基于光谱与图像分析的生鲜牛肉嫩度快速检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛肉作为人类日常消费的一种重要的肉品,因其高蛋白质、低脂肪、维生素及矿物质含量高等特点,受到消费者的青睐。随着人民生活水平的提高,牛肉的品质受到了前所未有的重视。传统检测牛肉品质的方法因其耗时长,效率低,破坏性己不能满足现代化生产的需要,而随着光谱分析技术在农产品检测领域的广泛应用和发展,牛肉品质的快速无损检测技术也成为了研究的热点。
     本文基于可见近红外光谱和高光谱成像技术,研究了生鲜牛肉嫩度以及相关品质参数的预测模型和评价方法,以实现对牛肉嫩度品质的无损快速检测和评价。具体研究内容及结果如下:
     (1)对不同光谱系统预测牛肉嫩度进行可行性分析及预测效果评价,得到400-1700nm光谱系统性能更优越,对牛肉嫩度预测准确。研究结果表明光源差异导致不同的信号预处理方式,使用大功率面光源的光谱信号应用变量标准化校正(SNV)后预测模型精度较高。而静态光源系统进行数据平滑(S G)使预测精度改善。两系统都能对牛肉剪切力值进行预测,全波段建模两系统精度相当,筛选特征变量建模时,400-1700nm的光谱系统表现出更优越和稳定的性能。同时考虑系统成本及系统结构以及快速检测需求,最终选择400-1700nm光谱系统为牛肉嫩度最佳检测系统,其预测相关系数和均方根误差为0.9085和7.5212,RPD值为2.16。
     (2)计算嫩度品质各指标的光谱预处理、最佳预测模型及模型验证,能够实现对各指标较高的预测精度。研究对比了不同预处理方法对各指标的预测效果,并通过建立全波段偏最小二乘回归(PLSR)以及联合区间偏最小二乘回归(si-PLSR)、遗传算法-偏最小二乘回归(GA-PLSR)模型,最后得到剪切力值、a*的最佳预测模型为si-PLSR模型,预测相关系数和标准差分别达到0.9085、0.9027和7.5212、1.4878,模型RPD值为2.16和2.65。L*的最佳预测模型为GA-PLSR,预测相关系数和标准差为0.9457和1.7250,RPD达到了3.24。而对蒸煮损失率的预测效果较差,最佳预测模型为PLSR全波段建模,预测相关系数和标准差为0.8453和2.5054,RPD值为1.84。利用线性判别(LDA)和支持向量机(SVM)对牛肉嫩度等级进行判别,并对牛肉按部位和食用方式确定分级阈值,最后对嫩度等级判别准确率最高达到92.85%。对嫩度品质指标的预测模型和嫩度分级模型分别进行了实验验证,各指标验证相关系数和标准差分别为0.8875、0.9060、0.8972、0.8217和10.16、2.319、1.055、2.493,嫩度判别模型验证预测识别率达到100%。
     (3)手持式快速检测系统的模型植入和校正,基本实现牛肉品质的在线生产快速检测。根据在线检测的特点和实际检测遇到的问题,对植入的预测模型进行校正,确定了对原始数据进行变量标准化校正(SNV)的预处理最为合理,然后对剪切力值、颜色a*参数使用si-PLSR模型,L*和蒸煮损失率采用PLSR全波建模预测,相关系数和预测均方根误差分别为0.9068、0.9031、0.9049,0.8276和7.1963N、1.8246、1.4931、3.0876,RPD都在2以上,稳定性比较好。用检测系统进行实际生产验证,基本实现了牛肉嫩度品质的在线快速检测,满足了实际生产的需求。并设计开发了软件系统及后台数据库对多模型灵活调用和牛肉嫩度品质多指标实时预测和结果显示,同时可对检测结果进行存储和后期数据查询统计,便于模型的普适性改进。
     (4)利用高光谱图像分析牛肉特性分布情况,对牛肉样品每一点嫩度分布进行预测。鉴于牛肉样品的结构复杂性和可见近红外光谱单点检测的缺点,本研究利用高光谱成像系统采集牛肉高光谱三维图像,通过逐步回归结合遗传算法(GA)筛选牛肉剪切力值、颜色相关的特征光谱并建立PLSR预测模型,对牛肉高光谱图像进行降维。应用建立的特征波段预测模型,可计算出图像中任一像素点的剪切力值和颜色预测结果,宏观上显示了牛肉样品表面嫩度、颜色特征分布情况;另一方面通过计算特征光谱图像的纹理特征,建立牛肉嫩度等级判别模型并分析牛肉样品嫩度分布情况。
Beef, as one of the main meat ware for human daily consumption, is favored by consumers for its high protein, low fat, vitamin and mineral content. With the improvement of people's living standards, the quality of beef has received the unprecedented attention. The traditional methods for beef detection which are time consuming, low efficiency and destructive already fail to satisfy the need of modern production. With wide use and development of spectral analysis in the field of agricultural products detection, there have been growing interests in the fast nondestructive method for assessing beef quality attributes.
     Therefore, in this paper, fresh beef tenderness and related quality parameters detecting and evaluating models were researched applying visible near infrared spectral and hyperspectral imaging technology in order to realize rapid nondestructive prediction of beef tenderness. The specific research contents and results are as follows:
     (1) Research on different spectral system for beef tenderness predicting, analysed the feasibility and evaluate the prediction effect. The difference between two systems, having different light source and resolution, and the results of beef tenderness prediction were discussed. The results indicated that original signal requires different preprocessing methods due to different light structure and characteristic. The spectral using of high-power lights need standard normal variates (SNV) method leaded to high precision for model. For other system with high resolution and low SNR spectrograph, the signal with Savitzky-Golay smoothing (S_G) had improved the accuracy of model. Both the two system can predict beef tenderness well enough using full range wave, the400-1700nm spectral system showed superior and stable performance based wavelength selecting methods, the prediction accuracy of which is higher than dual channel spectral system. Considering the cost, system structure and requirements for fast detection simultaneously, the system in range of400-1700nm were finally chosen for beef tenderness prediction, the correlation coefficient and root mean square prediction error is0.9085and7.5212and RPD value of2.16.
     (2) The study of pre-treatment methods, prediction models and model validation of fresh beef tenderness, L*, α*and cooking loss. The effects on PLSR prediction models of different preprocessing methods such as savitzky-golay smoothing (SG), multiplication scatter correction (MSC), standard normalized variate (SNV) and first derivative (FD) were studied. The best pretreatment method for tenderness and cooking loss are SNV+SG methods; the best method for L*is MSC+SG; and the original spectral for α*prediction model is best. Then effective variable for each parameters were selected with interval partial least-squares (iPLS), genetic algorithm (GA) to establish synergy interval partial least square regression model (si-PLSR), genetic algorithm-partial least squares regression (GA-PLSR) model. The results showed that the best prediction model for shear-force value, α*were si-PLSR model, with the correlation coefficient and standard deviation0.9085,0.9027and7.5212,1.4878and model RPD value of2.16and2.65, respectively. The best prediction model for L*was GA-PLSR, with correlation coefficient and standard deviation o of prediction set of f0.9457and1.7250, RPD is3.24. The prediction effect for cooking loss is poorer, the optimal prediction model was PLSR full range wavelength, prediction correlation coefficient and standard deviation of0.8453and2.5054, RPD value of1.84. Linear Discriminant Analysis (LDA) and support vector machine (SVM) methods were applied for beef tender level classification. The grading threshold was set as45N and60N according to the beef parts and eating mode, results showed that the LDA is better than SVM model, two types of beef classification accuracy of prediction set were92.85%and91.66%, respectively. The prediction and classification models of all parameters were verified, respectively. The correlation coefficient and standard deviation in validation set were0.8875,0.9060,0.8972,0.8217and10.16,2.319,1.055,2.493, respectively. The beef tenderness classification accuracy of validation set was up to100%.
     (3) Implanting and correction of models for fast detection system were studied. According to the characteristics of on-line detection and actual problems, prediction model after implanting need correction, the raw data with standardized correction variable (SNV) were most reasonable, and then si-PLSR model for shear force value, color a*, L*and cooking loss using PLSR model full range wavelength, correlation coefficient and the root mean square prediction error were0.9068,0.9031,0.9049,0.8276and7.1963N,1.8246,1.4931,1.8246, RPD all above2. Detection system was verified finally, which basically achieved rapid detection of beef tenderness, have met production demands. Detection software system and background database were designed and developed, Improved the detection software system, and establish the system of background database. Based on which, invocation of the model was flexible and real-time prediction and results display for beef quality parameters, and at the same time prediction results can be carried out for storage and data query statistics, which improved the universality of prediction models.
     (4) In view of the complexity of beef structure of and the disadvantages of visible near infrared spectral like single point detection, this study used hyperspectral imaging system to get three-dimensional images and more information of samples. The stepwise regression and GA of the resulting PLSR models were used to identify the most important wavelengths and to reduce the high dimensionality of the hyperspectral data. By using these important wavelengths, beef images were developed to predict shear force value and color of every pixel in the images for visualizing in all portions of the sample. On the other hand, texture features were extracted from beef sample images for classification model, and then tender level of beef was calculated in every pixel of the images for visualizing distribution overall the sample.
引文
[1]. Desmond, E. M., Kenny, T. A., Ward, P., Sun, D. W. Effect of rapid and conventional cooling methods on the quality of cooked ham joints[J]. Meat Science,2000,56 (3),271-277.
    [2].霍灵光,田露,张越杰.中国牛肉需求量中长期预测分析[J].中国畜牧杂志,2010,42(2):43-47.
    [3].张梅.我国牛肉对外贸易竞争力分析[D].江南大学,2008
    [4].孙宝忠,马爱进,杨喜波.牛肉质量评定分级标准现状、制定原则及作用[J].中国食物与营养,2002,5:15-16.
    [5].孙宝忠.牛肉商品质量分级研究现状趋势与对策[DB/OL].http://www.chinacattle.net/nlun/nlun00080.htm
    [6].周光宏等.牛肉等级评定方法和标准[J].肉类工业,2001,(6):41-51.
    [7].万春发,张幸开,张丽萍等,牛肉品质评价的主要指标[J].中国畜牧兽医,2004,31(12):17-19.
    [8].李里特.食品物性学[M].中国农业出版社,2004.
    [9]. Boleman et al. Consumer evaluation of beef of known tenderness levels [C]. In Proceedings 41st international congress of meat science and technology, San Antonio, Texas, USA.1995, 20-25 August, pp594-595.
    [10]. Miller M F, Carr M A, Ramsey C B, et al. Consumer thresholds for establishing the value of beef tenderness[J]. Journal of Animal Science,2001,79:3062-3068.
    [11]. Silva J A, Patarata L, Martins C. Influence of ultimate pH on bovine meat tenderness during ageing[J]. Meat Science,1999,52:453-459.
    [12].李汉昌.肉类新鲜度的保持和检测[J].肉类工业,2003,7:9-12.
    [13].陈斌,黄星奕.食品与农产品品质无损检测新技术[M].北京:化学工业出版社,2004.
    [14].王林,王晶,周景洋.食品安全快速检测技术手册[M].北京:化学工业出版社,2008.
    [15].陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2006.
    [16].周光宏,徐幸莲,等.牛肉等级标准[S].南京农业大学肉类研究室,2002
    [17].陈红跃,左福元.部分国家牛肉等级评定标准的比较[J].四川畜牧兽医,2004,4:25-26.
    [18].周光宏. 肉品学[M].北京:中国农业科技出版社,1999.
    [19].汤晓燕,周光宏,徐幸莲.对中国牛肉分级制度的思考[J].黄牛杂志,2003,29(2):53-55.
    [20].中华人民共和国行业标准.牛肉质量标准,NT/T 367-2003.中华人民共和国农业部2003.10.01.
    [21].汤晓燕,刘木华,钱永钟,贾渊,王敏,周光宏.中国牛肉大理石花纹等级图谱的改进研究[J].中国农业科学,2006,39(10):2101-2106.
    [22].丁武,寇莉萍,张静,宋社果.质构仪穿透法测定肉制品嫩度的研究[J].农业工程学报,2005,21(10):138-141.
    [23].肉嫩度的测定.剪切力测定法,农业部标准NY/T 1180-2006,2006.7.
    [24]. Shackford S D, Wheeler T L, Koohmarie M. On-line classification of US select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy [J]. Meat Science,2005,69(3):09-415.
    [25]. Destefanis G, Brugiapaglia A, Barge M T, et al. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force[J], Meat Science,2008,78:153-156.
    [26].胡耀华,熊来怡,蒋国振,等.基于可见光和近红外光谱鲜猪肉蒸煮损失和嫩度检测的研究[J].光谱学与光谱分析,2012,30(11):2950-2953.
    [27].马世榜,徐杨,田潇瑜.生鲜肉品质快速无损检测技术的研究进展[C].农产品质量安全与现代农业发展专家论坛,2011,7:227-236.
    [28]. Prieto N, Andres S, Giraldez F J, et al. Potential use of near infrared reflectance spectroscopy (NIR) for the estimation of chemical composition of oxen meat samples [J]. Meat science, 2006,74:487-496.
    [29]. Rudbotten B N, Nilsen K I, Hildrum. Prediction of beef quality attributes from early post mortem near infrared reflectance spectra[J]. Food Chemistry,2000,69:427-436.
    [30]. Hildrum K I, Nilson B N, Mielnik M, et al. Prediction of sensory characteristic of beef by near-infrared spectroscopy [J]. Meat science,1994,38:67-80.
    [31]. Byrne et al. Non-destructive prediction of selected quality attributes of beef by Near-infrared reflectance spectroscopy between 750 and 1098nm[J]. Meat Science,1998,49(4):399-409.
    [32]. Park B, Chen Y R, Hruschka W R, et al. Near-infrared reflectance analysis for predicting beef longissimus tenderness [J]. Journal of Animal Science,1998,76:2115-2120.
    [33]. Andres S, Silva A, Soares A L, et al. The use of visible and near infrared reflectance spectroscopy to predict beef M. longissimus thracis et lumborum quality attributes [J]. Meat Science,2007,78(3):217-224.
    [34]. Liu Y L, Lyon B G, Windham W R, et al. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy, A feasibility study[J]. Meat Science,2003,65:1107-1115.
    [35].赵杰文,翟剑妹,刘木华.使用近红外技术预测牛肉嫩度[J].光谱学与光谱分析,2007,26:640-642.
    [36]. Togersen, G, Arnesen, J. F., Nielsen, B. N., & Hildrum, K. I. On-line prediction of chemical composition of semi-frozen ground beef by non-invasive NIR spectroscopy[C]. Meat Science, 2003,63:515-523.
    [37]. Peachey B M, Purchas R W, Duizer L M. Relationships between sensory and objective measures of meat tenderness of beef longissimus thoraces from bulls and steers [J]. Meat Science,2002,60:211-218.
    [38]. Li J, Tan J, Martz F, et al. Image texture features as indicators of beef tenderness. Journal of Meat Science[J],1999,53:17-22.
    [39]. Leroy, B., Lambotte, S., Dotreppe, O., Lecocq, H., Istasse, L., & Clinquart, A. Prediction of technological and organoleptic properties of beef longissimus thoracis from near-infrared reflectance and transmission spectra[J]. Meat Science,2003.66:45-54.
    [40], Prieto, N., Andres, S., Giraldez, F. J., Mantecon, A. R., & Lavin, P. Ability of near infrared reflectance spectroscopy (NIRS) to estimate physical parameters of adult steers (oxen) and young cattle meat samples[J]. Meat Science,2008,79:692-699.
    [41]. Ripoll, G., Alberti, P., Panea, B., Olleta, J. L., & Sanudo, C. Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef[J]. Meat Science,2008.80:697-702.
    [42]. ElMasry, G., Sun, D.-W. Meat quality assessment using a hyperspectral imaging system. In: Sun, Da-Wen (Ed.), Hyperspectral Imaging for Food QualityAnalysis and Control [C]. Academic Press/Elsevier, San Diego, California, USA,2010, pp.273-294.
    [43]. Naes, T., & Hildrum, K. I. A comparison of multivariate calibration and discriminant analysis for determining tenderness of meat by NIR spectroscopy[J]. Applied Spectroscopy, 1997,51,350-357.
    [44]. Downey, G, & Beauchene, D. Discrimination between fresh and frozen-then-thawed beef m. Longissimus dorsi by combined visible-near infrared reflectance spectroscopy:A feasibility study[J]. Meat Science,1997,45,353-363.
    [45]. Berzaghi, P., Segato, S., Cozzi, G., & Andrighetto, I. Mid and near infrared spectroscopy to identify illegal treatments in beef cattle[J]. Veterinary Research Communications,2006,30, 109-112.
    [46]. Prieto, N., Andres, S., Giraldez, F. J., Mantecon, A. R., & Lavin, P. Discrimination of adult steers (oxen) and young cattle ground meat samples by near infrared reflectance spectroscopy (NIRS) [J]. Meat Science,2008(b),79,198-201.
    [47]. Downey, G., & Hildrum, K. I. Analysis of meats. In L. Al-Amoodi, R. Craig, J. Workman, & J. Reeves, Ⅲ (Eds.), Near-infrared spectroscopy in agriculture[C]. Madison, Wisconsin, USA:American Society of Agronomy Inc., Crop Science Society of America Inc., Soil Science Society of America Inc.2004. pp.599-632.
    [48]. Cen H Y, He Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality[J]. Trends in Food Science & Technology,2007,18:72-83.
    [49]. McDonald, T. and Chen. Y. R. A geometirc model of marbling in beef longissimus dorsi. Trans[J]. ASAE,1992,35,1057-1062
    [50]. Gerrard, D. E., Gao, X., Tan, J. Beef marbling and colour score determination by image processing. Journal of Food Science[J].1996,61,145-148
    [51].江建龙.基于计算机视觉和神经网络的牛肉大理石花纹自动分级技术的研究[D].南京:南京农业大学,2003
    [52].汤晓艳,徐幸莲,钱永忠.中国牛肉大理石花纹等级图谱的改进研究[J].中国农业科学,2006,39,2101-2106
    [53]. K. Chen, Ch. Qin. Segmentation of beef marbling based on vision threshold[J]. Computers and Electronics in Agriculture.2008,62,223-230
    [54]. Wulf D M, Commor S F, Tatum J D, et al. Using objective measures of muscle color to predict beef longissimus tenderness[J]. J Animal Sci,1997,75:684-692
    [55]. Wyle A M,Cannell R C, K E Belk,et al. An evaluation of the prototype portable HunterLab Video Imaging System(Beef-CAM) as a tool to predict tenderness of beef carcasses using objective measures of lean and fat color[DB/OL]. Beef Program Report, http://www. colostate. edu/Depts/AnimSci/ran/meat/wtle.pdf,1999.117-125
    [56]. Li J, Tan J, Martz F A, et al. Image textual features as indicators of beef tenderness [J]. Meat Science,1999,53:17-22
    [57]. Jeyamkontan S, Kranzler G, A Lakshmikanth. Predicting beef tenderness with computer vision[C]. ASAE Paper No.013063 Presented at the ASAE 94th Annual International Meeting,2001,July29-August 1.
    [58]. Vote D J, Belk K E, Tatum J D, et al. Om-line prediction of beef tenderness using a computer vision system equipped with a BeefCam Medule[C]. Animal Sciences Research Report. The Department of Animal Sciences, Colorado State University,2002.
    [59].陈全胜.基于近红外光谱和机器视觉技术的茶叶品质快速无损检测研究[D].镇江:江苏大学,2007.
    [60]. Nicoletta Sinelli, Simona Benedetti, Gabriella Bottega, et al. Evaluation of the optimal cooking time of rice by using FT-NIR spectroscopy and an electronic nose [J]. Journal of Cereal Science,2006,44(2):137-143.
    [61]. Daniel Cozzolino, Heather E Smyth, Kate A, et al. Combining mass spectrometry based electronic nose, visible-near infrared spectroscopy and chemometrics to assess the sensory properties of Australian Riesling wines [J]. Analytical Chemical Acta,2006,563(1/2): 319-324.
    [62]. Daniel Cozzolino, Heather E Smyth, Wies Cynkar, et al. Usefulness of chemometrics and mass spectrometry-based electronic nose to classify Australian white wines by their varietal origin[J]. Talanta,2005,68(2):382-387.
    [63]. Cosio M S, Ballabio D, Benedetti S, et al. Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue [J]. Food Chemistry,2007,101(2):485-491.
    [64]. Buratti S, Ballabio D, Benedetti S, et al. Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of Genetic Algorithm regression models [J]. Food Chemistry,2007,100(1):211-218.
    [65]. Buratti S, Benedetti S, Scampicchio M, et al. Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue [J]. Analytica Chemical Acta,2004,525(1):133-139.
    [66]. Bleibaum R N, Stone H, Tan T, et al. Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices [J]. Food Quality and Preference,2002, 13(6):409-422.
    [67]. Natale C D, Paolesse R, Macagnano A, et al. Electronic nose and electronic tongue integration for improved classification of clinical and food samples [J]. Sensors and Actuators B:Chemical,2000,64 (1-3):15-21.
    [68].滕召胜,郁文贤,基于数据融合的智能水分快速测[J].电工技术学报,1999,14(5):23-2
    [69].张明社,李小昱,雷廷武,等.基于人工神经网络的数据融合法测量水流泥沙[J].农业工程学报,2002,18(4):41-43
    [70].陈全胜,赵杰文,蔡健荣,等.基于近红外光谱和机器视觉的多信息融合技术评判茶叶品质[J].农业工程学报,2008,24(3):5-10.
    [71].肖武,李小昱,李培武等.基于近红外光谱土壤水分检测模型的适应性[J].农业工程学报,2009,25(3):33-36.
    [72]. Gowen A A, ODonnell C P, Cullen P J, et al. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[J]. Trends in food science and technology, 2007,18:590-598.
    [73]. Monteiro S T, Minekawa Y, Kosugi Y, et al. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery[J]. Journal of Photogrammetry & Remote Sensing, 2007,62:2-12.
    [74]. Botha E J, Leblon B, Zebarth B, et al. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model[J]. International Journal of Applied Earth Observation and Geo information,2007,9:360-374.
    [75].李民赞.光谱分析技术及应用[M].北京:科学出版社,2006.
    [76]. Nicolai B, Lotze E, Peirs A, et al. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2006,40:1-6.
    [77]. Mehl P M, Chen Y R, Kim M S, et al. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations[J]. Journal of Food Engineering, 2004,61:678-81.
    [78]. Ariana D P, Lu R F, Guyer D E. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers[J]. Computers and Electronics in Agriculture,2006,53: 60-70.
    [79]. Ye X J, Sakai K, Sasao A, et al. Potential of airborne hyperspectral imagery to estimate fruit yield in citrus[J]. Chemometric and Intelligent Laboratory Systems,2008,90:1321-44.
    [80]. Nicolai B, Lotze E, Peirs A, et al. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2006,40:1-6.
    [81]. Mehl P M, Chen Y R, Kim M S, et al. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations[J]. Journal of Food Engineering, 2004,61:678-81.
    [82]. Xing J, Jancsok P, Baerdemaeker D J. Stem-end/calyx identification on apples using contour analysis in multispectral images[J]. Biosystems Engineering,2006,96(2):231-237.
    [83]. Xing J, Saeys W, Baerdemaeker D J. Combination of chemometric tools and image processing for bruise detection on apples[J]. Computers and Electronics in Agriculture,2007,56(1):1-13.
    [84]. Ariana D P, Lu R F, Guyer D E. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers[J]. Computers and Electronics in Agriculture,2006,53: 60-70.
    [85]. Polder G, Heijden G, Young I. Spectral image analysis for measuring ripeness of tomatoes[J]. Transactions of the ASAE,2002,45:1155-1161.
    [86]. Qin J W, Lu R, Measurement of the optical properties and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique[J]. Post harvest Biol.2008, doi:10.1016/j. posthavbio.2008.03.010.
    [87]. Lu R, Peng Y. Hyperspectral scattering for assessing peach fruit firmness[J]. Biosystems Engineering,2006,93(2):161-171.
    [88]. Masry E G, Wang N, Sayed E A, et al. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry[J]. Journal of Food Engineering,2007, 81(1):98-107.
    [89]. Chi M, Feng R, Bruzzone L. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem[J]. Advances in Space Research,2008,41: 1793-1799.
    [90]. Park B, Kurt K C, Windham W R, et al. Performance of hyperspectral imaging system for poultry surface fecal contaminant detection[J]. Journal of Food Engineering,2006,75: 340-348.
    [91]. Park B, Kurt K C, Windham W R, et al. Contaminant classification of poultry hyperspectral imagery using a spectral angel mapper algorithm[J]. Biosystems Engineering,2007,96(3): 323-333
    [92]. Qiao J, Wang N, Ngadi M O, et al. Prediction of drop-loss, pH, and color for pork using a hyperspectral imaging technique[J]. Meat Science,2007,76 1-8.
    [93].陈进.高光谱图像特征及分类研究[D].国防科学技术大学,2006.
    [94].曹鸿涛.高光谱成像实验及其数据处理[D].西北工业大学,2005.
    [95]. Peng Y, Lu R. An LCTF-Based multispectral image system for estimation of apple fruit firmness:Part II. Selection of optimal wavelength and development of prediction models[J]. Transactions of the ASABE,2006,49(1):269-275.
    [96]. Peng Y, Lu R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content[J]. Postharvest Biology and Technology,2008, 48:52-62.
    [97]. Peng Y, Lu R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content[J]. Postharvest Biology and Technology,2008, 48:52-62.
    [98]. Xia J J, Weaver A, Gerrard D E, et al. Distribution of optical scattering properties in four beef muscles [J]. Sens.& Instrumen. Food Qual,2008,2:75-81.
    [99]. Cluff K, Naganathan G K,99Subbiah J, Lu R, et al. Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region[J]. Sens. & Instrumen. Food Qual,2008,2:189-196.
    [100]. 吴建虎,彭彦昆,江发潮,等.牛肉嫩度的高光谱法检测技术[J].农业机械学报,2009,40(12):135-139.
    [101]. Wu J H, Peng Y K, Gao X D, et al. Prediction beef tenderness using scattering features of VIS/NIR hyperspectral imaging technology [J]. Food safety & quality detection technology, 2009,1(1):20-26.
    [102]. Peng Y, Wu J H. Hyperspectral scattering profiles for prediction of beef tenderness[C]. ASABE Paper No.080004. Rhode Island convention center, Rhode:ASABE.2008.
    [103]. Peng Y, Wu J H, Chen J J. Prediction of beef Quality Attributes using Hyperspectral Scattering Imaging Technique[C]. ASABE Paper No.096424. Grand Sierra Resort and Casino Reno, Nevada:ASABE.2008.
    [104]. Wu J H, Peng Y K, Yongyu Li, et al. Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique [J]. Journal of Food Engineering,2012,109: 267-273.
    [105]. Peng Y, Zhang J, Wu J H. Hyperspectral s cattering profiles for prediction of the microbial spoilage of beef [C]. SPEE, Sensing for agriculture food quality and safety. Orlando, Florida, United States,2009.
    [106]. 李里特.食品物性学[M].中国农业出版社,2004.
    [107]. Silva J A, Patarata L, Martins C. Influence of ultimate pH on bovine meat tenderness during ageing[J]. Meat Science,1999,52:453-459.
    [108]. Mestre Prates J A, Costa F J S, Garcia e RibeiroA M R, Dias Correia A A. Contribution of major structural changes in myofibrils to rabbit meat tenderization during aging[J]. Meat Science,2002,61:103-113.
    [109]. 肉嫩度的测定.剪切力测定法,农业部标准NY/T1180—2006,2006.7.
    [110]. Honikel K. Reference Methods for the assessment of physical characteristics of meat[J]. Meat Science,1998,49(4):447-457.
    [111]. 周光宏,张兰微,李宏军等.畜产食品加工学[M].北京:中国农业大学出版社,2002.
    [112]. 葛长荣,马美湖.肉与肉制品工艺学[M].北京:中国轻工业出版社,2002.
    [113]. Wheeler T L, Koohmaraie M. The ectent of proteolysis is independent of sarcomere length in lamb longissimus and psoas major [J]. Journal of Animal Science,1999,77: 2444-2451.
    [114]. Koohareie M, Shalkelford S D, Wheeler T L, et al. A muscle hypertrophy condition in lamb (callipyge):characterization of the effects on muscle grouth and meat quality traits [J]. Journal of Animal Science,1995,73:3596-3607.
    [115]. George M E, Berery B W. Thawing prior to cooking affects sensory, shear force, and cooking properties of beef patties[J]. Journal of food science,2000,65:774-789.
    [116]. 罗欣,周光宏.电刺激和延迟冷却对牛肉食用品质的影响[J].中国农业科学,2008,41(1):188-194.
    [117]. Miller M F, Carr M A, Ramsey C B, et al. Consumer thresholds for establishing the value of beef tenderness [J]. Journal of Animal Science,2001,79:3062-3068.
    [118]. 李春保.牛肉肌内结缔组织变化对其嫩度影响的研究[D].南京农业大学,2006.
    [119]. Jeremiah L E, Dugan M E R, Aalhus J L, Gibson L L. Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups[J]. Meat Science,2003,65:1013-1019.
    [120]. Rhee M S, Wheeler T L, Shackelford S D, Koohmaraie M. Variation in palatability and biochemical traits within and among eleven beef muscles. Journal of Animal Science,2004, 82:534-550. Koohmaraie M. Muscle proteinases and meat aging[J]. Meat Science,1994, 36(1-2):93-104.
    [121]. Huff-Lonergan E, Mitsuhashi T, Beekman D D,Parrish F C J 2, Olson D G, Robson R M. Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle[J]. Journal of Animal Science,1996,74: 993-1008.
    [122]. Lawrence T E, Dikeman M E, Stephens J W, Obuz E, Davis J R. In situinvestigation of the calcium-induced proteolytic and salting-in mechanisms causing tenderization in calcium-enhanced muscle[J]. Meat Science,2004,66:69-75.
    [123]. Takahashi K, Hattori A, Kuroyanagi H. Relationship between the translocation of paratropomyosin and the restoration of rigor-shortened sarcomeres during post-mortem ageing of meat-A molecular mechanism of meat tenderization[J]. Meat Science,1995,40: 413-423.
    [124]. Brady D E. A study of the factors influencing tenderness and texture of beef. Proceeding of American Social Animal Production,1937,30:246-250.
    [125]. Sims T J, Bailey A J. In:Developments in Meat Science (2nd ed. R. Lawrie. Applied Publishers Ltd., London,1981:25. Ramsbottom J M, Strandine E J, Koonz C H. Comparative tenderness of representative beef muscle[J]. Food Research,1945,10:497.
    [126]. Strandine E J, Koonz C H, Ramsbottom J M. A study of variation in muscle of beef and chicken[J]. Journal of Animal Science,1949,8:483-494.
    [127]. Cross H R,Carpenter Z L, Smith G C. Effects of intramuscular collagen and elastin on bovine muscle tenderness[J]. Journal of Food Science,1973,38:998-1003.
    [128]. 汤晓艳,周光宏,徐幸莲.大理石花纹、生理成熟度对牛肉品质的影响[J].食品科学,2006,27(12):114-116.
    [129]. Li J, J Tan, F A Martz, et al. Image texture features as indicators of beeftenderness[J]. Meat Science,1999,53:17-22.
    [130]. Culioli J. Meat tenderness:mechanical assessment. In:Ouali A, Demeyer D, Smulders F J M (eds). Expression of Tissue Proteases and Regulation of Protein Degradation as Related to Meat Quality[J]. ECCEAMST series,1995:239-265.
    [131]. Brooks J C, Savell J W. Perimysium thickness as an indicator of beef tenderness [J]. Meat Science,2004,67:329-334.
    [132]. McCormick R J. The flexibility of the collagen compartment of muscle[J]. Meat Science, 1994,36(1-2):79-91.
    [133]. Purslow P P. The intramuscular connective tissue matrix and cell/matrix interactions in relation to meat toughness[C]. Proceedings of the 45th International Congress on Meat,1999: 210-219.
    [134].刘丽,周光宏.预测黄牛及其改良牛牛肉嫩度的胴体性状筛选[J].南京农业大学学报,2001,24(2):106-109
    [135]. Wulf D M, OflConnor S F, Tatum J D, et al. Using objective measures of color to predict beef longissimus tenderness[J]. Journal of Animal Science,1997,75:685-692.
    [136].史杰,靳红果,王蓉蓉.牛背最长肌颜色与功能特性之间的关系研究[J].2011,36(6):137:141.
    [137]. Jeremiah L. E, Tong A K W, Gibson L L. The usefulness of Muscle color and pH for segregating beef carcasses into tenderness groups[J]. Meat Science,1991,30:97-114.
    [138]. Tatum J D, Belk K E, George M H, et al. Identification of quality management practices to reduce the incidence of retail beef tenderness problems:development and evaluation of a prototype quality system to produce Tender beef [J]. Journal of Animal Science, 1999,77:2112-2118
    [139]. 吴斌,孙宝忠,孙晓明,等.牛肉嫩度的色差值预测模型研究[J].食品科技,2011,36(1):76-79.
    [140]. Charles E, et al. Consumer preferences for beef color and packing did not affect eating satisfaction [J]. Meat Science,2001,57:359-363.
    [141]. Berge P, Sanchez A, Sebastian I, Afonso M, Sanudo C. Lamb meat texture as influenced by animal age and collagen characteristics [C]. Proceedings of th e 44th International Congress on Meat,1998:304-305.
    [142]. 邹小波,赵杰文.农产品无损检测技术与数据分析方法[M].北京:中国轻工业出版社,2008.
    [143]. 赵杰文,孙永海.现代食品检测技术[M].北京:中国轻工业出版社,2008.
    [144]. 黄慧.利用高光扫描技术检测小麦叶片叶绿素含量[D].中国农业大学,2010.
    [145]. Naganathan G K, Grimes L M, Subbia J, et al. Partial least squares analysis of near-infrared hyperspectral images for beef tenderness prediction[J]. Sens. & Instrumen. Food Qual,2008,2:178-188.
    [146]. Naganathan G K, Grimes L M, Subbia J, et al. Visible/near-infrared hyperspectral imaging for beef tenderness prediction[J]. Computers and electronics in Agriculture,2008, 64(2):225-233.
    [147]. 高晓东,吴建虎,彭彦昆,等:基于高光谱成像技术的牛肉大理石花纹的评估[J].农产品加工-学刊,2009,10:33-37.
    [148]. ElMasry, G., Sun, D.W., Near-infrared hyperspectral imaging for predicting colour, pH and tendernessof fresh beef [J],2012,110:127-140.
    [149]. Chang C, Laird DA. Near-infrared reflectance spectroscopic analysis of soil C and N [J]. Soil Science,2002,167(2):110-116.
    [150]. Williams P.C., Variables affecting near-infrared reflectance spectroscopic analysis [M]. Near-infrared Technology in the Agricultural and Food Industries,143-166. St. Paul, MN, The USA:American Association of Cereal Chemists.
    [151]. Vote DJ, Belk KE, Tatum JD, et al. Online prediction of beef tenderness using a computer visi on system equipped with a Beef Cam module [J]. Journal of Animal Science, 2003,81:457-465.
    [152]. Bowling MB, Vote DJ, Belk KE, et al. Using reflectance spectroscopy to predict beef tenderness [J]. Meat Science,2009,82,1-5.
    [153]. 郑小霞,钱锋.高斯核支持向量机分类和模型参数选择研究[J].计算机工程与应用,2006,42(1):77-79.
    [154]. Voges K.L., Mason C.L., Brooks J.C., et al. National beef tenderness survey-2006: Assessment of Warner-Bratzler shear and sensory panel ratings for beef from US retail and foodservice establishments [J]. Meat Science,2007,77:357-364.
    [155]. Destefanis G., Brugiapaglia A., M.T. Barge, et al.Relationship between beef consumer tenderness perception and Warner-Bratzler shear force[J]. Meat Science 2008,78:153-156.
    [156]. Belew J.B., J.C. Brooks, McKenna D.R., et al. Warner-Bratzler shear evaluations of 40 bovine muscles[J]. Meat Science,2003,64:507-512.
    [157]. 赵杰文,刘木华,潘胤飞,等.遗传算法优化BP及RBF神经网络用于苹果气味分类[J].食品科学,2004,25(2):39-42.
    [158]. 林颢,赵杰文,陈全胜.近红外光谱结合一类支持向量机算法检测鸡蛋的新鲜度[J].光谱学与光谱分析,2010,30(4):929-932.
    [159]. 吴静珠,刘翠玲,李慧,等.基于近红外光谱的纯花生油掺伪快速鉴别方法研究[J].北京工商大学学报(自然科学版),2011,29(1):75-78.
    [160]. 高晓东.基于高光谱成像技术的牛肉大理石花纹的评估[D].中国农业大学,2009.
    [161]. 李小娟,宫兆宁,刘晓萌ENVI遥感影像处理教程[M].北京:中国环境科学出版社,2007,1,23.
    [162]. 邓书斌著ENVI遥感图像处理方法[M].科学出版社,2010,6,1.
    [163]. 赵杰文,陈全胜,林颢.现代成像技术及其在食品、农产品检测中的应用[M].北京:机械工业出版社,2011.
    [164]. 杨金红.高光谱遥感数据最佳波段选择方法研究[D].南京信息工程大学,2005.
    [165]. 应义斌,韩东海.农产品无损检测技术[M].北京:化学工业出版社,2005.
    [166]. 蔡健荣,王建黑,陈全胜.波段比算法结合高光谱图像技术检测柑橘果锈[J].农业工程学报,2009,25(1):127-131.
    [167]. 陈兵旗,孙明.实用数字图像处理与分析[M].北京:中国农业大学出版社,2005。
    [168]. 张媛.高光谱遥感图像的处理与应用[D].西北工业大学,2006.
    [169]. 张建华.基于机器视觉的棉田盲蝽蟓虫害信息检测方法研究[D].中国农业大学,2012.
    [170]. Tran, T.N., Wehrens, R., Buydens, L.M.C. Clustering multispectral images:a tutorial[J]. Chemometrics and Intelligent Laboratory Systems.2005,77 (1),3-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700