匀掺杂、基区复合、异质结势垒效应等对器件性能的影响,设计、优化并试制出了器件样品。测试表明,器件的电流放大倍数为50,截至频率为5GHz。
     在器件制备工艺方面,利用MBE,在450~550℃下生长了Si/SiGe合金薄膜,并得到了所需Ge组分的分布和掺杂(B和Sb)分布曲线,满足了器件制备的要求。
     研究了应变Si/SiGe薄膜的工艺热稳定性,为确定热处理工艺条件,如热氧化、退火等的温度和时间,提供了实验依据。
     700~800℃,30~150min湿氧热氧化Si盖帽层,得到厚度为15~20nm的SiO_2薄膜。在实验中发现,Si盖帽层的氧化速率要明显高于普通的Si材料,究其原因,主要是由于应力的存在、掺杂和Ge的外扩散有增强氧化的作用。
    
     电子科技大学博士论文
     利用PECVD,在300℃下采用低功率密度淀积生长了SIOZ薄膜,分别经
    700-850”C 60-305退火。退火后与退火前的界面态密度 Nss分另为 1.IX t’
    m-2·eVl和3118 X 101’cmZ.eV-‘
     在实验中提出并应用了实验版图的设计方法,其基本思路为将多张版图的
    内容经旋转一定角度后,集中排放在同一张版图上,在曝光时仍按一定角度旋
    转后再对准相应图形即可。该法以牺牲部分圆片有效面积为代价,大幅度减少
    实验流片中所使用的版图数量,节约了流片费用。
     论文通过对SirsiGe异质结材料特性、生长技术、pMOSFET、SIGe卫BT
    的研究,设计优化、试制出了SIGe个-MOSFET和SIGe-HBT器件样品,能以更
    高的性能价格比满足移动通信、GPS及雷达等领域对高频、低功耗、低成本微
    电子器件的需求。
The rapid development of mobile communication, GPS, radar and high speed date process system bring forward much higher demands to semiconductor device's characteristics, such as cut off frequency, power dissipation, and cost. Compared with Si and compound semiconductor device, Si/SiGe heterojunction device can meet the demand with higher performance-cost ratio, so, which have become one of the hot fields in the world. In this paper, based on the research of Si/SiGe heterostructure characteristics, epitaxy technology and physical mechanisms of p-MOSFET and SiGe-HBT, SiGe-p-MOSFET and SiGe-HBT were optimized and fabricated successfully.
    Firstly, through theoretical analysis and computer aided simulation, optimized design principles for Si/SiGe-p-MOSFET are given, including the choice of gate materials, determination of Ge fraction and profile in SiGe channel, optimization of thickness of gate dioxide and silicon cap layer, and adjustment of threshold voltage. In light of them, SiGe-p-MOSFET sample was designed and fabricated. Measurement indicate that the SiGe-p-MOSFET's (L=2|im) transconductance is 45mS/mm (300K) and 92mS/mm (77K), while in Si pMOSFET, it is 33mS/mm (300 K) and 39mS/mm (77K).
    At the same time, a simple model of the sheet hole density in 2DHG in Si/SiGe-p-MOSFET is presented. The presence of the first two sub-band energy levels in the quantum well are taken into account but the parasitic channel in Si cap layer is neglected for the time being. Comparison between data simulated by this model and MEDICI indicate that this model is accurate before the parasitic channel is formed. This model can be applied to simulate the threshold voltage, current-voltage and C-V characteristics of Si/SiGe-p-MOSFET in LSI simulation.
    Secondly, the influence of the base doping profile, base recombination and heteroj unction barrier effect (HBE) on the characteristics of SiGe-HBT were analyzed in detail. A device sample was designed and fabricated. The current gain is 50, and the cut off frequency is 5GHz.
    About the process, Si/SiGe alloy layers were formed by MBE at 450~550癈, which have proper Ge fraction and doping (B and Sb) profiles needed in device fabrication.
    IV
    
    
    
    The thermal stability was researched in order to determine the process conditions, such as the temperature and time of thermal oxidation, anneal, and so on.
    Using wet thermal oxidation, a SiOi gate isolator is obtained at 700 ~800℃, 30~150min. The oxidation speed of Si cap layer is much more higher than that of conventional Si, which is mostly because the presence of strain, impurity and the out diffusion of Ge in SiGe channel.
    At the same time, the gate isolator is formed by PECVD, at 300℃ and a relative low deposition power is used. Before and after raped thermal anneal, the density of interface state is 3.118X 10ncm~2-eV"1 and 1.1 X 1011cm~2-eV~1 respectively.
    A new layout technique is given and used in our experiment. Through rounding, more than 3 pieces of layouts could be combined together, so that, the number of layout used in experiment could be reduced.
引文
[1] L. Esaki, R. Tsu. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Develop. 1970, No. 14:61-65.
    [2] J. M. Hinckley, J. Singh, Hole transport theory in pseudonophic Si_(1-x)Ge_x alloys on Si(001) substrates. Physical Review B, 1990, Vol. 41, No. 5:2912-2926.
    [3] Martin M. Rieger, P. Vogl. Electronic-band parameters in strained Si_(1-x)Ge_x alloys on Si_(1-y)Ge_y substrates. Physical Review B, 1993, Vol.48, No.19:14276-14287.
    [4] K. Ismail, S. F. Nelson, J. O. Chu, et al.. Electron transport properties of Si/SiGe heterostmctures: Measurements and device implications. Appl. Phys. Lett. 1993, Vol.63, No.5:660-662.
    [5] Kaushik Bhaumik, yosi Shacham Diamand, J. P. Noel, et al.. Theory and Observation of Enhanced, High Field Hole Transport in Si_(1-x)Ge_x Quantum Well p-MOSFET's. IEEE Electron Devices, 1996, Vol.43, No.11:1965-1971.
    [6] P. E. Hellberg, S. L. Zhang, C. S. Petersson. Work Function of Boron-Doped Polycrystalline Si_xGe_(1-x) Films. IEEE Electron Device Letters, 1997, Vol.18, No.9:456-458.
    [7] F. M. Bufler, P. Garf, B. Meinerzhagen, et al.. Low- and High-Field Electron-Tansport Parameters for Unstrained and Strained Si_(1-x)Ge_x. IEEE Electron Device Letters, 1997, Vol.18, No.6:264-266.
    [8] Georgios Hionis, Georgios P. Tribefis. Low temperature hole mobility in strained p-Si/Si(1-x)Ge_x/p-Si selective doped double heterojunctions. Supefiattices and Microstructures, 1998, Vol.24, No.1:33-40.
    [9] Georgios Hionis, Georgios P.Tribefis. Hole subband non-parabolicities in strained Si/Si_(1-x)Ge_x quantum wells. Superlattices and Microstructures, 1998, Vol.24, No.6:399-407.
    [10] R. F. C. Farrow, Molecular Beam Epitaxy. Noyes Publ., New Jersey, 1995, p465.
    [11] G. C. Crow, R. A. Abram. High mobility electron gases in Si/Si_(0.77)Ge_0.23) quantum wells at 1.7K. Semicond. Sci. Technol.. 1999, Vol.14:721-726.
    [12] G. C. Crow, R. A. Abram. High mobility electron gases in Si/SiGe quantum wells at 1.7K. Semicond. Sci. Technol., 1999, No. 14:721-726.
    [13] Georgios Hionis, Maria Tsetseri, Anna Zora, et al.. Intersubband transitions in strained Si/Si_(1-x)Gex/Si quantum wells. Superlattices and Microstructures, 2000, Vol.28, No.2:151-156.
    [14] 李炳辉,韩汝琦,王阳元.GeSi/Si应变异质结构应变和应力分布的模型研究.半导体学报,1996,Vol.17,No.2:81-87.
    [15] 徐至中.势垒区δ掺杂量子阱Si/Ge_(0.3)Si_(0.7)的电子能带结构及电子密度分布.半导体学报,1996,Vol.17,No.5:321-326.
    [16] 徐至中.温度对势垒区δ掺杂量子阱Si/Ge_(0.3)Si_(0.7)的电子能带结构的影响.半导体学报,1996,Vol.17,No.8:561-567.
    
    
    [17] A. K. Rai, S. M. Rrokes. Wet oxidation of amorphous Si-Ge layer deposited on Si(001) at 800 and 900℃. J.Appl. Phys, 1992, Vol.72, No.9:4020-4025.
    [18] K.Ismail, J. O. Chu, B. S. Meyerson. High hole mobility in SiGe alloys for device applications. Appl. Phys. Lett. 1994, Vol.64, No.23:3124-3126.
    [19] J. P. Zhang, P. L. F. Hemment, E. H. C. Parker. Kinetics of wet oxidation at 1000℃ of Si_(0.5)Ge_(0.5) relaxed alloy. Semicond. Sci. Technol. 1999, Vol.14:484-487.
    [20] C. Saha, S. K. Ray, S. K. Lahiri. Ion-assisted low-temperature oxidation for fabrication of strained Si_(1-x)Ge_x and Si_(1-x-y)Ge_xC_y MOS capacitors. Semicond. Sci. Technol.. 1999, Vol.14:984-987.
    [21] Nobuyuki Sugii. Thermal stability of the strained-SUSi_(0.7)Ge_(0.3) heterostructure. Journal of Applied Physics. 2001, Vol.89, No.11:6459-6463.
    [22] S. K. Samanta, S. Maikap, L. K. Bera, et al.. Effect of post-oxidation annealing on the electrical properties of deposited oxide and oxynitride films on strained-Si_(0.82)Ge_(0.18) layers. Semicond. Sci. Technol., 2001, Vol.16:704-707.
    [23] 段哓峰,冯国光,王玉田,等.Ge_xSi_(1-x)/Si应变超晶格X-射线双晶衍射的运动学研究.半导体学报,1992,Vol.13,No.1:14-20.
    [24] 刘晓晗,黄大鸣,王东红,等.Si_(1-x)Ge_x/Si应变超晶格的结构稳定性研究.半导体学报,1996,Vol.17,No.7:552-556.
    [25] 黄文韬,刘志农,罗光礼,等.有驰豫缓冲层的SiGe HMOSFET材料,2001,343-347.
    [26] K. Ismail, B. S. Meyerson, S. Rishton, et al.. High-Transconduction n-Type Si/SiGe Modulation-Doped Field-Effect Transistors. IEEE Electron Device Letters, 1992, Vol.13, No.5:229-231.
    [27] Sophie Verdonckt-Vandebroed, F. Crabbe, Bernard S, Meyerson, et al.. SiGe-Channel Heterojunction p-MOSFET's. IEEE Electron Devices, 1994, Vol.41, No.1:90-101.
    [28] M. Arafa, P. Fay, K. Ismail, et al.. High Speed P-Type SiGe Modulation-Doped Field-Effect Transistors. IEEE Electron Device Letters, 1996, Vol.17, No.3:124-126.
    [29] D. K. Nayak, K. Goto, A. Yutani, et al.. High-Mobility Strained-Si PMOSFET's. IEEE Electron Devices, 1996, Vol.43, No. 10:1709-1716.
    [30] Antonio Abramo, Jeff Bude, Franco Ventufi, et al.. Mobility Simulation of a Novel Si/SiGe FETStmcture. IEEE Electron Device Letters, 1996, Vol.17, No.2:59-63.
    [31] M. Arafa, P. Fay, K. Ismail, et al.. DC and RF Performance of 0.25μm p-Type SiGe MODFET. IEEE Electron Device Letters, 1996, Vol.17, No.9:449-451.
    [32] A. G. O'Neill, D, A. Antoniadis. Deep Submicron CMOS Based on Silicon Germanium Technology. IEEE Electron Devices, 1996, Vol.43, No.6:911-918.
    [33] K.Ismail, J. O. Chu, M. Arafa. Integrated Enhancement-and Depletion-Mode FET's in Modulation-Doped SUSiGe Heterostructures. IEEE Electron Device Letters, 1997, Vol.18, No.9:435-437.
    
    
    [34] George Halkias, Aliki Vegiri. Device Parameter Optimization of Strained Si Channel SiGe/Si n-MODFET's using a One-Dimensional Charge Control. Model. IEEE Electron Devices, 1998, Vol.45, No.12:2430-2436.
    [35] R. M. Sidek, U. N. Straube, A. M. Waite, et al.. SiGe CMOS fabrication using SiGe MBE and anodic/LTO gate oxide. Semicond. Sci. Technol.. 2000, Vol.15:135-138.
    [36] M. J. Martin, D. Pardo. J. E. Velazquez. Microscopic analysis of the influence of Ge profiles on the current-noise operation mode of n-Si/p-Si_(1-x)Ge_x heterostructures. Semicond. Sci. Technol.. 2000, Vol.15:277-285.
    [37] Y. H. Wu, Albert Chin. High Temperature Formed SiGe P-MOSFET's with Good Device Characteristics. IEEE Electron Device Letters, 2000, Vol.21, No.7:350-352.
    [38] Nobuyuki Sugii, Shinya Yamaguchi, Kiyokazu Nakagawa. Elimination of parasitic channels in strained-Si p-channel metal-oxide-semiconductor field-effect transistors. Semicond. Sci. Technol.. 2001, Vol. 16:155-159.
    [39] K. C. Liu, S. K. Ray, S. K. Oswal, et al.. A Deep Submicron Si_(1-x)Ge_x/Si Vertical PMOSFET Fabricated by Ge Ion Implantation. IEEE Electron Device Letters, 1998, Vol.19, No.1:13-15.
    [40] 史进,黎晨,陈培毅,等.基于应变模型的SiGe PMOSFET性能模拟.2001,335-339.
    [41] 孙自敏,董志伟.SiGe器件及其研究综述,半导体情报,1999,Vol.36,No.1:17-21.
    [42] Dietrich Vook, Theodore I. Kamins, Gregory Burton, et al.. Double-Diffused Graded SiGe-Base Bipolar Transistors. IEEE Electron Devices, 1994, Vol.41, No.6:1013-1018.
    [43] Raymond J. E. Hueting, Jan W. Slotboom, Armand Pruijmboom, et al.. On the Optimization of SiGe-Base Bipolar Transistors. IEEE Electron Devices, 1996, Vol.43, No.9:1518-1524.
    [44] Katsuya Oda, Eiji Ohue, Masamichi Tanabe, et al.. 130-GHz SiGe HBT Technology. IEDM 97-791.
    [45] Guofu Niu, John D. Cressler, Alvin J. Joseph. Quantifying Neutral Base Recombination and the Effects of Collector-Base Junction Traps in UHV/CVD SiGe HBT's. IEEE Electron Devices, 1998, Vol.45, No.2:2499-2504.
    [46] Fumihiko Sato, Takasuke Hashimoto, Hiroshi Tezuka, et al.. A 60-GHz f_T Super Self Aligned Selectively grown SiGe-Base (SSSB) Bipolar Transistor with Trench Isolation Fabricated on SOI Substrate and its Application tu 20-Gb/s Optical Transmitter IC's. IEEE Electron Devices, 1999, Vol.46, No.7:1332-1338.
    [47] Washio K, Ohue E, Shimanoto H, et al.. A 0.2μm 180-GHz-f_(max) 6.7-ps-ECL SOI/HRS self aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications. Electron Devices Meeting, 2000, IEDM Technical Digest, International, 2000:741-744.
    [48] 钱晓州,阮刚,适用于大电流的SiGe基区HBT的电流和频率特性的解析模型.半导体学报,1996,Vol.17,No.11:822-829.
    [49] 张万荣,曾峥,罗晋生.Si/SiGe/Si双异质结晶体管异质结势垒效应(HBE)研究.电子学报,1996,Vol.24,No.11:43-47.
    
    
    [50]张万荣,李志国,郭伟玲,等,Si/SiGe/Si HBT的优化设计.半导体技术,1998,Vol.23,No.4:13-18.
    [51]钱伟,金晓军,张进书,等.SiGe HBT中雪崩击穿效应对电流电压特性的影响.电子学报,1998,Vol.26,No,8:120-138。
    [52]郭宝增.Si/Si_(1-x)Ge_x应变层异质结双极晶体管(HBT)交直流特性的仿真研究.半导体学报,1998,Vol.19,No.10:764-772,
    [53]安俊明,李建军,魏希文,等.nSi/pSi_(1-x)Ge_x/nSi晶体管直流特性数值分析.大连理工大学学报,1998,Vol.38,No.5:516-520.
    [54]孔德义,李垒,魏同立,等.高频npn Si_(1-y)Ge_y基区HBT的集电结势垒模型.电子学报,1999,Vol.27,No.5:49-52.
    [55]张万荣,李志国,孙英华,等.基区不均匀重掺杂对Si/SiGe/Si HBT基区渡越时间的影响.微电子学,2000,Vol.30,No,1:5-7.
    [56]王瑞忠,陈培毅,钱佩信,等.P~+-Ge_xSi_(1-x)-Si异质结内光发射(HIP)长波长红外探测器结构的改进及其在77K下的特性,半导体学报,1997,Vol.18,No.6:436-440.
    [57]万建军,李国正,李娜,等.Ge_xSi_(1-x)/Si应变超晶格PIN探测器的研制.半导体学报,1998,Vol.19,No.8:597-602.
    [58]司俊杰,杨沁清,高俊华,等.图形衬底上应变SiGe/Si超晶格的结构及光致发光研究,半导体学报,1999,Vol.20,No.5:353-357.
    [59]李开成,刘道广,张静,等.SiGe/Si异质结双极晶体管器件的研制.微电子学,
    [60]彭长四.GeSi材料的MBE生长与光性研究.[博士学位论文],中国北京:中国科学院物理研究所,1998,
    [61]叶良修.半导体物理.北京:高等教育出版社,1983.
    [62]基耶夫.半导体物理学,王家俭,丛树福,马洪磊,等译.山东:山东电子学会出版,1978.162-176.
    [63]谢孟贤,化合物半导体材料与器件.四川:电子科技大学出版社,2000.
    [64]刘文明.半导体物理学.吉林:吉林人民出版社,1982.110-111.
    [65]H. Kroemer, Crit. Rev. Solid State Sci,, 1975, 5:555.
    [66]W. R. Frensly, H. Kroemer, Phys. Rev., 1977, B-16:2642.
    [67]W. R. Frensly, H. Kroemer, J. Vac. Sci. Tech., 1976, 13:810.
    [68]W. A. Harrison, J. Vac. Sci. Tech., 1977, 14:1016.
    [69]G. A. Baraff, J. A. Appelbaum, D. R. Hamann, Phys. Rev. Lett., 1977, 38:237.
    [70]W. E. Pickett, S. Ge. Louie, M. L. Cohen, Phys, Rev. Lett,, 1977, 39:109.
    [71]W. E. Pickett, M. L. cohen, J. Vac. Sci. Tech., 1978, 15:1437.
    [72]M. J. Adams, A. Nussbaum, Solid-State Electronics, 1979, 22:783.
    [73]O. v. Roos, Solid-State Electronics, 1980, 23:1069.
    [74]H. Kroemer, IEEE Electron Device Letters, 1983, EDL-4:25.
    
    
    [75] 田牧.固体电子学研究与进展.1983,3:7.
    [76] J. Tersoff. Phys, Rev., 1984, B30:4874.
    [77] P. Zurcher, P. S. Bauer, J. Vac. Sci. Tech.. 1983, A1:695.
    [78] R. S. Bauer, P. Zurcher, H. W. Sang Jr.. Appl. Phys. Lerr.. 1983, 43:663.
    [79] E. A. Kraut, R. W. Grant, J. R. Waldrop, et al.. Phys. Rev. Lett.. 1980, 44:1620.
    [80] G. Margaritondo, N. G. Stoffel, A. D. Katnani, et al.. J. Vac. Sci. Tech.. 1981, 18:784.
    [81] J. R. Waldrop, S. P. Kowalczuk, R. W. Grant, et al.. J. Vac. Sci. Tech.. 1983, 19:573.
    [82] H. Kroemer, Wu Yi-chien, J. S. Harris, et al.. Appl. Phys. Lett.. 1980, 36:295.
    [83] H. Kroemer. Appl. Phys. Lett.. 1985, 46:504.
    [84] E. S. Yang. J. Appl. Phys.. 1974, 45:3801.
    [85] 陈星弼,唐茂成,《晶体管原理与设计》.四川:成都电讯工程学院出版社,1987.
    [86] R. Dingle et. Al., Appl. Phys. Lett., Vol.31,665 (1978).
    [87] T. Mimura et al., Japan J. Appl. Phys., Vol.9, L255 (1980).
    [88] P. M. Solomon et al., IEEE Trans. Electron. Dev., Vol.ED-31, 1015(1984).
    [89] D. Frtgsche, Solid-St. Electronics, Vol.30, 1183(1987).
    [90] 虞丽生.半导体异质结物理.北京:科学出版社,1987.
    [91] 张万荣,李志国,孙英华,等,基区不均匀重掺杂对Si/SiGe/Si HBT基区渡越时间的影响.微电子学,2000,Vol.30,No.1:5-7.
    [92] Gardneer D S, Meindl J D, Saraswat K C. Interconnection and electromigration scaling theory. [J] IEEE Electron Devices, 1987, Vol. 34, No. 5:633-643.
    [93] 安俊民,李建军,魏希文,等.基区复合对nSi/pSi_(1-x)Ge_x/nSi晶体管共射极电流增益的影响.半导体学报,1999,Vol.20,No.3:188-193.
    [94] D. L. Harame et al.. IEEE Electron Device, 1995, Vol.42, No.3:455-468.
    [95] 张万荣,曾峥,罗晋生.Si/SiGe/Si双异质结晶体管异质结势垒效应(HBE)研究.电子学报,1996,Vol.24,No.11:43-47.
    [96] E. F. Crabbe, G. L. Patton, J. M. C. Stork, et al.. Low temperature operation of Si and SiGe bipolar transistors. IEDM. Tech. Dig., 1990, 17-20.
    [97] 张万荣,李志国,郭伟玲,等.Si/SiGe/Si HBT的优化设计.半导体技术,1998,Vol.23,No.4:13-18.
    [98] Shin-ichi Takagi, Judy L. Hoyt, Kern Rim, et al.. Evaluation of the Valence Band Discontimuity of Si/Si1-xGex/Si heterostructures by Application of Admittance Spectroscopy to MOS Capacitors. IEEE Electron Devices, 1998, Vol.45, No. 2:494-501.
    [99] K. Nauka, T. I. Kamins, J. E. turner, et al.. Admittance spectronscopy measurements of band offsets in Si/Si_(1-x)Ge_x/Si heterostructure. Appl. Phys. Lett, 1992,Vol.60:195-197.
    [100] S. P. Voinigescu, C. A. T. Salama, J. P. Noel, et al. Optimized Ge Channel Profiles for VLSI Compatible Si/SiGe p-MOSFET's. IEDM, 1994, 369.
    
    
    [101] T. P. Pearsall, J. C. Bean, 1986, IEEE Electron. Device Lett., 7(5):308~310.
    [102] Sophie Verdonckt-Vandebroek, Emmanuel F. Crabbe and Bernard S. Meyerson et al., IEEE Trans. Electron. Devices, 1994, 41(1):90~101.
    [103] C. K. Maiti, L. K. Bera and S. Chattopadhyay, Semicond. Sci. Technol. 1998, 13:1225-1246.
    [104] J. B. Kuo, M. C. Tang, J. H. Sim, Solid-State Electronics, 1993, 36(9):1349~1352.
    [105] S. M. Sze, "Physics of Semiconductor Devices", second edition, New York, John Wiley and Sons, 1981, Chapter 8.
    [106] A. Sadek, S. E. D. Habib, K. Ismail, Solid-State Electronics, 1995, 38(11):1969-1971.
    [107] J. B. Kuo, M. C. Tang, J. H. Sim, Solid-State Electronics, 1995, 36(9):1349-1352.
    [108] Nandita Dasgupta, Amitava Dasgupta, Solid-State Electronics, 1993, 36(2):201-203.
    [109] 江宁,臧岚,江若琏,等,Si上Sil-x-xGexCy三元和金薄膜的化学气相淀积生长研究,半导体学报,1999,Vol.20,No.8:650-655.
    [110] K. Eberl, S. S. Iyer, S. Zollner, J. C. Tsang, F. K. Legous, Appl. Phys, Lett 60, 3033(1992).
    [111] J. L. Regolini, F. Gisbert, G. Dolino, P. Boucaud, Mat. Lett 18, 57(1993).
    [112] Amour A. S., Liu C. W., Sturm J. C., Appl Phys Lett, 1995, 67(26):3915-3917.
    [113] Lorentzen J. D., Loechelt G. H., Appl Phys Lett., 1997, 70(8):2353-2355.
    [114] S. K. Ray, S. John, S. Oswal, S. K. Banerjee. Novel SiGeC Channel Heterojunctin PMOSFET. IEDM 96-261.
    [115] J. H. Van der Merwe. JAP. 1963, Vol.34:117.
    [116] F. R. N. Nabarro. Theory of Crystal Dislocation. Clarendon, Oxford, 1967:75.
    [117] J. W. Mathew, A. E. Blakeslee. J. Cryst. Growth. 1974, Vol.28:118.
    [118] D. Chidambarrao, G. R. Srinivasan, B. Cunningham, et al., Appl. Phy. Lett. 1990, Vol. 54: 1.
    [119] R. F. C. Farrow. Molecular Beam Epitaxy. Noyes Publ. 1995, New Jersey, 466.
    [120] 施敏主编,章定康,沈文正,刘佑宝等译,超大规模集成电路技术.北京:科学出版社,第2章.
    [121] S. Gukatsu, K. Fujita, H. Yaguchi, et al.. Appl. Phys. Lett. 1991, No.59:2103.
    [122] K. Fujita, S. Fukatsu, H. Yaguchi, et al.. Appl. Phys. Lett. 1991, No. 59:2240.
    [123] 邹昌凡,王古国,孙殿照等;应变SiGe/Si异质结材料X射线双晶衍射研究[J],半导体学报,1997,Vo.18,No.5:333-336.
    [124] Y. Wu, Albert Chin, et. al., Gate oxide Integrity of Thermal Oxide Grown on High Temperature Formed Si_(0.3)Ge_(0.7), IEEE Electron Device Lett., 2000, 21(3): 113~115.
    [125] 郭维廉,硅-二氧化硅界面物理.北京:国防工业出版社,1982,p147,
    [126] T. Manku,A. Nathan, Lattice Mobility of Holes in Strained and Unstrained Sil-xGex Alloys,IEEE Electron. Device Lett., 12(1991)12, 704-706.
    
    
    [127] S.S.Iyer. Paul M.Solomon et al.. A Gate-Quality Dielectric System for SiGe Metal-Oxide-Semiconductor Devices, IEEE Electron Devices Letters, Vol.12, No. 5: 246-248.
    [128] 张屏英,周佑谟.晶体管原理.上海:上海科技出版社.1985.
    [129] Prinz E J, Garone P M, Schwartz P V, et al., The effects of base dopant outdiffusion and undoped Si/Si1-xGex junction spacer layers in Si/Sil-xGex heterojunction bipolar transistors, IEEE Electron Device Letters, 1991, Vol. 12, No. 2:42-44.
    [130] Li Kaicheng, et al., Reactive ion etching of Si1-xGex alloy with hydrogen bromide. Proceedings of 1998 5th International Conference on Solid-state and Integrated Circuit Technology: 792-795.
    [131] Nandita Dasgupta, Amitava Dasgupta, Solid-State Electronics, 1993, Vol. 36, No. 2: 201-203.
    [132] A.A.Bright, J.Batey and E.Tierney. Low-rate Plasma Oxidation of Si in a Dilute Oxygen /heliun Plasma for Low-temperature Gate Quality. Si/SiO2 nterface, Appl. Phys. Lett., 1991, Vol. 58, No. 6:619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700